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ABSTRACT

We report amplitude-dependent substantial enhancement of the frequency bandwidth in locally resonant metamaterial-based finite
structures (metastructures) via bistable attachments. The bistable magnetoelastic beam attachments of the unit cells exhibit linear intrawell,
nonlinear intrawell, and nonlinear interwell oscillations for low, moderate, and sufficiently high intensity excitations, respectively. As a result,
the overall metastructure leverages linear locally resonant bandgaps under low amplitudes and nonlinear attenuation due to wideband
chaotic vibrations of the bistable attachments under large amplitudes. The concept was first demonstrated through a linear mass-spring chain
with bistable attachments in a numerical case study. Experimental results and validations are then presented for a base-excited cantilever
beam hosting seven bistable unit cells. Transition from linear locally resonant bandgaps to nonlinear attenuation is observed, and the
amplitude-dependent bandwidth enhancement is shown. The bandwidth offered by nonlinear interwell oscillations is substantially wider
than the linear locally resonant bandgap that is limited by the added mass.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5066329

Locally resonant linear metamaterials and the resulting finite
metastructures with specified boundary conditions have been exten-
sively studied in the past decade since the seminal work by Liu et al.’
Elastic/acoustic metastructures made from locally resonant unit cells
exhibit bandgaps at wavelengths much longer than the lattice size,
enabling low-frequency vibration/noise attenuation and wave filtering,
among other applications."” In these linear locally resonant concepts,
the bandgap size, ie., the attenuation bandwidth, is limited by the
added mass,” which is to be minimized in most applications spanning
from aerospace structures to those requiring compact designs due to
space and other limitations.

Properly designed nonlinear oscillators offer various advantages,
such as a substantially enhanced frequency bandwidth, as already
leveraged in emerging fields such as vibration energy harvesting. For
instance, monostable and bistable nonlinear oscillators have been
employed to enable wideband energy harvesters over the past decade.”
Specifically, bistable configurations offer a plethora of wideband
dynamics, such as periodic and chaotic interwell oscillations.” '
These efforts shed light on the amplitude-dependent dynamics of an
individual bistable oscillator for design (of the potential wells, etc.) to
target a specific frequency bandwidth, not only in energy harvesting
but also for other applications.

In terms of vibration attenuation using bistable attachments,
researchers have mainly explored low degree-of-freedom (DOF) sys-
tems, rather than a metamaterial/metastructure setting. For example,
Yang et al.'” studied the steady-state response of a dual-stage system
with a bistable first stage and a linear second stage under harmonic
excitation. Manevitch et al.'” and Romeo et al.'* investigated, both
analytically and numerically, the transient dissipative dynamics of a
linear oscillator coupled with a bistable light attachment under
impulse excitation in the context of passive nonlinear targeted energy
transfer. Johnson et al."” investigated vibration control using a bistable
attachment from a disturbance cancellation perspective. These efforts
unveil the potential of bistable attachments for wideband behavior
although so far they have been limited to low DOF systems. It is worth
mentioning that, in a parallel body of work, others'®'” have explored
wave propagation in bistable lattices, demonstrating phenomena such
as solitary wave propagation and unidirectional wave propagation.

This study explores amplitude-dependent bandwidth enhance-
ment in locally resonant metamaterials/metastructures via bistable
attachments. Specifically, it is of interest to leverage both the low
amplitude linear locally resonant bandgap and the high amplitude
wideband nonlinear attenuation. For the purpose of a basic qualitative
concept demonstration, consider a linear mass-spring chain with
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bistable attachments, as illustrated in Fig. 1. The system has 2N DOF
with N identical main masses, m, and N identical bistable attachment
masses, 11,. The main masses are connected to each other by identical
linear springs of stiffness k, while the springs between the main masses
and the attachments are nonlinear with a negative linear stiffness k,;
and a positive cubic stiffness k3. The potential energy of the i-th bista-
ble attachment with respect to the corresponding main mass is
U, = ka1x§,~ /2 + ky3x /4. Therefore, the attachments exhibit a
double-well potential with two stable equilibrium positions as shown
in Fig. 1. A harmonic external force f(t) = f; cos Qt is applied to the
first main mass. The governing equations of motion for the i-th main
mass and the i-th attachment are

(m + ma)ki + majé'm' — C).C,'_l + 2C.5C,‘ — CjCi+1
—kxi_y + 2kx; — kxip = f(t)0n, (1)
ma(-.’éi + -.’&ai) + Cajcui + kulxai + ka3x2,' = 07 (2)

where x; is the absolute displacement of the i-th main mass, x,; is the
displacement of the i-th attachment relative to the i-th main mass, and
0 is the Kronecker delta. We nondimensionalize Eqs. (1) and (2),
yielding

(U ] + g — Qg + 20 = Ly — i
“Fu; + Uiy = poy cos (1), 3)
u;, + u;/,' + Cau;i + OCZuai + lei =0, (4)

where the non-dimensional displacements are u; = x;/L; and u,
= x4/L; (for the characteristic frequency Q.= \/k/m and the

characteristic length L. = ,/maﬂf /kq3). Furthermore, the non-

dimensional time 7 = Q. excitation frequency w = Q/Q,, excitation
amplitude p = f/mQ?L,, mass ratio i = m/m,, damping { = ¢/mQ,
and {, = ¢c;/m,Q;, and o =k, / maﬂi are defined, while (-)'
denotes the derivative with respect to non-dimensional time 7. With
the choice of negative linear stiffness k.1, o is negative and there exist
two stable equilibrium points for the attachment: z, = =/ —o?.
Equation (4) can be linearized around either of the two stable equilib-
rium positions. The resulting linear natural frequency, f5, of the
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FIG. 1. Schematic of a linear mass-spring chain with bistable attachments showing
an inset of a unit cell. The bottom right plot shows the double-well potential of i-th
bistable attachment, U,;, as a function of relative displacement x,;, with illustrations
of intrawell (green line) and interwell (orange dotted line) oscillations.
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attachment around either of the two stable equilibrium positions is
given by ff = v/ —202.

For the nonlinear system in Fig. 1, response to harmonic excita-
tion may exhibit periodic and aperiodic oscillations of intrawell and
interwell types as known from the vast literature of bistable struc-
tures.” "' For the periodic steady-state solutions of u; and u,;, the
method of harmonic balance is used (more information on the har-
monic balance method and its application examples for nonlinear
structures can be found elsewhere'®'?). Since the system has cubic
nonlinearities, the truncated Fourier series representation should con-
tain sufficient terms;'’ three harmonics are used here. The resulting
nonlinear algebraic equations for the Fourier coefficients are then
solved using the multivariate Newton-Raphson method. For aperiodic
solutions (including chaos), the Runge-Kutta method (time-domain
numerical simulation) is utilized.

The numerical case study considers a 10-DOF system, which
includes 5 main masses and 5 bistable attachments. The following
non-dimensional ~parameters are assumed: Q =1, L. = /5,
u=0.1, { =0.1, and {, = 0.02. In order to target the second mode
of the plain mass-spring chain (for concept demonstration), the bista-
ble attachments are tuned to have f = w,, =0.8308 (using
o? = —0.3451), where ®,, is the second natural frequency of the
5-DOF plain mass-spring chain. Harmonic force is applied on the first
main mass, and six levels of non-dimensional forcing amplitude
are simulated. For the frequency response analysis of the nonlinear
system, simulations are performed for both up and down frequency
sweeps at each forcing amplitude over the non-dimensional frequency
range of 0.6 < w < 1.1.

Simulated non-dimensional results of frequency response (up
and down sweep) for the 5-th mass are presented in Fig. 2 using the
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FIG. 2. Numerical simulation results for the non-dimensional displacement fre-
quency response of the 5-th mass under different force levels normalized by the
non-dimensional excitation amplitude: (a) up sweep and (b) down sweep.
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root-mean-square (RMS) value at each frequency. For very low forcing
levels (e.g., p=5.0x 10™%), the system exhibits linear/quasilinear
behavior, yielding a locally resonant bandgap. The second mode (the
target mode) of the plain mass-spring chain is attenuated while addi-
tional resonances appear, which is similar to the behavior of just using
linear locally resonant attachments. The shaded region shows the lin-
ear bandgap based on the theory developed for a finite and discrete
metamaterial chain.”’ As the forcing level increases, nonlinear intra-
well softening and interwell oscillations are enabled gradually.
Specifically, interwell chaotic oscillations of the attachments yield a
very broadband attenuation. For design and analysis purposes, it is of
interest to quantify the level of forcing intensity required for escape
from the potential wells of the bistable attachments. Here, a numerical
analysis is performed to this end, as summarized next (analytical
approaches exist for lower DOF systems”").

Figure 3 presents an example map for the prediction of the 5-th
attachment’s escape from the potential well by varying the forcing fre-
quency and amplitude. The map is produced by varying the normal-
ized frequency from 0.6 to 1.1 with increments of 5x 10~*, while
varying the normalized forcing amplitude from 0 to 0.1 with steps of
5 x 10~ Both the black region and the yellow region represent intra-
well oscillations, with black denoting periodic oscillations using the
harmonic balance method and yellow indicating aperiodic oscillations
from time-domain simulations. Red regions represent the interwell
chaotic oscillations of the attachments based on time-domain simula-
tions. As can be seen from the map in Fig. 3, a threshold forcing
amplitude exists for the bistable attachments to undergo intrawell
oscillations for all excitation frequencies. Remarkably, interwell oscilla-
tions are easier to form with a lower forcing amplitude especially
around the two resonances of the linear/quasilinear frequency
response curves (cf. the frequency axes in Figs. 2 and 3).

Experimental investigations are presented next to demonstrate
the overall concept and validate amplitude-dependent bandwidth
enhancement (Fig. 4). The metastructure is physically implemented in
the form of a cantilever beam with 7 magnetoelastic beams as bistable
local attachments. The experimental setup shown in Fig. 4 consists of
a 3.175 mm thick, 3.175 cm wide, and 88.9 cm long aluminum beam,
divided into 7 unit cells. The bistable attachments are made from
spring steel cantilevers with tip masses. Two cube-shaped permanent
magnets are placed at the tip of each spring steel cantilever. Each
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FIG. 3. Numerical map to quantify the forcing required for potential well escape of
the 5-th attachment as a function of normalized frequency and normalized forcing
amplitude.
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FIG. 4. (a) Metastructure (cantilevered beam with 7 magnetoelastic bistable beam
attachments) with a close-up view of a unit cell (magnet polarity: red is north and
blue is south). (b) Left: A bistable attachment in its two stable equilibrium positions.
Middle: Experimental setup with an LDV oriented vertically at a 45° mirror to mea-
sure the transverse tip velocity of the beam. Right: Front view of the beam.

magnet has a hole through the center which is perpendicular to the
magnetization direction. To realize the bistability, the other two mag-
nets are attached on the aluminum beam [Fig. 4(a)] and two stable
equilibrium positions are obtained [Fig. 4(b)]. Since the cantilever is
clamped on one side of the aluminum beam, the thickness of the beam
affects the symmetry of the double-well potential of the attachments.
Spacers are placed between the beam and magnets to compensate for
the beam thickness so that the double-well potential can be as sym-
metric as possible. The beam is clamped vertically to an APS-113 long
stroke shaker, which excites the beam by base motion horizontally.
The shaker is driven by an APS-125 amplifier and controlled by a
SPEKTRA VSC-201 controller for the purpose of having a harmonic
base acceleration at specified amplitudes and frequencies. Base acceler-
ation measured using an accelerometer is fed back to the VSC-201
controller. The tip velocity of the beam is measured using a Polytec
OFV-505 laser Doppler vibrometer (LDV) near the free end of the
beam. The transmissibility frequency response of the beam is obtained
by sweeping the excitation frequency up from 8 Hz to 20 Hz and down
from 20 Hz to 8 Hz at a rate of 0.25 Hz/min for different base accelera-
tion levels.

As shown in Fig. 5, the unit cells are designed to allow flexibility
in the potential wells of the bistable attachments by varying the dis-
tance between magnets, which is quantified by the vertical distance, d,
between the lower edge of the rectangular slot and the upper face of
the cubic magnet. The transmissibility frequency response in Fig. 5(a)
is defined as the ratio of the steady-state velocity at Point B to that at
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FIG. 5. (a) Effect of magnet spacing on the stable equilibrium positions of a bistable
attachment (experimental) and (b) a close-up view.

Point A on the spring steel cantilever [shown in Fig. 5(b)]. Since the
clamping of the spring steel cantilever is asymmetric, the resulting
double-well potential is not perfectly symmetric in the experiments
(i.e, a small amount of quadratic nonlinearity is inevitable). Slightly
different post-buckled linear natural frequencies (previously defined as
the non-dimensional f3) are observed for the bistable attachment in
stable equilibrium positions 1 and 2 (while it is negligible here, the
effect of significantly asymmetric potential wells can be found in the
nonlinear energy harvesting literature’”’). As the distance between
magnets decreases, the post-buckled linear natural frequency of the
bistable attachment increases, which is a useful design and tuning
parameter. With d = 15 mm, the post-buckled linear natural frequency
is identified to be 15.1 Hz. This magnet spacing is selected to target the
first mode neighborhood of the main structure in this work (as will be
discussed next). Characterization of the unit cell with d=15mm is
performed as shown in Fig. 6. As the base excitation level is increased,
intrawell linear resonance turns into intrawell nonlinear softening, and
then eventually interwell oscillations and chaos are observed with a
substantial bandwidth, as expected from individual bistable beam
dynamics.”

Having analyzed an individual unit cell in detail, experiments are
performed on the main cantilevered structure with and without bista-
ble attachments. In Fig. 7, the experimentally measured transmissibil-
ity frequency response of the beam under base excitation is plotted
for various RMS base acceleration levels and for both up and down
frequency sweep. Transmissibility here is defined as the ratio of the
steady-state velocity at the tip of the aluminum beam [Point B in Fig.
4(b)] to that at its base [Point A in Fig. 4(b)]. The plain beam
(baseline) here is the main cantilever without the bistable attachments,
obtained by removing all 7 magnetoelastic cantilevers and the corre-
sponding pairs of magnets at the tip, while keeping all other pairs of
magnets on the beam with d=15mm. The first mode of the plain
beam is identified to be at 16.14 Hz. The distance between the magnets
can be tuned so that post-buckled linear resonance frequency of the
bistable attachments is 16.14 Hz or higher. However, the higher post-
buckled linear natural frequency is required, the shorter distance
between the magnets is needed, and the deeper potential well is
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FIG. 6. Amplitude-dependent nonlinear characterization of a unit cell with magnet
spacing d = 15mm: (a) up sweep and (b) down sweep (experimental).
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FIG. 7. Amplitude-dependent nonlinear dynamics of the metastructure with bistable
attachments, showing a dramatic enhancement of the attenuation bandwidth (with
comparisons against the plain beam and the locally resonant linear bandgap): (a)
up sweep and (b) down sweep (experimental).
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formed. In view of the experimental limitations (to avoid very deep
potential wells and achieve escape from the potential wells for reason-
able base excitation levels), d = 15 mm is deemed suitable to target the
first mode neighborhood of the plain beam (cf. the frequency axes in
Figs. 6 and 7). Note that variations in manually adjusted magnet spac-
ing can lead to slightly different post-buckled linear natural frequen-
cies for the bistable attachments. The post-buckled linear natural
frequencies of all seven bistable attachments on the beam are identified
individually, and the average value is 14.3 Hz. Even though the bistable
attachments are not tuned to target the first mode of the beam exactly,
the desired trends of vibration attenuation are kept, confirming the
robustness of the nonlinear attenuation mechanism. At a very low
RMS base acceleration level (0.01g), it is observed that the bistable
attachments remain within the potential well, vibrating linearly/quasi-
linearly around their respective static equilibria. The metastructure
experiences a bandgap similar to the one with linear local resonators,
with the first mode of the plain beam attenuated while new resonances
appear. The shaded region shows the linear locally resonant bandgap
estimate based on the theory developed for finite and continuous
metastructures,” ; < » < w;/T + p, with the target frequency o,
= 143 Hz and mass ratio u = 0.27. As the base excitation level
increases, intrawell softening of the resonators start triggering nonlin-
ear attenuation first. Further increase in the base excitation intensity
leads to a dramatic bandwidth enhancement (as compared to the lin-
ear bandgap) when interwell chaotic motions of the resonators are
manifested.

In conclusion, we have investigated amplitude-dependent
enhancement of the frequency bandwidth in locally resonant meta-
structures via bistable attachments, both numerically and experimen-
tally. The bandwidth offered by nonlinear interwell oscillations of
bistable attachments is substantially wider than the corresponding
linear locally resonant bandgap. Such nonlinear vibrations can be
triggered with the increasing excitation amplitude or by designing the
potential wells (to be shallow enough) to ensure interwell dynamics
for a given excitation level. This class of nonlinear metastructures
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provide a much wider bandwidth than their linear counterparts whose
bandgap is known to be limited by the added mass.
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