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Abstract In the literature of vibration energy harvest-
ing, mechanically nonlinear frameworks have mostly
employed linear electrical circuitry to formulate AC
input–AC output problems, while the existing efforts
on nonlinear power conditioning circuits have assumed
linear mechanical behavior. However, even for the sim-
plest case of a stiff (geometrically linear) piezoelectric
cantilever,material softening anddissipative nonlinear-
ities in the mechanical domain have to be accomodated
to accurately predict the response for moderate to high
excitation levels, and likewise a stable DC signal must
be obtained to charge a storage component in realis-
tic energy harvesting applications. Furthermore, often
times the voltage output is not large enough to assume
ideal diode behavior to reduce diodes to switches in
AC–DC conversion modeling. Therefore, a relatively
complete representation of piezoelectric energy har-
vesting requires accounting for the mechanical (e.g.,
material and dissipative) nonlinearities as well as the
nonlinear process of AC–DC conversion with non-
ideal circuit elements, such as real diodes. To this end,
we present and experimentally validate a multiphysics

S. Leadenham
Lawrence Livermore National Laboratory,
7000 East Avenue, Livermore, California 94550, USA
e-mail: leadenham1@llnl.gov

A. Erturk (B)
The George W. Woodruff School of Mechanical
Engineering Georgia Institute of Technology,
Atlanta, Georgia 30332, USA
e-mail: alper.erturk@me.gatech.edu

framework and harmonic balance analysis that com-
bines these mechanical and electrical nonlinear non-
ideal effects to predict the DC electrical output (DC
voltage across the load) in terms of the AC mechanical
input (base vibration) for arbitrary vibration and volt-
age levels. The focus is placed on a bimorph cantilever
with piezoelectric laminates under base excitation. The
terminals of the piezoelectric layers are combined in
series and connected to a bridge rectifier with non-ideal
diodes and a filter capacitor. The multi-term harmonic
balance framework can capture the ripple in theDC sig-
nal as well as amplitude-dependent nonlinear dynam-
ics accounting for realistic diode behavior. In addition
to quantitative comparisons and validations by com-
paring the experimental data and model simulations,
important qualitative trends are unveiled for mechani-
cally and electrically nonlinear non-ideal dynamics of
piezoelectric energy harvesting.

Keywords Nonlinear ·Vibration · Energy harvesting ·
Piezoelectricity · Electromechanical systems

1 Introduction

Research on vibration energy harvesting methods and
technologies has received growing attention over the
last two decades to enable energy-autonomous low-
power systems, such as wireless sensor nodes [1–3].
Among the various approaches for converting ambi-
ent vibrations into electricity [4–16], piezoelectric
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transduction has been most heavily researched espe-
cially due to the high power density and ease of appli-
cation of piezoelectric materials [17–19].

The most commonly used piezoelectric energy har-
vester configuration is a cantilever with piezoceramic
layers located on a vibrating host structure for elec-
trical power generation from resonant bending vibra-
tions under base excitation. Theoretical and experi-
mental aspects of the linear-resonant cantilever design
have been investigated extensively in the existing lit-
erature [8–10,20]. Beyond the basic linear dynam-
ics, nonlinear effects in piezoelectric energy harvest-
ing have received dramatically increased attention in
the last decade. Three types of basic nonlinearities
can be mentioned: (1) designed mechanical nonlin-
earities (e.g., geometric, magnetoelastic, etc.) for sub-
stantial modification (or distortion) of the linear reso-
nance via nonlinear effects and bifurcations [21,22]
to enable broadband energy harvesters, leading to
a number of efforts to create nonlinear energy har-
vester configurations (e.g., monostable and bistable
Duffing oscillators) via intentionally introduced non-
linearities [23–31]. (2) Additionally, the piezoelec-
tric materials themselves display appreciable inher-
ent nonlinear constitutive and dissipative behavior for
moderate to large excitation intensities [32–38]. (3)
Thirdly, in order to convert the alternating current pro-
duced by a vibrating piezoelectric energy harvester
to a form useful for powering electronic devices or
charging electrical storage units, rectifiers and reg-
ulators must be used to produce a stable voltage
and direct current output [39], and other nonlinear
circuit opportunities involve nonlinear processing of
the piezoelectric output, e.g., via voltage inversion
[40].

In the literature of piezoelectric energy harvesting,
mechanical and electrical nonlinear effects have so
far predominantly been studied separately. Mechani-
cally and electromechanically nonlinear modeling and
analysis frameworks [32–38] have employed linear
electrical circuitry to formulate AC input–AC out-
put problems, while the existing efforts on modeling
and analysis of nonlinear circuits have assumed linear
mechanical behavior [41] or idealized rectifier mod-
els [40,42,43] that simplify diodes to switches. It is
the main goal of this work to explore the combined
presence and interactions of inherent mechanical and
basic non-ideal circuit nonlinearities through rigorous
modeling and experiments within a complete, unified

harmonic balance analysis framework. In the follow-
ing, a lumped-parameter model of the nonlinear reso-
nant behavior of a vibration energy harvester connected
to a bridge rectifier (with non-ideal diodes), filter capac-
itor, and load resistor is derived. The energy harvester
design of interest is a stiff (hence geometrically linear
but materially nonlinear) piezoelectric bimorph can-
tilever with piezoelectric layers connected in series.
The problem is explored first to characterize mechani-
cal nonlinearities by exploring the AC input (base exci-
tation) and AC output (voltage across the load) prob-
lem in the presence of a resistive load. Linear model
parameters are validated for experiments in the linear
regime. Material softening and dissipative nonlineari-
ties are identified from nonlinear tests at different exci-
tation levels. Having characterized themechanical non-
linearities, the AC input–DC output case is studied. For
the multiphysics equations of the fully coupled non-
linear system, a harmonic balance solution is applied
to analyze the mechanically and electrically nonlinear
system dynamics at different excitation levels. Experi-
mental validations are presented, and quantitative and
qualitative trends are discussed.

2 Governing nonlinear electromechanical
equations

Detailed treatment of the derivation for an electrome-
chanical model of a geometrically linear (stiff) and
materially nonlinear bimorph piezoelectric energy har-
vester and its harmonic balance analysis can be found
elsewhere [37] (that work provides a detailed account
and justification of the fact that piezoelectric soft-
ening is dominantly quadratic, rather than cubic).
The piezoceramic cantilever in the experiments of
this work is very stiff; hence, the geometric non-
linearities (stiffness hardening and inertial soften-
ing) are negligible, whereas material nonlinearity is
significant; therefore, the aforementioned modeling
approach [37] is suitable (note that geometric nonlin-
earity can easily be accomodated as needed [38]). After
reducing the governing partial differential equations
into a lumped-parameter form, the differential equa-
tions governing the mechanical and electrical behav-
ior of the energy harvester forced by base excita-
tion (Fig. 1) near a resonance frequency are given
by:
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Mechanically and electrically nonlinear non-ideal piezoelectric energy 627

Fig. 1 Schematic of a cantilevered bimorph piezoelectric energy
harvester under base excitation (resultant terminals of the elec-
trodes can be connected to a linear/nonlinear circuit)

mẍ + b1 ẋ + b2 ẋ2 sgn(ẋ) + k1x

+ k2x2 sgn(x) − θvp = − m̄a(t), (1)

C p v̇p + i p + θ ẋ = 0, (2)

where x is the relative transverse displacement of the
beam tip with respect to the base, vp is the elec-
trode voltage, i p is the electrical current flowing out
of the energy harvester, and a(t) is the prescribed
base acceleration. The effective beam mass, m, first-
and second-order dissipation coefficients, b1 and b2,
first- and second-order stiffness coefficients, k1 and k2,
electromechanical coupling parameter, θ , forcing mass
(due to base excitation), m̄, and capacitance, C p, are
defined in the same way as in [37].

This model includes nonlinearities in the mechani-
cal dissipative and restoring forces (due to b2 and k2),
but assumes linear electromechanical coupling behav-
ior. As was shown in [37], electromechanical coupling
nonlinearities are less important than the dominant
mechanical nonlinearities for the electric field levels
in energy harvesting. To complete the model, a consti-
tutive relationship between the electrode voltage, vp,
and the harvester output current, i p, must be defined.
The harvester electrodes may be shunted across a load
impedance, yielding a linear dynamic constitutive rela-
tionship. This allows for the mechanical nonlinearities
to be identified and quantified separately from any cir-
cuit nonlinearities. For practical use, however, the alter-
nating current produced by the piezoelectric cantilever
must be converted to direct current. This process cannot
be implementedwith linear circuit elements and sowill
yield a nonlinear constitutive relationship. The follow-
ing sections deal with modeling the energy harvester
connected first to a simple load resistance to identify
the mechanical dissipative and elastic nonlinearities,
and secondly connected to a practical harvesting cir-
cuit using a full-wave diode bridge for rectification.

3 Harvester connected to a load resistance

To study and quantify the mechanical dissipative
and elastic nonlinearities contributing to the vibratory
behavior of the energy harvester, the electrodes are
shunted across a load resistance. This results in the sim-
plest possible constitutive relationship between elec-
trode voltage and current, namely the algebraic equa-
tion given by Ohm’s law:

vp = Ri p. (3)

Choosing the electrode voltage to be the electrical state
variable and substituting in the above current balance
equation yields:

C p v̇p + 1

R
vp + θ ẋ = 0. (4)

At low response amplitudes, the dissipative and elas-
tic nonlinearities of this model will disappear, and the
steady-state behavior of the system can be found using
linear systems theory. Derivations of steady-state solu-
tions in the linear regimewill be given first, followed by
preparation of the equations for solution by the method
of harmonic balance.

3.1 Linear problem

If response amplitudes are restricted to be small,
second-order terms in the governing equations can be
neglected, yielding the following linear model for a
piezoelectric bimorph cantilever excited by transverse
base acceleration with electrodes shunted across a load
resistance:

mẍ + b1 ẋ + k1x − θvp = − m̄a(t) (5)

C p v̇p + 1

R
vp + θ ẋ = 0. (6)

To find the complex frequency response functions,
which describe the amplitude gain and phase shift of the
response signals to harmonic excitation, the following
is assumed,

a(t) = Ae j�t (7)

x(t) = Xe j�t (8)

vp(t) = Vpe
j�t . (9)

where j is the unit imaginary number. Substituting the
assumed solutions in the linear system and solving for
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the complex amplitude ratios yields the solutions for
the relative displacement and voltage responses for the
vibration harvester connected to a load resistance.

X

A
= −m̄( j�RC p + 1)

(−�2m + j�b1 + k1)( j�RC p + 1) + j�Rθ2

(10)

Vp

A
= j�m̄ Rθ

(−�2m + j�b1 + k1)( j�RC p + 1)+ j�Rθ2

(11)

If dielectric losses are non-negligible and the dielec-
tric loss tangent, tan δe, of the piezoelectric material is
available, the capacitance, C p, may be replaced by a
complex capacitance, C̃ p, defined by:

C̃ p = Cp (1 − j tan δe) . (12)

Similarly, if the harvester electrodes are shunted across
a more complicated linear circuit, the load resis-
tance, R, need only be replaced by a general com-
plex load impedance, Z(�). Additionally, the kine-
matic response signal measured in experiments is the
cantilever tip velocity in the inertial frame rather than
relative tip displacement. Modifying the frequency
response functions to include dielectric losses and cor-
respond to experimentally measured signals yields the
following expressions, with Ẋ I representing the com-
plex velocity amplitude measured in the inertial frame.

Ẋ I

A
= − j�m̄( j�RC̃ p + 1)

(−�2m + j�b1 + k1)( j�RC̃ p + 1) + j�Rθ2

+ 1

j�
(13)

Vp

A
= j�m̄ Rθ

(−�2m + j�b1 + k1)( j�RC̃ p + 1)+ j�Rθ2

(14)

By comparing these to experimentally generated fre-
quency response functions, the quality of first princi-
ples predictions (for low amplitudes) can be evaluated,
and model parameters can be updated.

3.2 Mechanically nonlinear, electrically linear
problem

To study the steady-state behavior of the governing
equations for moderate to large response amplitudes

in a stiff cantilever (for which geometric nonlineari-
ties are negligible), material nonlinearities in the form
of the second-order dissipation and stiffness terms are
retained, and the excitation due to the base acceleration
is restricted to be periodic. As is commonly done, the
case of pure harmonic excitation is examined for sim-
plicity. Because the system is nonlinear, superposition
no longer holds, and therefore, the governing equations
must be real valued.To includedielectric loss, the imag-
inary portion of the current flowing through the capac-
itor due to the loss tangent is recognized to act like an
additional parasitic resistance in parallel with the load
resistance. The governing equations for the nonlinear
behavior of a piezoelectric bimorph excited by a har-
monic base acceleration with electrodes connected to
a load resistance can therefore be expressed as:

mẍ + b1 ẋ + b2 ẋ2 sgn(ẋ) + k1x

+ k2x2 sgn(x) − θvp = − m̄ A cos(�t) (15)

C p v̇p +
(

�C p tan δe + 1

R

)
vp + θ ẋ = 0 (16)

Nonlinear differential equations can be simulated using
numerical integrators, but the presence of transient
responses can make numerical integrators slow to find
steady-state behavior, especially when the system is
lightly damped. Numerical methods that find periodic
steady-state solutions directly, while accounting for
higher harmonics, are therefore preferable (e.g., the
harmonic balance method). To prepare the governing
equations for numerical simulation of any kind, it is
useful to put the system in state space form and is
advantageous to nondimensionalize it. To this end, the
nondimensional state space system is defined as:

u′ = f(τ,u), (17)

where u is the nondimensional state vector and ()′
denotes the derivative with respect to nondimensional
time, τ . The system is nondimensionalized by defining
characteristic time, length, and voltage scales (Tc, Lc,
and Vc) accordingly.

t = Tcτ, vp = Vcu3, v̇p = Vc

Tc
u′
3,

x = Lcu1, ẋ = Lc

Tc
u2, ẍ = Lc

T 2
c

u′
2.

(18)
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Substituting these in the governing equations yields:

m
Lc

T 2
c

u′
2 + b1

Lc

Tc
u2 + b2

(
Lc

Tc
u2

)2

sgn(u2) + k1Lcu1

+ k2 (Lcu1)
2 sgn(u1) − θVcu3 = −m̄ A cos(�Tcτ)

(19)

C p
Vc

Tc
u′
3 +

(
�C p tan δe + 1

R

)
Vcu3 + θ

Lc

Tc
u2 = 0,

(20)

which can be rearranged into state space form to give:

f1 = u′
1 = u2

f2 = u′
2 = −

(
k1T 2

c

m

)
u1 −

(
k2LcT 2

c

m

)
u2
1 sgn(u1)

−
(

b1Tc
m

)
u2 −

(
b2Lc

m

)
u2
2 sgn(u2)

+
(

θVcT 2
c

mLc

)
u3 −

(
m̄ AT 2

c

mLc

)
cos(�Tcτ)

f3 = u′
3 = −

(
θ Lc

C pVc

)
u2

−
(

�Tc tan δe + Tc
RC p

)
u3 (21)

For the method of harmonic balance, the Jacobian
matrix of the system is required, whose elements are
defined by the expression:

Ji j = ∂ fi

∂u j
. (22)

Details and examples of implementing a multi-term
harmonic balance solution (obtaining the nonlinear
algebraic equations by Galerkin’s weighted residual
minimization and then applying amultivariateNewton-
Raphson scheme) in energy harvesting problems can be
found elsewhere [31,37].

4 Harvester connected to a rectification circuit
with non-ideal diodes

For practical energy harvesting purposes, a stable DC
output is required to charge a storage component or to
power an electronic device. Since a vibration energy
harvester naturally produces AC, the output current
must be rectified and conditioned. The simplest pas-
sive way of accomplishing this is with a diode bridge

Fig. 2 Circuit diagram of piezoelectric energy harvester con-
nected to a bridge rectifier, filter capacitor, and load resistance.
Currents andnodevoltages used formodel derivations are labeled

and filter capacitor. A diagram of a piezoelectric energy
harvester connected to such a circuit is shown in Fig. 2.

On the left side of the bridge is the piezoelec-
tric energy harvester modeled by a dependent current
source coupled to the structure motion and the capac-
itance of the piezoelectric material. On the right-hand
side of the diodebridge are thefilter capacitor and a load
resistance. Since for practical purposes theDCpower is
the quantity of interest, and the filter capacitor is prop-
erly large, any reactance of the load can be neglected.
Node voltages and currents needed to derive the gov-
erning equations are labeled. By applying Kirchhoff’s
current law, the following expressions relating currents
can be found.

i1 = − θ ẋ − C p(v̇1 − v̇2) = ia − ic = id − ib (23)

i2 = Cf v̇ + 1

R
v = ia + ib = ic + id (24)

In order to find the governing equations in terms of node
voltages, a relationship between the voltage across a
diode and the current flowing through it is required.
For its combination of simplicity and smoothness, the
Shockley diode model is used:

iD = Is

[
exp

(
vD

nVT

)
− 1

]
(25)

The Shockley diode model relates the voltage across
the diode, vD, to the current flow, iD. It is parameter-
ized by the saturation current, Is, and the product of
the ideality factor and the thermal voltage, nVT. The
saturation current is the current that will flow back-
ward through the diode when a large reverse voltage is
applied and is on the order of 10−12 A. A real diode has
a reverse breakdown voltage at which large amounts of
reverse current will flow. By using the Shockleymodel,
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it is assumed that the diode bridge is properly chosen
to avoid breakdown. The thermal voltage is defined
as VT = kBT/q (where kB is Boltzmann’s constant,
T is the operating temperature, and q is the electron
charge) and is approximately 26mV at room tempera-
ture. Using the Shockleymodel, the four diode currents
can be expressed as:

ia = Is

[
exp

(
v1 − v

nVT

)
− 1

]

ib = Is

[
exp

(
v2 − v

nVT

)
− 1

]

ic = Is

[
exp

(−v1

nVT

)
− 1

]

id = Is

[
exp

(−v2

nVT

)
− 1

]
(26)

Since the Schockley model is an algebraic model for
the current–voltage characteristic of a diode, it can be
shown that the mean potential on the input terminals of
the diode bridge must always equal the mean potential
on the output terminals. This yields the relations:

vp = v1 − v2, v = v1 + v2,

v1 = v + vp

2
, v2 = v − vp

2
,

(27)

which reduces the number of voltage that define the
system from three to two, being the voltage across the
electrodes of the piezoelectric cantilever, vp as before,
and the voltage across the load resistance, the nega-
tive terminal of which is grounded. Substituting the
expressions for the diode currents and node voltages,
v1 and v2, allows simplification of the current balance
equations. The current balance equation involving the
current flowing into the diode bridge is given by:

C p v̇p + θ ẋ + 2Is sinh

(
vp

2nVT

)
exp

( −v

2nVT

)
= 0

(28)

Likewise the current balance equation involving cur-
rent flowing out of the bridge is given by:

Cf v̇ + 1

R
+ 2Is

[
1 − cosh

(
vp

2nVT

)
exp

( −v

2nVT

)]
= 0 (29)

Combining these current balance equations with the
differential equationgoverning themechanical behavior

above yields a model describing the dynamics of
a piezoelectric cantilever undergoing harmonic base
acceleration excitationwith electrodes connected to the
input terminals of a diode bridge, the output terminals
of which are connected to a filter capacitor and load
resistor in parallel. As before, dielectric losses in the
piezoelectric material are included.

mẍ + b1 ẋ + b2 ẋ2 sgn(ẋ) + k1x

+ k2x2 sgn(x) − θvp = − m̄ A cos(�t) (30)

C p v̇p + �C p tan δevp + θ ẋ

+ 2Is sinh

(
vp

2nVT

)
exp

( −v

2nVT

)
= 0 (31)

Cf v̇ + 1

R
v + 2Is

[
1 − cosh

(
vp

2nVT

)

× exp

( −v

2nVT

)]
= 0 (32)

From these equations, one canmakequalitative descrip-
tions of the system behavior. First, the equations are
heavily biased in favor of positive values of the out-
put voltage, v, due to the presence of the exponential
functions. Secondly, the equation governing the evo-
lution of the piezoelectric electrode voltage, vp, is an
odd function of vp due to the hyperbolic sine function,
while the equationgoverning the evolutionof the output
voltage, v, is an even function of vp due to the hyper-
bolic cosine function. Both of these observations are
consistent with an intuitive understanding of current
rectification. As before, it is advantageous to nondi-
mensionalize and cast the system in state space form.
The same nondimensionalization and state representa-
tion as in Sect. 3.2 are used,with the addition of a fourth
state representing the output voltage.

v = Vcu4, v̇ = Vc

Tc
u′
4 (33)

Substituting the nondimensional state definitions in the
system yields the same result for the mechanical gov-
erning equation, but new expressions for the electrical
governing equations:

C p
Vc

Tc
u′
3 + �C p tan δeVcu3 + θ

Lc

Tc
u2

+ 2Is sinh

(
Vcu3

2nVT

)
exp

(−Vcu4

2nVT

)
= 0 (34)
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Cf
Vc

Tc
u′
4 + 1

R
Vcu4 + 2Is

[
1 − cosh

(
Vcu3

2nVT

)

× exp

(−Vcu4

2nVT

)]
= 0, (35)

which can be arranged into state space form:

f1 = u′
1 = u2

f2 = u′
2 =

−
(

k1T 2
c

m

)
u1 −

(
k2LcT 2

c

m

)
u2
1 sgn(u1)

−
(

b1Tc
m

)
u2 −

(
b2Lc

m

)
u2
2 sgn(u2)

+
(

θVcT 2
c

mLc

)
u3 −

(
m̄ AT 2

c

mLc

)
cos(�Tcτ)

f3 = u′
3 = −

(
θ Lc

C pVc

)
u2 − (�Tc tan δe) u3

−
(
2IsTc
C pVc

)
sinh

[(
Vc

2nVT

)
u3

]

× exp

[
−

(
Vc

2nVT

)
u4

]

f4 = u′
4 = −

(
2IsTc
CfVc

) {
1 − cosh

[(
Vc

2nVT

)
u3

]

× exp

[
−

(
Vc

2nVT

)
u4

]}
−

(
Tc

RCf

)
u4 (36)

The Jacobian matrix is defined as previously.

5 Experimental investigation

To verify the validity of the proposed model for the full
nonlinear dynamics of a practically realized piezoelec-
tric vibration harvester, a set of three types of experi-
ments are conducted. First, the energy harvester is con-
nected directly to a set of load resistances, ranging from
near short circuit to near open circuit, and excited at low
enough base acceleration levels to remain in the lin-
ear behavior regime (linear experiments). By compar-
ing the predictions of the linear model to experimental
frequency response functions, linear model parameters
can be validated/identified. Secondly, the energy har-
vester is excited by frequency sweeps at various con-
stant base acceleration amplitudeswhile still connected
to the same set of load resistors (AC–AC experiments).
By comparing the predictions of the nonlinear mechan-
ical model to experimental frequency response curves,

the parameters governing the nonlinearmechanical dis-
sipation and nonlinear stiffness can be identified. Third,
the energy harvester is connected to a bridge recti-
fier, filter capacitor, and load resistance to approximate
practical energy harvesting operation (AC–DC exper-
iments). Excitation for the AC–DC experiments is the
same as for the AC–AC experiments. Load resistance
values are the same for all three experiment types.

5.1 Experimental setup

The piezoelectric energy harvester tested consists of
a PZT-5A piezoelectric bimorph cantilever manufac-
tured Piezo Systems, Inc. mounted in a custom fixture
with conductive jaws electrically insulated from the rest
of the clamp forming the two electrodes. The twopiezo-
electric layers are poled in opposite directions and are
electrically connected in series. A microscope photo-
graph displaying the central brass substrate and upper
and lower piezoelectric laminates is shown as an inset
in Fig. 3.

For base excitation experiments, the fixture is
attached to the armature of a Brüel and Kjær Type

Fig. 3 Close-up photograph of the experimental setup along
with an inset showing amicroscopic photographof the edgeview:
The brass substrate is the light colored central layer, sandwiched
by two PZT-5A piezoceramic layers. The piezoelectric bimorph
cantilever is fixed in a custom clamp mounted to the shaker with
an attached accelerometer. The upper and lower clamp jaws con-
tact the nickel electrode plating on the top and bottom surfaces
of the cantilever forming the electrodes. Retroreflective tape is
placed near the tip of the cantilever to facilitate laser Doppler
vibrometer measurements
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Fig. 4 Overview photograph of the experimental setup. The
laser Doppler vibrometer, vibration controller, power amplifier,
accelerometer signal conditioner, resistance and capacitance sub-
stitution boxes, and breadboard for the rectification circuit are
shown

4810 mini shaker powered by an Hewlett Packard
6826A power supply and amplifier. Frequency sweeps
at constant base acceleration amplitude are conducted
using a SPEKTRA VCS201 vibration control system
using acceleration feedback. The base acceleration sig-
nal is measured using a Kistler 8636C5 piezoelec-
tric accelerometer powered and conditioned by a Type
5134 power supply and coupler. Load resistance and
filter capacitor values are varied using IET Labs RS-
201W and CS-301L resistance and capacitance substi-
tution boxes, respectively. Rectification is done using a
Diodes Incorporated model KBP202G bridge rectifier.
Tip velocity measurements are taken using a Polytec
OFV-505 laserDoppler vibrometer andOFV-5000 con-
troller. Data are collected using National Instruments
models 9215 and 9223 data acquisition units and Sig-
nalExpress software. For linear regime tests, the exci-
tation signal sent to the amplifier is generated by an NI
9263 analog output module. Photographs of the exper-
imental setup are shown in Figs. 3 and 4 .

5.2 Linear regime experiments with AC–AC circuit

Linear regime experiments generate measured fre-
quency response functions relating the input base accel-
eration to the outputs of cantilever tip velocity mea-
sured in the inertial frame and the voltage across the
load resistance. The set of load resistances consists
of 13 resistance values ranging logarithmically from
1k� to 1M� (covering a broad range between short-
and open-circuit conditions). From the measured volt-
age frequency response function, current and power
frequency response functions can be calculated. The
excitation for the linear regime experiments consists of
a rectangular white noise signal. Multiple averages are
taken. The base acceleration level is kept low to ensure
system behavior is linear, with an RMS (root mean
square) value of the base acceleration noise signal of
approximately 0.01g.

Figure 5 shows a comparison between the mea-
sured experimental tip velocity and electrode voltage,
calculated experimental current and power frequency
response functions, and predictions from the linear
models given above. Experimental data are shown by
markers and model predictions by curves (in these
and following figures). Each color corresponds to a
different resistance value, with black markers in the
experimental velocity frequency response plot indicat-
ing true short circuit, with a peak near 115 Hz, and true
open-circuit conditions, with a peak near 120 Hz. First
principles geometric and model parameters are based
on distributed-parameter modeling or identified from
experiments as required. Geometric and material prop-
erties of the bimorph needed for the linear model can
be found in Table 1.

Model predictions match very well with experi-
mental data. It is notable that this energy harvester
shows two separate maxima in the power generation
frequency response function: one at a small load resis-
tance value (near-short-circuit conditions with a lower
frequency of the peak) and one at a large load resistance
value (near open circuit with a higher frequency of the
peak). This is characteristic of electromechanical res-
onant systems that have a large relative degree of elec-
tromechanical coupling and sufficiently low damping
[2,42]. In the linear regime, the two power generation
maxima are distinct, but will tend to coalesce for larger
excitation levels aswill be discussed further inSect. 6.1.
For an ideal piezoelectric material with no dielectric
loss, the two peaks in power generation would be of
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Fig. 5 AC input–AC output
test data and model in the
linear response regime with
various load resistance
values. Experimental data
shown with markers and
model predictions shown
with curves. Black markers
in the vibration frequency
response show the true
short- and open-circuit
cases

Table 1 Material and geometric parameters for the brass-
reinforced PZT-5A bimorph cantilever (Piezo Systems, Inc.
model number T226-A4-503X)

PZT density ρp 7800 kg

PZT elastic modulus c11 66 GPa

PZT loss factor γ1 0.021

Coupling e31 −14.4 C/m2

Permittivity ε33 14.2 nF/m

Brass density ρs 8500 kg

Brass elastic modulus cs 100 GPa

Overhang length l 51.9 mm

Total length le 63.7 mm

Width b 31.8 mm

PZT thickness (each) h p 0.267 mm

Brass thickness hs 0.127 mm

the same magnitude. For this energy harvester, dielec-
tric loss is significant, and so the peak power point near
open circuit conditions, which experiences higher volt-
ages, is lower in magnitude than the near-short-circuit
peak power point.

5.3 Nonlinear regime experiments

Nonlinear regime experiments consist of frequency
sweep tests at constant acceleration levels of 0.1, 0.2,
and 0.3g RMS. Tests at each acceleration level were

repeated for the same 13 load resistance values, rang-
ing from 1k� to 1M�, used in the linear regime exper-
iments. The maximum base acceleration amplitude of
0.3g RMS is chosen to keep the cantilever tip deflec-
tionwithin the safe limits providedby themanufacturer.
This choice of base acceleration level corresponds to
a safety factor of approximately two for the maxi-
mum tip displacement. The frequency sweep rate for
each test must be slow enough for the test to occur at
quasi-steady state. Each data point in the experimental
frequency response curves is the result of an average
of approximately 100 cycles. Mechanically nonlinear
regime experiments are first conducted for the AC–AC
circuit configuration, which is the same as in the linear
regime experiments, and then followed by the AC–DC
circuit configuration with rectification. To allow direct
comparisons of behavior with and without the electri-
cal nonlinearities caused by rectification, the nonlinear
mechanical and fully nonlinear test cases are conducted
with the same set of base acceleration amplitudes.

5.3.1 AC–AC circuit configuration: mechanically
nonlinear and electrically linear problem

Plots of experimental data and model predictions are
shown in Figs. 6, 7 and 8. RMS tip velocity, RMS volt-
age, RMS current, and average power are shown. Col-
ors again correspond to the load resistance value and
match those of the linear regime tests. Model predic-
tions are generated using the model given above solved
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Fig. 6 AC–AC test data
and model at 0.1g RMS
with various load resistance
values. Experimental data
shown with markers and
model predictions shown
with curves

Fig. 7 AC–AC test data
and model at 0.2g RMS
with various load resistance
values. Experimental data
shown with markers and
model predictions shown
with curves

using a general numerical harmonic balance solver. By
comparing the predictions of the nonlinear mechani-
cal model to experimental frequency response curves,
the parameters governing the nonlinearmechanical dis-
sipation and nonlinear stiffness can be identified. The
parameters defining the nonlinear mechanical behavior
are shown in Table 2.

Again there is good agreement between model pre-
dictions and experimental results. As the model is a
relatively simple model including only nonlinearities
in the mechanical dissipation and stiffness, it is most

accurate for lower excitation amplitudes and loses some
accuracy as the excitation amplitude increases. In these
plots, the limits of the vertical axis scale with the exci-
tation amplitude. The effect of the nonlinear mechan-
ical dissipation can be seen in the decrease in the
response amplitude relative to the excitation amplitude
with growing base acceleration level. The effect of the
nonlinear stiffness can be seen in the shifts of the short-
circuit and open-circuit resonant peaks. Short-circuit
and open-circuit resonant peaks shift from approxi-
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Fig. 8 AC–AC test data
and model at 0.3g RMS
with various load resistance
values. Experimental data
shown with markers and
model predictions shown
with curves

Table 2 Identified quadratic elastic modulus and loss factor

Second-order modulus cnl −83 TPa

Second-order loss factor γnl 0.15

mately 115 and 120 Hz in the linear regime to 110
and 115 Hz at 0.3g RMS, respectively.

5.3.2 AC–DC circuit configuration: mechanically and
electrically nonlinear non-ideal problem

For the AC–DC experiments, the steady-state output
voltage depends on both the filter capacitance and the
load resistance. As in the linear and AC–AC experi-
ments, the mean power generation level and resonant
frequency depend on the load resistance. Additionally,
the amount of unwanted ripple in the load voltage and
current depends on the time constant of the output,
namely the product RCf . The ripple factor is defined
as:

RF =
√

V 2
RMS − V 2

DC

|VDC| .

The larger the value of the time constant, RCf , the
smaller the amount of ripple. This is desirable, and so a
practical energy harvester would have a value for RCf

significantly larger than the ripple period. Experimen-
tally, frequency sweep tests are conducted at quasi-
steady state, and so the frequency sweep rate of the

must change inversely proportional to the output time
constant. Therefore, to ensure that the single sweep
rate also used in the AC–AC experiments will be slow
enough for all tests without making them unnecessar-
ily lengthy, filter capacitor values are chosen for each
of the load resistance values to make the output time
constant always 0.01 seconds, or approximately two
times the period of the ripple current. This means that
for load resistance values ranging from 1k� to 1M�,
filter capacitor values vary from 10µF to 10nF.

Plots of experimental data andmodel predictions are
shown in Figs. 9, 10 and 11. RMS tip velocity, DC out-
put voltage, DC current, and average power are shown.
Colors again correspond to the load resistance value
and match those of the linear regime tests and AC–AC
experiments.Model predictions are generated using the
fully nonlinear model given above solved using a gen-
eral numerical harmonic balance solver. By comparing
the predictions of the fully nonlinear model to experi-
mental frequency response curves, the parameters gov-
erning the rectification circuit can be identified. The
parameters defining the rectification nonlinearity are
shown in Table 3. The values used are typical values
for silicon diodes and did not require any updating.

The fully nonlinear model agrees well with experi-
mental results to predict trends and behavior of a practi-
cally realized piezoelectric vibration energy harvester.
Themost important qualitative differences between the
AC–AC and AC–DC behavior of the energy harvester
can be seen in the tip velocity and power generation fre-
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Fig. 9 AC–DC test data
and model at 0.1g RMS
with various load resistance
values. Experimental data
shown with markers and
model predictions shown
with curves

Fig. 10 AC–DC output test
data and model at 0.2g RMS
with various load resistance
values. Experimental data
shown with markers and
model predictions shown
with curves

quency response curves. In the velocity response, the
magnitude of the near-short-circuit resonance is greatly
reduced compared to the near-open-circuit response. In
the AC–AC experiments, the amplitudes of the veloc-
ity response are very similar between near-short-circuit
and near-open-circuit condtions. In the power genera-
tion response, the curves on the left side of the plot cor-
responding to near-short-circuit conditions are reduced
in height compared to the curves on the right side corre-
sponding to near-open-circuit conditions. As the base
acceleration level increases, the discrepancy between
the short- and open-circuit responses decreases. At

0.1g RMS, the near-short-circuit velocity response
amplitude is approximately 64% that of the near open
circuit response. This grows to 79% and 85% at 0.2 and
0.3g RMS, respectively. This effect is due to the non-
ideal nature of the diode bridge rectifier. As the mag-
nitude of the voltage across the diode bridge rises, the
diodes act more like ideal switches. Therefore, the effi-
ciency of the rectifier grows with both the base acceler-
ation amplitude, which increases all response signals,
as well as the load resistance, which increases steady-
state voltage levels. Interestingly, while the near-short-
circuit peak power generation will be higher than the
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Fig. 11 AC–DC output test
data and model at 0.3g RMS
with various load resistance
values. Experimental data
shown with markers and
model predictions shown
with curves

Table 3 Identified parameters for diodes in the bridge rectifier

Saturation current Is 1 pA

Ideality factor n 1

Thermal voltage VT 26 mV

near-open-circuit power generation for a linear piezo-
electric cantilever energy harvester due to dielectric
losses, the near-open-circuit conditions will produce
more power for a practical energy harvester with recti-
fication at finite base acceleration levels.

6 Discussion of the results and basic trends

6.1 Qualitative performance comparisons and trends

It is of interest to understand the effects of the mechan-
ical (elastic and dissipative) and non-ideal electrical
(rectification) nonlinearities and their interaction with
each other. As a baseline for comparison, the linear
regime AC–AC power generation performance can be
used. Shown in Fig. 12 is heat map plot of the experi-
mental linear regime power generation performance of
the energy harvester normalized by the square of the
base acceleration level.

The horizontal and vertical axes correspond to the
load resistance value and frequency of base excita-
tion, respectively. Clearly visible are the two maxima

Fig. 12 Heat map of experimental AC–AC energy harvesting
performance in the linear regime. Color corresponds to the time-
averaged power output of the harvester normalized with respect
to the base acceleration level squared

of power generation near the short-circuit and open-
circuit loading conditions. The presence of two well-
separated peak power points is characteristic of sys-
temswith strong electromechanical coupling. In the lin-
ear regime, the energy harvester produces a maximum
normalized time-averaged power of approximately 8.3
mW/g2, and the color of the heatmap corresponds to the
power output relative to that level. For fair comparisons,
the shading in the heat maps for AC–AC and AC–DC
performance in the mechanically nonlinear regime are
also normalized in this way.

Figure 13 shows an array of six heat maps for
the time-averaged power generation. From top to bot-
tom, the rows correspond to the three base accel-
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Fig. 13 Heat maps of
experimental energy
harvesting performance in
the mechanically nonlinear
regime. From top to bottom,
rows correspond to the three
tested excitation levels of
0.1, 0.2, and 0.3g RMS,
respectively. The left
column corresponds to the
AC–AC case, and the right
column corresponds to the
AC–DC case. Color
corresponds to the
time-averaged power output
of the harvester normalized
with respect to the base
acceleration level squared.
Color is scaled relative to
that of the linear regime
performance shown in
Fig. 12. (Color figure
online)

eration levels of 0.1, 0.2, and 0.3g RMS, respec-
tively. The two columns correspond to the two cir-
cuit configurations, with the AC–AC configuration
on the left, and the AC–DC configuration on the
right. All six heat maps are shaded relative to the
8.3 mW/g2 maximum normalized mean power gener-
ation level of the linear regime performance shown in
Fig. 12.

The first apparent trend is that normalized power
generation performance is lower in all sixmechanically
nonlinear regime tests than that of the linear regime,
as shown by the darker shades. As was shown with
earlier modeling, the dominant mechanical nonlinear-
ities are in the dissipation and stiffness. Power genera-
tion performance decreaseswith increasingmechanical
damping, and so the nonlinear mechanical dissipation

reduces the normalized power generation performance
as response amplitudes increase at higher excitation
levels. The stiffness nonlinearity only affects the mag-
nitude of power generation slightly. Its primary effect
is to shift the location of peak power operating points
to lower frequencies and higher load resistance values.

Secondly, the power generation performance of the
AC–DCconfiguration is significantly lower than that of
the AC–AC configuration. The AC–DC configuration
retains the power generation losses due to the nonlin-
ear mechanical dissipation and adds electrical dissipa-
tion in the bridge rectifier. An idealized bridge rectifier
[42,43] dissipates no power. Ideal diodes act as a per-
fect conductor for positive bias voltages (no voltage
drop), and a perfect insulator for negative bias voltages
(no current flow). A real diode bridge does dissipate
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power and so reduces the power supplied to the load.
Therefore, the linear regime AC–AC power generation
performance can be seen as a global upper limit and the
mechanically nonlinear AC–AC performance as exci-
tation level specific upper bounds.

The first and second observed trends show that
the nonlinear mechanical dissipation reduces rela-
tive power generation performance as excitation level
increases, and the AC–DC circuit configuration will
always have lower absolute performance than the AC–
AC configuration due to electrical power dissipation
in the diode bridge. However, unlike the AC–AC case,
as the base excitation level increases, the normalized
power generation performance of the AC–DC config-
uration improves rather than declines. While losses in
the diode bridge are unavoidable, and it never acts like
the idealized one-way perfect conductor, the exponen-
tial nature of a diode’s I–V characteristic means that
as the amplitude of the voltage across the piezoelectric
electrodes increases, the diode bridge acts more and
more ideally. The contribution to the total loss of the
diode bridge relative to mechanical dissipation there-
fore decreases with increasing excitation level. For cer-
tain choices of piezoelectric energy harvester and cir-
cuit components, the normalized power generation will
increasewith increasing excitation level as rectification
becomesmore ideal and thenwill decrease as nonlinear
mechanical dissipation becomes dominant.

Finally, a fourth trend can be seen by examining the
linear and mechanically nonlinear power generation
performance of the AC–AC circuit configuration. As
mentioned earlier, this energy harvester shows two dis-
tinct peak power points in the linear response regime,
characteristic of a strongly electromechanically cou-
pled system.At the lowest base acceleration level (0.1g
RMS) of themechanically nonlinear tests, the two peak
power points are still visible. However, as the base
acceleration level grows to 0.3g RMS, the two peaks
appear to merge and become a single global maximum.
This effect is again due to the nonlinearmechanical dis-
sipation. The two high-amplitude responses near-short-
circuit and open-circuit conditions are preferentially
attenuated compared to the lower-amplitude response
at between them. The dip in power generation perfor-
mance between the near-short-circuit and near-open-
circuit conditions therefore disappears as the excitation
level increases due to the nonlinear mechanical dissi-
pation.

6.2 Electromechanical response waveforms

Oneof the benefits of using themethodof harmonic bal-
ance to solve the nonlinear lumped-parameter models
for a practical energy harvester is that it allows the quick
simulation of steady-state behavior. From the perfor-
mance curves and heat maps, the optimal power gener-
ation performance of the energy harvester in the practi-
cal AC–DCcircuit configuration at 0.3gRMSoccurs at
approximately 115 Hz, with an optimal load resistance
of around 56k�. Simulating these conditions with the
method of harmonic balance takes much less compu-
tation time than a time domain numerical simulation.
Figures 14 and 15 show the model predicted wave-
forms of the relative tip velocity, piezoelectric elec-
trode voltage, and load voltage. These waveforms are
produced from the harmonic balance solution including
frequency components up to five times the excitation
frequency (i.e., five harmonics were used in the Fourier
series expansion of periodic response forms). Notably,
the velocity response appears quite sinusoidal, while
the piezoelectric electrode voltage, vp, clearly shows
higher harmonic content. The load voltage, v, shows a
noticeable amount of ripple. As discussed previously,
a filter capacitance somewhat smaller than what would
be used in practical energy harvesting circuit was used
in this work for experimental reasons. However this
example shows highlights the ability of a the method
described here to find accurate solutions without mak-
ing assumptions like a constant output voltage.

Fig. 14 Representative simulated tip velocity response wave-
form at 0.3g RMS base excitation for near optimal load resis-
tance of 56k� and peak power frequency of 115Hz

123



640 S. Leadenham, A. Erturk

Fig. 15 Representative simulated output voltage, v (red), and
piezoelectric electrode voltage, vp (blue), response waveforms
at 0.3g RMS base excitation for near optimal load resistance of
56k� and peak power frequency of 115Hz. (Color figure online)

7 Conclusions

A complete representation of resonant piezoelectric
energy harvesting requires accounting for mechani-
cal and dissipative nonlinearities as well as the non-
linear process of AC–DC conversion with non-ideal
diodes. In this paper, a multiphysics harmonic balance
framework was presented by combining these mechan-
ical and electrical nonlinear non-ideal effects to pre-
dict the DC electrical output (DC voltage across the
load) in terms of the AC mechanical input (base vibra-
tion). Focus was placed on a stiff (geometrically linear)
bimorph cantilever with piezoelectric laminates con-
nected to a full-wave rectifier and a filter capacitor. The
problem was explored first to characterize mechanical
nonlinearities by exploring the AC input (base excita-
tion) and AC output (voltage across the load) prob-
lem in the presence of a resistive load. Mechanical
nonlinearities were identified and validated for differ-
ent excitation levels. A rectifier comprising non-ideal
diodes was then introduced to the system along with
a filter capacitor. For the multiphysics equations of
the fully coupled nonlinear system, a multi-term har-
monic balance solution (with 5 harmonics) was applied
to analyze the mechanically and electrically nonlinear
system dynamics at different excitation levels. A full
set of experiments was conducted, showing trends and
interactions of the material softening and dissipative

nonlinearities and the rectification nonlinearities man-
ifested by non-ideal diodes. The multi-term harmonic
balance framework can capture the ripple in the DC
signal (due to finite filter capacitance) and the over-
all amplitude-dependent nonlinear dynamics account-
ing for realistic diode behavior. The experiments vali-
dated the proposed modeling method, and highlighted
the need for simulating the full nonlinear dynamics of
resonant piezoelectric energy harvesters for real world
applications with realistic circuit components.
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