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Abstract Thiswork investigates the amplitude-depen
dent dynamics of a locally resonant metamaterial
beam with bistable attachments. The concept that
was previously demonstrated for a discrete chain is
extended to a continuous system, and the enhance-
ment in vibration attenuation bandwidth is investi-
gated through a cantilever beam under base excitation.
The analysis approach combines the harmonic balance
method and time-domain numerical integration to cap-
ture periodic and aperiodic responses for up-sweep and
down-sweep harmonic excitation. The bistable attach-
ments are shown to exhibit linear intrawell, nonlin-
ear intrawell and nonlinear interwell oscillations for
low, moderate, and high base acceleration levels. As a
result, the metastructure leverages linear locally reso-
nant bandgap under low excitation intensity, and non-
linear wideband attenuation due to chaotic vibrations
of the bistable attachments under high excitation inten-
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sity. This is first demonstrated through frequency sweep
numerical simulations for a broad range of excita-
tion amplitudes. Experimental validations are then pre-
sented for a base-excited cantilever beam hosting seven
magnetoelastic beam attachments. For moderate-to-
high amplitude excitation levels, the interwell oscil-
lations of the attachments produce an attenuation fre-
quency range that is 350% wider than the correspond-
ing linear locally resonant bandgap (observed for low-
amplitude excitation levels), yielding the suppression
ofmodes outside the bandgapwith increased excitation
intensity.

Keywords Metamaterials · Vibration · Bistability ·
Nonlinear

1 Introduction

Locally resonant (LR) metamaterials and resulting
finite LR metastructures have been extensively studied
over the past two decades since the seminalwork byLiu
et al. [1]. In LRmetamaterials, the out-of-phasemotion
of the local resonators with respect to the base struc-
ture leads to the attenuation, typically occurring at the
resonant frequency of the attachments. Therefore, LR
bandgaps can happen at wavelengths much larger than
the lattice size, yielding low-frequency vibration/noise
attenuation and wave filtering [1–8]. However, most
investigations have considered using linear local res-
onators. In such linear configurations, the resulting
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attenuation bandwidth (LR bandgap size) is limited by
the addedmass [9], which is typically aimed to bemini-
mized in most applications that require lightweight and
compact designs due to space and weight limitations.

Compared to linear configurations, nonlinearities
provide rich dynamics such as sub- and super-harmonic
resonances and in some cases chaotic behavior. As
leveraged in the vibration energy harvesting field, prop-
erly designed nonlinear oscillators offer various advan-
tages, among which substantially enhanced frequency
bandwidth is of primary interest. For instance, as sum-
marized in [10], both monostable and bistable nonlin-
ear oscillators have been investigated to enable wide-
band energyharvesters over thepast decade.Especially,
the bistable configurations provide a plethora of wide-
band dynamic behavior through periodic intrawell and
interwell oscillations, and chaotic interwell vibrations
dependingon the input amplitudes [11–14].These stud-
ies shed light on the design of individual bistable oscil-
lators to target a specific frequency bandwidth, not only
for harvesting energy but also for other applications.

In terms of nonlinear vibration attenuation, many
efforts have focused on the concept of nonlinear energy
sink (NES) [15–20], evolving from relatively simple
systems of one linear oscillator with one NES attached
to a continuous structure with one NES attached. In
addition, some researchers utilized bistable oscilla-
tors; however, they mainly explored low degree-of-
freedom (DOF) systems, typically in the form of a
linear oscillator coupled to a bistable attachment [21–
24]. These studies, on both the transient dissipative
dynamics under impulse excitation and the steady-
state responses under harmonic excitation, unveil the
potential of bistable attachments for wideband atten-
uation behavior. On the other hand, in metamate-
rial/metastructure settings, limited work has focused
on nonlinear resonating configurations [25]. For exam-
ple, Lazarov et al. [26] considered Duffing-type cubic
hardening nonlinear resonators; Banerjee et al. [27]
numerically investigated the effects of cubic harden-
ing nonlinearity in a series of spring mass-in-mass sys-
tem; Casalotti et al. [28] explored the nonlinear fre-
quency response of ametamaterial beamwith nonlinear
absorbers and demonstrated enhanced vibration sup-
pression performance. In a parallel body of work, it
is also worth mentioning that interesting phenomena
such as solitary wave propagation and unidirectional
wave propagation have been demonstrated in bistable
lattices [29–31].

Our previous work [32] considered a linear mass-
spring chain with bistable attachments for a basic qual-
itative demonstration of amplitude-dependent band-
width enhancement. The present work aims to move
from the lumped-parameter model to a distributed-
parameter model for a quantitative comparison with
experiments. The paper is organized as follows. The
next section presents the description of the system and
the derivation of the state-space representation of the
system from a distributed-parameter model based on
the Euler–Bernoulli beam theory and simplified modal
analysis. Numerical analysis approach combining the
frequency-domain harmonic balance method and the
time-domain Runge–Kutta method is briefly described
in Sect. 3. Numerical studies simulating the system
under low, moderate and sufficiently high intensity
excitation cases are presented in Sect. 4. Select time
histories of the system and the phase portraits of indi-
vidual bistable attachments are plotted. Experimental
results and validations are then presented for a base-
excited cantilever beam hosting seven bistable magne-
toelastic attachments in Sect. 5. Subsequently, a brief
discussion of the work is provided along with the main
conclusions of the current work.

2 Theory

The system consists of a cantilever beam under trans-
verse vibration with S bistable attachments as shown
in Fig. 1.

The beam is clamped at one end (x = 0) and free
to vibrate at the other end (x = L). It has width of b,
thickness of h, Young’s modulus of E , and density of
ρ. Each attachment is connected to the beam through
a bistable spring with negative linear stiffness ka1 and
positive cubic stiffness ka3. The total transverse dis-
placement, wt (x, t), of the cantilever beam under base
excitation is defined as:
wt (x, t) = wb(t) + w(x, t) (1)

where wb(t) is the base displacement at x = 0 and
w(w, t) is the beamdisplacement relative to themoving
space at position x and time t . The governing equation
of the beam based on Euler–Bernoulli beam theory is:

E I
∂4w(x, t)

∂x4
+ m

∂2w(x, t)

∂t2
−

S∑

j=1

[
ka1waj (t)

+ka3w
3
aj (t)

]
δ(xx j ) = −m

d2wb(t)

dt2
(2)
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Fig. 1 Schematic of the
nonlinear locally resonant
metastructure (cantilever
with bistable attachments)
under base excitation

At this point, the system is assumed to be undamped
and modal damping will be introduced at a later stage.
The associated equations of motion for the attachments
are:

m j

[
∂2w(x j , t)

∂t2
+ d2waj (t)

dt2

]
+ ka1waj (t)

+ka3w
3
aj (t) = −m j

d2wb(t)

dt2
, j = 1, 2, . . . , S

(3)

where waj (t) is the relative displacement of the j-th
attachment with respect to w(x j , t), x j is the location
of the j-th attachment, I = bh3/12 is second moment
of area about y-axis, m = ρbh is the mass per length
of the beam, andm j is the mass of the j-th attachment.

The boundary conditions of the clamped-free beam
are given by:

w(0, t) = 0 (4)
∂w(0, t)

∂x
= 0 (5)

E I
∂2w(L , t)

∂x2
= 0 (6)

E I
∂3w(L , t)

∂x3
= 0 (7)

The work mainly focuses on the frequency range
in the neighborhood of one target mode (i.e., the sec-
ond mode) of the cantilever beam with no attach-
ments (plain beam). Nonlinear modal interactions are
neglected since the modes of the plain beam are well
separated. As mentioned in [9], an expansion using the
mode shapes of a uniform clamped-free beam, φ(x),
can provide a significant simplification in the analysis.
The approximate solution of the displacement of the
beam is:

w(x, t) =
N∑

r=1

ηr (t)φr (x) (8)

where N is the number of modes in the expansion
and ηr (t) is the modal weighting of the r -th mode
of the clamped-free beam. The mass-normalized mode
shapes of the beam are given by the following equation:

φr (x) = 1√
mL

[
cos

(
λr x

L

)
− cosh

(
λr x

L

)

+
(
sin λr − sinh λr

cos λr + cosh λr

)(
sin

(
λr x

L

)
− sinh

(
λr x

L

))]
,

r = 1, 2, . . . , N (9)

where λr is the r -th positive real solution of the char-
acteristic equation given in Eq. (10).

cos λ cosh λ + 1 = 0 (10)

The mode shapes of the clamped-free beam satisfy the
orthogonality conditions as shown below:
∫ x=L

x=0
φr (x)mφs(x)dx = δrs, r, s = 1, 2, . . . (11)

∫ x=L

x=0
φr (x)E Iφ′′′′

s (x)dx = ω2
r δrs, r, s = 1, 2, . . .

(12)

where ωr is the natural frequency of the r -th mode of
the clamped-free beam. Substituting Eq. (8) into Eq.
(2) gives the following equation:

E I
N∑

r=1

ηr (t)φ
′′′′
r (x) + m

N∑

r=1

η̈r (t)φr (x) −
S∑

j=1

[
ka1waj (t)

+ ka3w
3
aj (t)

]
δ(x − x j ) = −mẅb(t) (13)

where ()′ denotes the derivative with respect to space
variable x and (̇) denotes the derivative with respect
to time t . Multiplying Eq. (13) by φs(x), integrating
from x = 0 to x = L , and applying the orthogonality
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conditions of the mode shapes shown in Eqs. (11) and
(12) yield:

η̈r (t) + ω2
r ηr (t) −

S∑

j=1

[
ka1waj (t) + ka3w

3
aj (t)

]
φr (x j )

= −mẅb(t)
∫ x=L

x=0
φr (x)dx (14)

Substitute Eq. (8) into Eq. (3) gives:

m j

[ N∑

r=1

η̈r (t)φr (x j ) + ẅaj (t)

]
+ ka1waj (t)

+ ka3w
3
aj (t) = −m j ẅb(t), j = 1, 2, . . . , S

(15)

Given that the nonlinearity is in the relative displace-
ment of the attachments, one we can rewrite Eq. (14)
by substituting Eq. (15) as the following:

η̈r (t) + ω2
r ηr (t) +

S∑

j=1

m jφr (x j )
N∑

k=1

η̈k(t)φk(x j )

+
S∑

j=1

m j ẅaj (t)φr (x j ) = qr (t), r = 1, 2, . . . , N

(16)

where

qr (t) = −ẅb(t)

(∫ x=L

x=0
mφr (x)dx +

S∑

j=1

m jφr (x j )

)

(17)

To this end, Eqs. (15) and (16) form a system of N + S
coupled second-order ordinary differential equations.
Such system can be cast into the matrix form:

Mü + Ku + Gu3 = F(t) (18)

where u = [
η1 η2 · · · ηN wa1 wa2 · · · waS

]�
con-

tains the modal weightings of the beam and the relative
displacements of the bistable attachments. The mass
matrixM, linear stiffness matrix K and cubic stiffness

matrix G are:

M =
[
M11 M12

M21 M22

]
, K =

[
K11 0
0 K22

]
,

G =
[
0 0
0 G22

]
, F =

[
F1

F2

]
, (19)

whereM11 is a N × N matrix, with the entries:mmn =
δmn +∑S

j=1m jφm(x j )φn(x j );M12 is a N × S matrix,
with the entries: mmq = mqφm(xq); M21 is a S × N
matrix, with the entries: mpn = mpφn(xp); M22 is a
S × S matrix, with the entries: mpq = δpqm p; K11

is a N × N diagonal matrix, with the entries: kmn =
δmnω

2
m ;K22 is a S×S diagonalmatrix, with the entries:

kpq = δpqka1; G22 is a S × S diagonal matrix, with
the entries: Gpq = δpqka3. On the right hand side of
Eq. (18), the forcing vector is:

F =
[
F1

F2

]
(20)

where F1 is a N × 1 vector, with the entries:

fm = qm(t) = −ẅb(t)

[ ∫ x=L

x=0
mφm(x)dx+

S∑

j=1

m jφ(x j )

]

(21)

F2 is a S×1 vector, with the entries: f p = −mpẅb(t).
For all the indices above, m, n = 1, 2, . . . , N and
p, q = 1, 2, . . . , S.
Equation (18) can be rearranged as:

ü + �u + �u3 = δ (22)

where � = M−1K, � = M−1G, δ = M−1F. To this
end, Eq. (22) can be further turned into first-order state
space form:

ż = A0z + Qz3 + R (23)

where

z =
[
u
u̇

]
,A0 =

[
0 I

−� 0

]
,Q =

[
0 0

−� 0

]
,R =

[
0
δ

]
,

(24)

For the nonlinear spring with a negative linear stiffness
(ka1 < 0) and a positive cubic stiffness (ka3 > 0), the
origin (waj = 0) of the attachment becomes unstable
and there exist two stable equilibrium points, w̄aj,1 and
w̄aj,2, in the potential energy plot.

w̄aj,1 = −√−ka1/ka3, w̄aj,2 = √−ka1/ka3 (25)
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Table 1 System parameters

Length of the beam, L 0.889 m

Width of the beam, b 3.175 cm

Thickness of the beam, h 3.175 mm

Adjusted thickness of the beam, ha 2.6 mm

Young’s modulus of the beam, E 69 GPa

Density of the beam, ρ 2700 kg/m3

Adjusted density of the beam, ρa 2970 kg/m3

Attachment mass, mr 36 g

Spring linear stiffness, ka1 −63.451 N/m

Spring cubic stiffness, ka3 634509 N/m3

Modal damping for the beam, ζb 0.002

Damping ratio for the attachments, ζa 0.02

Number of modes in expansion, N 10

Number of attachments, S 7

Equation (15) can be linearized around either of the
two stable equilibrium points, and the resulting linear
natural frequency, ω̄a , of the attachment is given by:

ω̄a = √−2ka1/mr (26)

3 Analysis approach

For the nonlinear system under harmonic base excita-
tion, the response can exhibit periodic and aperiodic
oscillations related to intrawell and interwell oscilla-
tions of the attachments. The harmonic balancemethod
is applied to solve for the periodic steady-state solutions
of ηr and waj . Since the system has cubic stiffness, the
truncated Fourier series representation should contain
sufficient terms and three terms are used here. Equa-
tions (27) and (28) represent the assumed three-term
Fourier series expansion of the modal weighting of the
r -th mode and relative displacement of j-th bistable
attachment, respectively.

η̂r = ar + ∑3
m=1

[
Ar,m cos

( 2πmt
T

)

+Br,m sin
( 2πmt

T

) ]
, r = 1, 2, . . . , N (27)

ŵaj = aaj + ∑3
m=1

[
Aaj,m cos

( 2πmt
T

)

+Baj,m sin
( 2πmt

T

) ]
, j = 1, 2, . . . , S (28)

Since a closed-form solution is beyond reach for
such a nonlinear and high DOF system, Newton–
Raphson method is employed to assist finding the
Fourier series expansion coefficients. More details
regarding harmonic balance method can be found in
[33]. Runge–Kutta method (time-domain numerical
simulation) is utilized to calculate aperiodic solutions
(including chaos)whenNewton–Raphsonmethod does
not yield a convergent harmonic balance solution (in
aperiodic response forms).

4 Numerical investigation

In the previous two sections, the system was intro-
duced, the equations of motions were obtained and
the solution strategy was described. In this section, the
steady-state responses of the system are depicted as a
function of frequency under various excitation ampli-
tudes. Parameters for the case study are chosen and
adjusted according to the experimental setup that will
be presented in the next section. All the attachments
are assumed to have the same mass, mr , and all the
springs have the same stiffness. Table 1 summarizes all
the parameters of the system and the updated parame-
ters used in the numerical investigations.

The first three resonant frequencies of the clamped-
free cantilever beam without attachments (plain beam)
are: 2.55 Hz, 15.9 Hz and 44.55 Hz as seen in Fig. 2.
Transmissibility here and in the rest of the paper is
defined as the ratio of the steady-state velocity at the
tip of the aluminum beam to that at its base. Since the
first three modes of the plain beam are well separated,
modal interactions are neglected with a focus on the
primary resonance around the mode of interest (which
is the second mode).

Based on Eqs. (25) and (26), parameters of the non-
linear springs are obtained from the equilibrium posi-
tions of the bistable attachments (w̄aj,1 = 0.75 cm and
w̄aj,2 = −0.75 cm) and the linear natural frequency
around either of the equilibrium positions (ω̄a = 16.8
Hz) measured in the experiments. Here, ω̄a is in the
neighborhood of the second mode of the plain beam. It
should be noted that the values of thickness and density
for the beamused in the simulations (adjusted thickness
ha and adjusted density ρa) are slightly different than
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Fig. 2 Linear transmissibility of the clamped-free beam with-
out attachments (plain beam). The first three modes are well
separated. Black curve shows the simulated results based on the
adjusted (updated) parameters; red curve shows the experimental
data. (Color figure online)

the actual thickness and density of the beam to com-
pensate the non-uniformity of the beam implemented in
the experiments, which includes extrude cuts, holes and
added point mass, etc. This is a reasonable approach
given the long wavelengths in the modal neighbor-
hood of interest. In addition, in the numerical analy-
sis for better consistency with experiments, damping
(modal damping for the beam and damping ratios for
the bistable attachments) is added to the previously
derived equations of motion in Eqs. (15) and (16). For
simplicity, all the modes of the beam are assumed to
have the same modal damping, ζr = 0.002, and all
the bistable attachments are assumed to have the same
damping ratio, ζa = 0.02. As can be seen in Fig. 2,
the simulated response of plain beam based on the
adjusted parameters matches very well with the mea-
sured responses in the experiments.

Since the behavior of the nonlinear system is ampli-
tude dependent (i.e., base excitation amplitude depen-
dent), different levels of base excitation should be
explored. Four different cases are simulated and the
root-mean-square (RMS) values of the base accelera-
tion are: 0.005g, 0.1g, 0.3g and 0.5g, where g denotes
gravity. For the frequency response analysis of the non-
linear system, simulations are performed for both up
and down frequency sweep at each base acceleration
amplitude over the frequency range from 10 to 24 Hz.
It is assumed that the beam starts from the rest and all
the bistable attachments stay in the positive equilib-

Fig. 3 Numerical simulation results for the transmissibility of
the beam under different base excitation amplitudes normalized
by the base acceleration: a up sweep and b down sweep

rium positions (w̄aj,2 = 0.75 cm) at the beginning of
the frequency sweep as the initial conditions.

Simulated results of the transmissibility frequency
response of the beam under base excitation are plotted
in Fig. 3 for various RMS case acceleration levels and
for both the frequency upsweep and downsweep. The
shaded region in Fig. 3 shows the estimate of the linear
locally resonant bandgapbasedon the theory developed
for finite and continuous metastructures [8,9] given by:

ωt < ω < ωt
√
1 + μ (29)

where ωt is the target frequency of the resonators and
μ is the mass ratio of the total mass of the resonators
to the total mass of the plain main structure as follows:

μ =
∑S

j=1m j

mL
= mr S

ρbhL
(30)
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Here ωt = ω̄a = 16.8 Hz and μ = 0.27 are used in the
plot for the system under linear behavior.

At very low base excitation amplitudes (e.g., ẅb =
0.005g RMS acceleration), the bistable attachments
oscillate around the equilibrium positions at the lin-
ear natural frequency ω̄a and the system exhibits lin-
ear/quasilinear behavior, yielding a typicalLRbandgap.
The second mode of the plain bean is attenuated
while additional resonances appear, which is similar
to the behavior of just using linear locally resonant
attachments. As the excitation level increases, nonlin-
ear intrawell softening and interwell oscillations are
enabled gradually. The first side peak around 12.5 Hz
is reduced significantly, and a softening behavior is
seen on the second side peak, achieving a broader
bandwidth of attenuation. For high acceleration levels
(e.g., ẅb = 0.5g RMS acceleration), wideband chaotic
behavior is observed.

Select time histories of the relative displacements
of all seven attachments along with the phase portraits
are presented for excitation at 12.5Hz (marked in black
line in Fig. 3b) under 0.1g, 0.3g and 0.5g RMS accel-
eration levels in Figs. 4, 5 and 6, respectively. For a
concise demonstration, duration of 4 s time history
(from 116 to 120 s) of the relative displacements of
the attachments are plotted. While the phase portraits
of the attachments are based on much longer time his-
tories (from 100 to 120 s) so that the dynamics behav-
ior of individual attachments are better captured. In
addition, select time instants of the relative displace-
ment distribution of the beam and the time average
responses of the beam, wavg(x), from 116 to 120 s
are plotted. The trend is clearly shown for gradually
enabled interwell oscillations (chaotic behavior) as the
excitation level increases. Under 0.1g RMS accelera-
tion level (Fig. 4), attachments 1 and 5 stay within the
potential well, while the other five attachments undergo
interwell chaotic vibrations.The locations of the attach-
ment indeed affect the dynamic behavior. As seen from
the select time instants of the beam’s response (Fig. 4c),
the displacements of beam at the locations of attach-
ments 1 and 5 are relatively small compared to the
responses at the locations of the other five attachments;
hence, the attachments do not escape the potential well
yet for the mentioned excitation level. As the RMS
acceleration level increases to 0.3g (Fig. 5) and 0.5g
(Fig. 6), all the attachments begin to exhibit chaotic
interwell oscillations. Higher-intensity oscillations of
the bistable attachments at 12.5 Hz under 0.5g RMS

Fig. 4 Numerical simulation results for the base acceleration of
0.1g at 12.5 Hz. a Time histories and b phase portraits for rel-
ative displacements of the attachments. c Select time history of
beam displacement distribution (up) and time average displace-
ment distribution (down). Blue asterisks mark the locations of
the attachments. (Color figure online)

acceleration compared to those under 0.3g RMS accel-
eration further suppress the transmissibility of the beam
more as shown in Fig. 3.
Interestingly, high-energy periodic branch of the sys-
tem is captured for 0.5g RMS acceleration level due
to the large-orbit interwell oscillations of the bistable
attachments. For example, as shown in Fig. 7a, b, the
time histories and phase portraits of the attachments
illustrate periodic interwell oscillations for 0.5g RMS
acceleration level at 11 Hz (marked in black dash line
in Fig. 3). Periodic responses of the beam itself are
clearly shown in the select time instants and the time
average responses of the beam displacement distribu-
tion inFig. 7c.The responses of thebeammanifest itself
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Fig. 5 Numerical simulation results for system under the base
acceleration of 0.3g at 12.5 Hz. a Time histories and b phase
portraits for the relative displacements of attachments. c Select
time history of beam displacement distribution (up) and time
average displacement distribution (down). Blue asterisks mark
the locations of the attachments. (Color figure online)

as similar to the second mode shape of a clamped-free
beam, which is the mode we are targeting.

5 Experimental validation

Experimental investigations are presented next to vali-
date amplitude-dependent bandwidth enhancement via
bistable attachments .

Fig. 6 Numerical simulation results for the base acceleration of
0.5g at 12.5 Hz. a Time histories and b phase portraits for rel-
ative displacements of the attachments. c Select time history of
beam displacement distribution (up) and time average displace-
ment distribution (down). Blue asterisks mark the locations of
the attachments. (Color figure online)

5.1 Experimental setup

The experimental setup shown in Fig. 8 includes an
aluminum cantilever as the main structure with 7 mag-
netoelastic beams as bistable attachments. The main
beam with the dimensions listed in Table 1 comprises
7 unit cells. Each unit cell (Fig. 8d) includes a bistable
attachment made from a spring steel cantilever with
tip masses. The spring steel cantilever is 9.525 mm
wide, 0.254 mm thick and extending the edge of the
extruded slot by 4.06 cm long. Two 9.525 mm cube-
shaped permanent magnets are placed at the free end of
each spring steel cantilever as tip masses. Each magnet
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Fig. 7 Numerical simulation results for the base acceleration of
0.5g at 11 Hz. a Time histories and b phase portraits for rela-
tive displacements of the attachments. c Select time history of
beam displacement distribution (up) and time average displace-
ment distribution (down). Blue asterisks mark the locations of
the attachments. (Color figure online)

has a hole through the center which is perpendicular
to the magnetization direction. The other pair of two
9.525 mm cube-shaped magnets is attached on the alu-
minum beam to realize the bistability, and two static
equilibrium positions are obtained as shown in Fig. 8e.

An APS-113 long stroke shaker driven by an APS-
125 amplifier is used to excite the structure, which is
clamped vertically to the armature of the shaker. For
the purpose of having a constant-amplitude harmonic
base acceleration at specified frequencies, a SPEKTRA
VCS-201 controller is utilized, with the input from
the base acceleration measured by an accelerometer.

A Polytec OFV-505 laser Doppler vibrometer (LDV)
oriented vertically at a 45-degree mirror measures the
transverse tip velocity of the beam. The excitation fre-
quencies are swept up from 10 to 24 Hz and down from
24 to 10 Hz at a rate of 0.25 Hz/min for four different
base acceleration levels.

5.2 Experimental results

Potential wells of the bistable attachments can be
adjusted by varying the locations of the magnets along
the slots on the beam. The distance between the mag-
nets is quantified by the vertical distance, d, between
the lower edge of the extruded cut and the upper face
of the cubic magnet as labeled in Fig. 8d. When the
distance d is set to be 17 mm, the post-buckled lin-
ear natural frequency is identified to be 16.8 Hz. The
equilibrium position of the attachment is measured to
be 0.75 cm, which is approximated by the distance
between the center of tip mass to the beam. The selec-
tion of this magnet spacing is to target the secondmode
neighborhood (around 15.9 Hz) of the plain beam in
this work. Experiment is first performed on the plain
beam, which is the main cantilever without the bistable
attachments. All 7 magnetoelastic cantilevers with the
corresponding pairs of magnets at the end are removed
first, while all other pairs of magnets on the beam with
d = 17 mm are still kept. The first three modes of
the plain beam are plotted in the transmissibility fre-
quency response inFig. 2. Then, the beamwith all seven
bistable attachments is tested. The transmissibility fre-
quency responses of the beam are measured for various
RMS base acceleration levels, as shown in Fig. 9a, b
for up and down frequency sweep, respectively.

It can be seen that the experimental results agree
well with the responses predicted from the simulations
(comparing Figs. 3 and 9). The shaded region shows
the estimated linear locally resonant bandgap based on
Eq. 29 with the target frequency ωt = 16.8 Hz and
mass ratio μ = 0.27. At a very low RMS base acceler-
ation level (0.005g), the metastructure has a bandgap
similar to the one using linear local resonators. The
second mode of the plain beam is significantly atten-
uated, while new resonances appear. It is observed
that, at such low excitation intensity level, the bistable
attachments vibrate linearly (or quasilinearly) around
their respective stable equilibria, staying within the
potential well as expected. As the base excitation level
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Fig. 8 a Overview of the
experimental setup; b side
view and c front view of the
beam with bistable
attachments; d close-up
view and e static
equilibrium positions of an
attachment

Fig. 9 Experimental results for the transmissibility of the beam
under different excitation levels normalized by the base acceler-
ation: a up sweep and b down sweep

increases, the nonlinear attenuation is triggered first by
the intrawell softening of the bistable attachments. Fur-

ther increase in the base excitation intensity triggers
chaotic motions of the attachments, leading to band-
width enhancement. Overall, an attenuation frequency
range that is 350% wider than the corresponding lin-
ear locally resonant bandgap is observed. High energy
branch at 0.5g RMS acceleration level is also observed
in the experiments, especially in the down sweep fre-
quency response. Slow-motion videos capturing the
beamwith attachments exhibiting linear intrawell, non-
linear intrawell and nonlinear interwell oscillations at
select base acceleration levels and frequencies can be
viewed in the Supplementary materials.

6 Discussions

In general, the experimental results agree well with
the numerical results as demonstrated in the previous
two sections. The small discrepancies can be caused by
the following reasons. First of all, the cut-offs on the
beam in the experiments are not directly considered
in the simulation, which assumes the beam is uniform
for simplification. Secondly, the determination of the
linear and cubic terms of the stiffness is also simpli-
fied, obtained from the measurement of attachment’s
equilibrium positions and post-buckled linear natural
frequencies. Thirdly, the existence of magnet damp-
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ing from the Eddy currents can affect the responses of
the beam more obviously as the base acceleration level
increases when the tip magnets travel though the slots
on the beam. The agreement can be further improved
by modeling the system more accurately considering
the aforementioned points. In addition, the clamping of
the spring steel cantilever on the beam is asymmetric
and the resulting double-well potential is not perfectly
symmetric in the experiments (i.e., a small amount of
quadratic nonlinearity is inevitable). The effect of sig-
nificantly asymmetric potential wells can be found in
the nonlinear energy harvesting literature [34,35]). Fur-
thermore, small variations inmanually adjustedmagnet
spacing are inevitable and can lead to slightly different
post-buckled linear natural frequencies for the bistable
attachments.

7 Conclusions

This paper investigates the rich dynamics of non-
linear locally resonant metastructures via bistable
attachments both numerically and experimentally. The
distributed-parameter model can be used to predict the
responses of such complex system. Periodic intrawell,
aperiodic intrawell, aperiodic interwell and periodic
interwell oscillations of the bistable attachments are all
observed under various acceleration levels. The study
shows that the nonlinear interwell oscillations of the
bistable attachments offer substantially wider band-
width than the corresponding linear locally resonant
bandgap. This type of nonlinearmetastructures exhibits
much richer dynamics and wider bandwidths than their
linear counterparts whose bandgap is known to be lim-
ited by the added mass.
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