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Abstract
The use of piezoelectric materials in various applications, including the development of
bio-inspired structures, vibration control, energy harvesting, among others, has been
investigated by several researchers over the last few decades. In most cases, linear
piezoelectricity is assumed in modeling and analysis of such systems. However, the recent
literature shows that non-linear manifestations of piezoelectric materials are relevant and can
modify the electromechanical behavior especially around the resonance. This work extends the
investigation of non-linear piezoelectricity, by adding geometric nonlinearities and aerodynamic
effects, to aeroelastic problems such as wind energy harvesting. A piezoaeroelastic model that
combines a non-linear coupled finite element model and the doublet lattice model of unsteady
aerodynamics is presented. The electromechanically coupled finite element model includes the
non-linear behavior of piezoelectric material under weak electric fields. Model predictions are
validated by experimental data for 1) a double bimorph actuation case and 2) a vibration based
energy harvesting case. Later, the piezoaeroelastic behavior of a generator plate-like wing for
wind energy harvesting is numerically investigated when linear as well as non-linear
piezoelectricity is considered. The experimentally validated geometrically and materially
non-linear framework presented here is applicable to both energy harvesting and actuation
problems in the presence of air flow.

Keywords: wind energy harvesting, aeroelasticity, non-linear piezoelectricity

1. Introduction

The literature of energy harvesting exhibits a great num-
ber of papers reporting geometrically scalable and simple
wind energy harvesters. The motivation is to power low
consumption electronic components employed in engineer-
ing applications located in high wind areas by convert-
ing wind energy into usable electrical energy. While wind
turbines are explored for large scale cases, the conversion
of persistent flow induced oscillations of airfoils (Erturk

et al 2010, De Sousa and De Marqui Junior 2015, Dias
et al 2013, Bae and Inman 2014a, Abdelkefi et al 2012a,
Abdelkefi et al 2012c), elastic wings (De Marqui et al
2010, De Marqui et al 2011, Xiang et al 2015, Bruni et
al 2017) or beams in axial flow (Tang et al 2009, Dun-
nmon et al 2011, Michelin and Doare 2013, De Marqui
et al 2018) by using piezoelectric materials as transduction
mechanism are among the piezoelectrically linear aeroelastic
energy harvester concepts and configurations available in the
literature.
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The typical linear flutter behavior is well known from the
classical literature of aeroelasticity (Theodorsen 1935, Bis-
plinghoff et al 1996). Linear aeroelastic systems present per-
sistent oscillations only at the linear flutter speed. There-
fore, the operation envelope of linear aeroelastic based wind
energy harvesters is reduced to a single airflow speed, limit-
ing practical applications. Nonlinear aeroelastic systems, on
the other hand, can offer persistent oscillations over ranges of
airflow speeds due to the presence of concentrated or distrib-
uted structural nonlinearities as well as aerodynamic nonlin-
earities (Dowell and Tang 2002). Since real world applications
often involve nonlinearities and in order to overcome the lim-
itations of linear aeroelastic energy harvesters, there has been
growing research interest in non-linear aeroelastic energy har-
vesters over the past few years (Abdelkefi et al 2012a, DeMar-
qui et al 2018, Sousa et al 2011, Abdelkefi and Hajj 2013, Bae
and Inman 2014b, De Sousa andDeMarqui Junior 2015, Javed
et al 2015).

The linear and non-linear piezoaeroelastic wind energy har-
vesters discussed in the literature to date have considered the
use of monolithic piezoelectric materials and the 31-mode
of piezoelectricity, or piezoelectric fiber composites, such
as Macro-Fiber Composites (MFCs) mostly using the 33-
mode of piezoelectricity. In all cases, linear piezoelectric con-
stitutive equations (IEEE Standard on Piezoelectricity 1988)
are taken into account during the derivation of the govern-
ing equations of linear as well as non-linear wind energy
harvesters. However, nonlinearities of piezoelectric materials
have been observed in sensing and/or actuation cases as well as
in energy harvesting applications, modifying significantly the
dynamics of electroelastic structures (compared to the linear
counterparts).

Most of the non-linear modeling of piezoelectric mater-
ials has considered stiff and brittle monolithic piezoelectric
materials, such as the geometrically linear and materially non-
linear framework presented by Leadenham and Erturk (2015)
for energy harvesting, sensing and actuation. In previous stud-
ies dealing with electroelastic structures (Aurelle et al 1996,
Abdelkefi et al 2012b, Wolf and Gottlieb 2001, von Wagner
and Hagedorn 2002, Mahmoodi et al 2008, Hu et al 2006,
Goldschmidtboeing et al 2011), piezoelectric nonlinearities
were explored for separate problems of actuation or sensing
and similar patterns of piezoelectric softening were related
to different sources (e.g. non-linear elasticity and non-linear
coupling simultaneously or separately). A detailed literature
review on piezoelectric nonlinearities can be found in Leaden-
ham and Erturk (2015). Recently, an experimentally validated
geometrically and materially non-linear framework for mech-
anical excitation of an MFC bimorph for non-linear energy
harvesting (Tan et al 2018b) and actuation purposes (Tan et
al 2018a) was presented, extending the linear homogenized
model of Shahab and Erturk (2017).

In this paper, the effects of a piezoelectric nonlinearities
on the behavior of a generator wing are investigated. The
piezoaeroelastic model is obtained by combining a subsonic
unsteady aerodynamic model based on the doublet-lattice
method (DLM) (Albano and Rodden 1969) with an elec-
tromechanically coupled non-linear finite element (FE) model

that employs von Kármán plate theory. The FE model also
includes the non-linear behavior of piezoelectric MFCs which
is based on a modified expression for the non-linear enthalpy.
The resulting non-linear FE model is validated against exper-
imental data for a bimorph MFC energy harvester under
base excitation and also against experimental data consider-
ing MFCs as actuator. Finally, the piezoaeroelastic behavior
of a non-linear generator wing is numerically investigated for
a set of load resistances when the linear and non-linear MFC
models are considered.

2. Theoretical model

This section presents the formulation of electromechanically
coupled systems considering non-linear piezoelectricity. First,
the modeling of a linear electromechanically coupled plate
is briefly discussed. The modeling of non-linear piezoelectric
effects is then presented and combined to linear electroelastic
governing equations. Later, the von Kármán plate theory is
considered to model the structure that is also combined to the
non-linear piezoelectric model presented in this work. At the
end of this section, the linear unsteady aerodynamic model,
that is combined with the non-linear structural model to obtain
a piezoaeroelastic model, is briefly presented.

2.1. Electromechanically coupled plate formulation

The equations ofmotion of the coupled system can be obtained
from Hamilton’s principle, which in the absence of electro-
magnetic field is defined as,

δ

ˆ t1

t0

(ˆ
V
LdV

)
dt+
ˆ t1

t0

δWdt= 0 (1)

where L is the Lagrangian defined in terms of the kin-
etic energy (Tke) and electrical enthalpy density (H) as L=
(Tke−H), and δW is the virtual work due to external mechan-
ical and electrical forces that will be later defined. The kinetic
energy is

Tke =
1
2
ρu̇Tu̇ (2)

where ρ is the mass density, u̇ is the generalized displacement
field, and an overdot represents time derivative. The super-
script T stands for transpose. Assuming linear piezoelectri-
city (linear-electroelastic constitutive relation for the piezo-
ceramic material) (IEEE Standard on Piezoelectricity 1988),
the enthalpy density is defined as,

Hlin =
1
2
STCE

pS−ETeS− 1
2
ETεSE (3)

where S is the strain vector, Cp is the matrix of piezoelectric
elastic stiffness constants, e is the matrix of piezoelectric con-
stants, ε is the matrix of electric permittivity constants, E is
the electric field vector, while the superscripts E and S denote
that the parameters are measured at constant electric field and
constant strain, respectively. The variation of mechanically
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applied work due to a set of discrete mechanical forces f and
the variation of electrically extracted work for a set of discrete
electric charge outputs q are combined as:

δW=

ˆ
Vs

δuTfdVs+
ˆ
Vp

δϕTqdVp (4)

whereϕ is the vector of electrical potential, V is the volume of
the element, subscripts s and p stand for the substructure and
piezoceramic layers.

Using equations (2), (3) and (4), the generalized Hamilton’s
principle for a linear electromechanically coupled structure
becomes

´ t1
t0

[
−
´
Vs
δSTCsSdVs−

´
Vp
δST

(
CE
pS− eTE

)
dVp

+
´
Vp
δET

(
eS+ εSE

)
dVp+

´
Vs

1
2ρsδu

Tu̇dVs

+
´
Vp

1
2ρpδu

Tu̇dVp+ δW+ δWD

]
dt= 0

(5)

where Cs is the matrix of substructure elastic stiffness con-
stants. δWD denotes the work done by damping forces,

δWD =

ˆ
V
δuTDdu̇dV (6)

Various finite element formulations could be assumed
to obtain the equations of motion for electromechanically
coupled systems from equation (5). De Marqui et al (2009)
presented the derivation of the equations of motion based on
the Kirchhoff plate theory as,

Mü+Du̇+Ku−Θvp = f (7)

ΘTu̇+Ccapv̇p+
1
Rl
vp = 0 (8)

where M is the global mass matrix, K is the global linear
stiffness matrix,Θ is the effective electromechanical coupling
matrix,Ccap is the effective capacitancematrix of theMFCs,D
is the global damping matrix (assumed as proportional to the
mass and stiffness matrices), vp is the resultant voltage out-
put across a load resistance (Rl) connected to the electrodes of
the piezoelectric material (MFC in the case of this work). The
right-hand-side term f in equation (7) represents the excitation
due to base motion or the vector of aerodynamic loads in a pie-
zoaeroelastic case. Details on the formulation and expression
of each matrix can be found in De Marqui et al (2009).

In this work, however, the goal is to model the non-linear
piezoelectric behavior of MFCs. Therefore, we implement the
following expression for the non-linear enthalpy,

Hnonl =
1
2S

TCE
pS+STCE

1α
{
I− diag

[
exp

(
|S|βτ

)]}
S

−ETeS− 1
2E

Tγ11S |S| − 1
2E

TεSE
(9)

where CE
1 is the non-linear piezoelectric elasticity matrix at a

constant electric field, γ11 is the non-linear quadratic coupling
matrix, α is a consent that quantifies the percentage of soften-
ing of the MFC stiffness, β is a coefficient that regulates the
piezoelectric softening with increasing strain, and τ is a negat-
ive coefficient that regulates themaximum softening and strain
relation.

Several models based on deformation and electric field
(when applied to symmetrical structures, as in the bimorph
case) result in the cancelation of second order terms as dis-
cussed in Leadenham and Erturk (2015). In this work we pro-
pose the modeling of the electric enthalpy density based on
the deformation modulus. Through the compatibility relations
(Tij = ∂H/∂Sij and De =−∂H/∂E), the stress vector T is
defined as

T= CE
pS− eTE− diag(|S|)γ11

TE

+ 2CE
1α

{
I− diag

[
exp

(
|S|βτ

)]
×
[
I− diag

(
1
2
βτS2|S|β−2

)]}
S (10)

and the electric displacement De is defined as

De = eS+
1
2
γ11diag(|S|)S+ εSE (11)

Considering the non-linear piezoelectric elasticity matrix,
as an approximation, equal to the half of the linear stiffness
matrix, equation (10) simplifies to

T= CE
pS− eTE+CE

pα
{
I− diag

[
exp

(
|S|βτ

)]}
S

− diag(|S|)γ11
TE (12)

when high order strain terms are neglected.
The generalized Hamilton’s principle (equation (1)) for the

non-linear case can be written as
´ t1
t0

[
−
´
Vp
δST

(
CE
pS+CE

pα
{
I− diag

[
exp

(
|S|βτ

)]}
S

−Sdiag(|S|)γ11
TE− eTE

)
dVp−

´
Vs
δSTCsSdVs

−
´
Vp
δET

(
−eS− 1

2γ11diag(|S|)S− εSE
)
dVp

+
´
Vs

1
2ρsδu

Tu̇dVs+
´
Vp

1
2ρpδu

Tu̇dVp+ δW+ δWD

]
dt= 0

(13)
and by considering, for example, linear plate finite element
model (De Marqui et al 2009) as well as equations (11) and
(12), the global equations ofmotion for a linear plate combined
to a non-linear piezoelectric model are given by

Mü−Du̇+K(u)u−Θvp = f (14)

ΘTu̇+Ccapv̇p+
1
Rl
vp = 0 (15)

where K(u) and Θ are redefined as non-linear matrices,

Ki (u) =
´
Vs
z2BK

TCsBKdVs

+
´
Vp
z2BK

TCE
p

(
I+α

{
I− diag

[
exp

(
|S|βτ

)]})
BKdVp

(16)

3
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Θi =−
ˆ
Vp

[
zBK

T (eT + diag(|S|)γ11
T
)
BE

]
dVp (17)

where

BK =
{

∂2Γ
∂x2

∂2Γ
∂y2 2 ∂2Γ

∂x∂y

}T
, (18)

Γ is the element shape function vector and BE ={
0 0 z/bmfc

}T
. Note that the expressions for non-linear

stiffness and non-linear electromechanical coupling (equa-
tions (16) and (17)) depend on the solution of the problem
itself. That is, the terms containing the non-linear stiffness
and the non-linear coupling are dependent on the deformation,
which will be found only after solving the coupled equations.

2.2. Nonlinear geometric formulation

Geometric non-linearity is present due to large displacements
of the proposed flexible structure. The von Kármán plate the-
ory, which is valid for moderate displacements, is considered
in the model formulation to properly represent structural beha-
vior. When the displacements are moderately large, then an

interaction between the membrane and bending effects is ini-
tiated due to transverse displacements. Von Karman (1910)
first studied this effect. In his theory, this effect is incorporated
using a simplified form of the Green-Lagrange deformations
obtained when the non-linear terms associated with the com-
ponents of the displacement in the directions of the plate plane,
ux and uy, are neglected (Crisfield 1997). Thus the deformation
becomes,

Sgreen =

 Sxx
Syy
2Sxy

=

 u,x+w,x
2/2

v,y+w,y
2/2

u,y+ v,x+w,xw,y

− z

 w,x2

w,y2

2w,xy


= Sp− zKb (19)

where Sp denote the in plane deformations and Kb denote the
curvature changes due to bending. The derivatives with respect
to a variable are denoted in the subscript after the comma
(∂∗/∂x = ∗,x). Nonlinear terms with second and higher order
derivatives are neglected in this equation.

The finite element approach for the geometrically
non-linear problem is based on Zienkiewicz and Taylor
(2000) in combination with equation (19). The vari-
ational Sp and Kb can be written respectively as

δSp = Bαδuα =

 Γα,x 0
0 Γα,y

Γα,y Γα,x

{
δuα
δvα

}
+

 w,x 0
0 w,y

w,y w,x

Gα

 δwα

δθxα
δθyα


= Bα

P δũα +Bα
L δw̃α

(20)

δKb =

 Γwα,xx Γθx
α,xx Γθy

α,xx

Γwα,yy Γθx
α,yy Γθy

α,yy

2Γwα,xy 2Γθx
α,xy 2Γθy

α,xy


 δwα

δθxα
δθyα

= Bα
Kδw̃α

(21)
where

Gα =

[
Γwα,x Γθx

α,x Γθy
α,x

Γwα,y Γθx
α,y Γθx

α,y

]
(22)

with nodal displacement parameters defined as

uT
α =

[ {
uα vα

} {
wα θxα θyα

} ]
=

[
ũT
α w̃T

α

]
(23)

Grouping the deformation matrices as

B̄α =

[
Bα
P Bα

L
0 Bα

K

]
(24)

then matrix Ki (u) becomes

Ki (u) =
ˆ
Vs

B̄
T
α

[
Cs 0
0 z2Cs

]
B̄αdVs (25)

2.2.1. Nonlinear resultant formulation. The non-linear geo-
metric stiffness matrix in this non-linear structural case is
also evaluated over the area covered by piezoelectric material
(MFCs in our case) similarly as developed for the substruc-
ture in section 2.2. This geometrically non-linear model can be
associated with the non-linear constitutive behavior of piezo-
electric material, obtained from the non-linear enthalpy (equa-
tion (9)). The resultant non-linear electroelastic stiffness ele-
ment matrix is defined as

Ki
nl (u) =

ˆ
Vs

B̄
T
α

[
Cs 0
0 z2Cs

]
× B̄αdVs+

ˆ
Vp

B̄
T
α

[
C∗ 0
0 z2C∗

]
B̄αdVp (26)

where C∗ = CE
p

(
I+α

{
I− diag

[
exp

(
|S|βτ

)]})
and the

non-linear coupling element matrix is defined as

Θi
nl =−

ˆ
Vp

B̄
T
α

(
eT + diag(|S|)γ11

T
)
B̄EdVp (27)
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where B̄E =
{

1/bmfc 0 0 0 z/bmfc
}T

. To solve the
non-linear equations for the elastic or electroelastic cases, a
Newton Raphson scheme is adopted. The proposed geometric-
ally non-linear FEmodel was tested against non-linear Abaqus
results in static condition.

2.3. The doublet lattice model

The linearized formulation for the oscillatory, inviscid, sub-
sonic lifting surface theory relates the normal velocity at the
surface of a body (e.g., an elastic wing) with the aerodynamic
loads caused by the pressure distribution (Albano and Rodden
1969). The formulation is derived using the unsteady Euler
equations of the surrounding fluid. The doublet singularity or
a sheet of doublets is a solution of the aerodynamic potential
equation. The unsteady aeroelastic phenomena of interest in
this paper as well as the resultant differential pressure across
the surface of a wing can be represented with this solution.

The relation between the differential pressure across the
surfaces and the velocity normal to the surface of a wing
is given by a kernel function (Albano and Rodden 1969).
The kernel function is a closed-form solution of the integro-
differential equation based on the assumption of harmonic
motion. The velocity field normal to the surface of a wing is
given by the equation

w̄(x,y,z) =
−1

4V∞πρ0

ˆ ˆ
S
∆p(x,y,z)K(x− ξ,y− η,z)dξdη

(28)
where∆p(x,y,z) is the differential pressure, V∞ is the airflow
speed, ρ0 is the air density, and ξ and η are dummy variables
of integration over the wing area S in the spanwise (x) and
chordwise (y) directions, respectively. The transverse direction
is represented as z, while K is the kernel function given as

K(x− ξ,y− η,z) = exp

(
−jω (x− ξ)

V∞

)
∂2

∂z2{
1
R̄
exp

[
jω

V∞χ2
(λ−MR̄)

]
dλ

}
(29)

where χ2 = 1−M2 and R̄=

√
(x− ξ)

2
+(y− η)

2
+ z2, ω is

the excitation frequency, M is the Mach number, and λ is
a dummy variable. The DLM provides an approximate solu-
tion for the kernel function. The wing is represented by a thin
lifting surface divided into a number of elements (panels or
boxes) associated with doublet singularities. The singularities
have constant strength in the chordwise direction and parabolic
strength in the spanwise direction. A line of doublets distribu-
tion of acceleration potential is assumed at the 1/4 chord line
of each panel, which is equivalent to a pressure jump across
the surface. A control point, where the boundary condition is
verified, is defined in the half span of each element at the 3/4
chord line. The strengths of the oscillating potential placed at
the 1/4 chord lines are the unknowns of the problem.

The downwash, introduced by the lifting lines, is assumed
to be harmonic and is checked at each control point. Integra-
tion over the surface gives the local and the total aerodynamic

force coefficients (Albano and Rodden 1969). The solution of
the resulting matrix equation is

f= AIC−1 (ω)wa (30)

whereAIC−1 (ω) is the matrix of aerodynamic influence coef-
ficients (related to the kernel function) at a specific frequency
(ω), and wa is the downwash vector,

wa =
∂W
∂t

+V∞
∂W
∂x

(31)

where (W) is the plate transverse displacement.

2.3.1. Piezoaeroelastically Coupled Equations. The aerody-
namic loading and the structural motion are obtained from dis-
tinct numerical methods with distinct meshes so that trans-
formation matrices are determined using a surface spline
scheme to interpolate the forces in the aerodynamic mesh into
the nodes of the FEmesh (Harder andDesmarais 1972). There-
fore, the aerodynamic forces are evaluated as

f(ω) =ΦTGmaAIC
−1

(
∂

∂t
+V∞

∂

∂x

)
GamΦη (32)

where Gma and Gam are the splines connecting the aerody-
namic and structural meshes,Φ is the modal shape matrix and
η is the modal coordinates vector.

The aerodynamic forces in frequency domain are converted
to time domain by using a minimum square approximation to
obtain a rational polynomial formulation (Roger 1977). Sub-
sequently, the piezoaeroelastic equations can be represented
in state-space form as


Ẋ1

Ẋ2

v̇p
ẊS

=


0 I 0 0

−M̄
−1
ae K̄ae (u) −M̄

−1
ae D̄ae M̄

−1
ae Θ̄ M̄

−1
ae A

0 −Θ̄T

Rl
−1

RlCcap
0

0 I 0 V∞
b λaeI



×


X1

X2

vp
XS

 (33)

where X1 is the modal amplitudes vector, X2 is the first time
derivative of the modal amplitudes vector, XS is the aerody-
namic lag state vector, I is the identity matrix, b is the semi-
chord of the wing, λ is the lag aerodynamic root, the overbar
represents modal matrices and the subscript ae represents the
aeroelastic modified matrices.

3. Results

In this section, the non-linear numerical model presented in
this work (non-linear finite element model combined to the

5
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non-linear piezoelectric model) is validated for two different
cases. First, the model predictions are validated against exper-
imental results previously presented in the literature for an
MFC bimorph cantilever under base excitation in a vibration
based energy harvesting problem. Later, the numerically pre-
dicted behavior of a double bimorph structure under piezo-
electric bending actuation is validated against experimental
results. Moreover, the system behavior for pure twist actu-
ation and bending-twist combined actuation is discussed. Hav-
ing validated the non-linear model, the last case discusses
the effects of non-linear piezoelectricity on the behavior of
an electromechanically coupled wing for energy harvesting.
The non-linear model (equations (14) and (15) combined with
equations (26) and (27)) is solved using the method of har-
monic balance (Nayfeh and Mook 2008) for all acceleration
and voltage actuation levels considered in each validation case.
Since the excitation is assumed to be harmonic, the mechan-
ical response solution is expected to have the same period as
the electrical excitation and can be approximated by truncated
Fourier series expansions. Seven harmonics are considered to
predict the electroelastic response in each case.

3.1. Nonlinear MFC energy harvesting validation

The electromechanical structure as well as the experimental
data of Tan et al (2018b) are considered for the experimental
validation of the non-linear model proposed here (non-linear
formulation of section 2.2.1). Two MFC laminates (M8514-
P1, from Smart Material Corp.) were vacuum-bonded together
without any substrate to form a bimorph structure. The struc-
ture has overall dimensions of 83.5 mm (length), 10.0 mm
(width) and 0.6 mm (thickness). The overhang (active) area is
75.5 mm long and 7.0 mm wide, with a measured capacitance
of 3.4 nF.

In Tan et al (2018b) the bimorph structure was tested under
different base acceleration levels, sweeping the excitation fre-
quency up and down around the first resonant frequency. The
velocity of the MFC bimorph was measured near the center
line of the free end of the cantilever. Among the set of load
resistances considered by the authors, 1.3 MΩ is the one that
gives themaximumpower output andwill be considered in this
work for model validation. The experimental data of Tan et al
(2018b) is reproduced in figures 1 and 2 along with the novel
numerical results of this paper. The non-linear terms that form
the non-linear stiffness matrix (equation (16)) were obtained
asα= 0.365, β= 1.15 and τ =−1.30.While Tan et al (2018b)
assume the piezoelectric non-linearity as quadratic hysteretic
softening combinedwith cubic geometric nonlinearities, recall
that we consider the exponential enthalpy model of section 2.

Figure 1 displays the numerical and experimental RMS
velocity around the first resonance of the bimorph. The exper-
imental softening behavior (with increasing excitation levels)
is properly predicted by the numerical model. The resonant
frequency decreased from 40.5 Hz to 30.3 Hz with increasing
base acceleration level due to the softening behavior of the
piezoelectric material. The numerical model accurately pre-
dicted the experimental backbone curve over the range of base
excitation levels considered in Tan et al (2018b). Moreover,
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Figure 1. Experimental RMS tip velocity of the MFC bimorph
versus frequency at RMS base acceleration levels of 0.1 g, 0.2 g, 0.3
g, 0.4 g, and 0.5 g using a downward frequency sweep (Tan et al
2018b) compared to numerical model results considering a 1.3 MΩ
resistance in the electrical circuits.
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Figure 2. Experimental average power output of the MFC bimorph
versus frequency at RMS base acceleration levels of 0.1 g, 0.2 g, 0.3
g, 0.4 g, and 0.5 g using a downward frequency sweep (Tan et al
2018b) compared to numerical model results considering a 1.3 MΩ
resistance in the electrical circuits.

Figure 3. Double-bimorph structure with MFC laminates and
stainless-steel substrate: (a) top view, with the tip velocity
measurement points, and (b) bottom view, with displacement
measurement points.

the velocity amplitudes were accurately predicted for the set
of base acceleration in figure 1.
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Table 1. Properties of an MFC representative volume element.

Property RVE Electrode MFC

E1 [Pa] 43.78×109 30.48×109 27.87×109

E2 [Pa] 20.45×109 4.05×109 16.89×109

G12 [Pa] 7.35×109 1.49×109 4.94×109

ν12 0.31 0.34 0.32
ν21 0.15 0.045 0.18

ρ [Kg·m−3] 6859 2964 4915
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Figure 4. Experimental (contiuous lines) and numerical (markers)
tip velocity of the MFC double-bimorph structure for pure bending
resonant actuation with input voltages of 0.5 V, 1 V, 5 V, 10 V, 20 V,
30 V, 40 V, and 50 V.
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Figure 5. Numerical tip velocity of the MFC double-bimorph
structure for pure twist resonant actuation with input voltages of 0.5
V, 1 V, 5 V, 10 V, 20 V, 30 V, and 40 V.

The average electrical power output (defined as Pavg =
v2p,RMS/Rl) is displayed in figure 2 for different base accel-
eration levels. Although the model slightly overpredicts the
experimental ones for high base aceleration levels, in general,
good agreement is observed between numerical and experi-
mental results. This discrepancy is likely due to dissipative
terms in the electrical domain (e.g. dielectric loss) not accoun-
ted for in the present work.

3.2. Nonlinear MFC actuation validation

This section presents the experimental validation of the numer-
ical model of section 2.2.1 (non-linear structural model and
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Figure 6. Numerical tip velocity of the MFC double-bimorph
structure for combined bending-twist resonant actuation with input
voltages of 0.5 V, 1 V, 5 V, 10 V, 20 V, 30 V, 40 V, and 50 V.

Figure 7. Schematic of the double bimorph structure under airflow
excitation.

non-linear piezoeletricity) for resonant actuation of an MFC
bimorph. TwoMFC laminates (M8514-P1, from Smart Mater-
ial Corp.) were bonded onto each side of a steel plate (Fatigue-
Resistant 301 Stainless Steel Sheet), as displayed in figures
3(a) (top view) and 3(b) (bottom view). This electromechanic-
ally coupled plate is called a double-bimorph structure in this
work. The steel plate has dimensions of 84.4mm (length), 73.0
mm (width), and 0.05 mm (thickness). EachMFC has an over-
all size of 84.4 mm× 20.0 mm, with an active region of 76.35
mm × 14.0 mm and thickness of 0.3 mm. The plate material
has an elastic modulus of 193 GPa and mass density of 7850
kg·m−3. The capacitance of the active region of eachMFCwas
measured as 4 nF.

In figure 3(a), the labels (A), (B) and (C) indicate the points
of transverse velocity measurement. By considering mixing
rules (Deraemaeker et al 2009), the properties of an MFC
representative volume element were obtained, which are dis-
played in table 1.

The double-bimorph structure was tested in pure bend-
ing resonant actuation (with symmetric actuation on both
bimorphs). Increasing voltage levels from 0.5 V up to 50.0 V
were applied across the electrodes of the MFCs while sweep-
ing the excitation frequency up and down. For the actuation
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Figure 8. Numerical RMS tip displacement of the double-bimorph for increasing airflow speed and considering (a) linear and (b) non-linear
MFC models for load resistances of 1 Ω, 100 kΩ, 1 MΩ, and 10 MΩ.
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Figure 9. RMS wing tip displacement of the double-bimorph for
increasing airflow speeds and considering linear and non-linear
MFC models. A load resistance of 1 MΩ was assumed in the
simulations.

tests, three Polytec PDV-100 portable digital vibrometers were
used to measure the velocity at three measurement points (A,
B and C in figure 3(a)) simultaneously (reducing differences
between results due to different shapes). Data were acquired
using a National Instruments NI USB-4431 board. The struc-
ture was mounted vertically to reduce the gravity effects in
the results. The numerical predictions and experimental tip
velocity at point A (see figure 3(a)) for pure bending reson-
ant actuation is shown in figure 4. The numerical model prop-
erly predicts the experimental backbone curve and mechanical
amplitudes for the range of voltage levels considered in figure
4. In the simulations, the constants of the non-linear stiffness
matrix (equation (16)) were taken as α= 0.437, β= 0.75 and
τ =−7.71.

The behavior of the MFC double bimorph is then discussed
for a pure twist and also for combined bending-twist actuation
cases. Although experiments were not performed for those
cases, the discussion is presented according to the expected
behavior described in the literature (Samur 2013). Figure 5
displays the numerical tip velocity at point A for pure twist-
ing resonant actuation case. To create twist motion in the sim-
ulations, each bimorph pair was actuated 180

◦
out-of-phase

relative to the other pair. Softening behavior is expected until
certain actuation level due to piezoelectric nonlinearities and

then, for higher actuation levels, hardening should be observed
due to geometric nonlinearities. Figure 5 displays the softening
behavior from 0.5 V to 10 V due to the MFCs non-linear beha-
vior while the hardening is related to the non-linear geomet-
ric behavior of the plate for higher acutation levels. The non-
linear geometric behavior is more pronounced for the twist
motion (compared to pure bending case) since internal stresses
lead to larger stiffness than the one observed in the pure bend-
ing case of figure 4.

Figure 6 shows the tip velocity of theMFC doubel-bimorph
structure for resonant bending-twist actuation. The combined
actuation is obtained by applying a signal with 90

◦
of phase

between the bimorphs. Softening and hardening nonlinearities
should be observed for the bending and twist modes (Samur
2013), respectively, as also displayed in figure 6. Piezoelec-
tric softening is more pronounced in the first bending mode,
while the resonant frequency of the twist mode increases for
higher actuation levels due to geometric hardening. Therefore,
the predicted non-linear behavior for pure twist and combined
actuation cases is in agreement with the literature.

3.3. Wind energy harvesting results

In the numerical studies of this subsection, the MFC double
bimorph plate presented in subsection 3.2 is considered in a
wind energy harvesting case. The aeroelastic behavior of the
electroelastic structure is investigated for a range of airflow
speeds by combining the structural model of section 2.2.1 with
the DLM presented in section 2.3. As a reference case, when
the linear structural model is considered (equations (7) and
(8) of section 2.1), the linear electroaeroelastic behavior of the
system can be predicted for increasing airflow speeds. The lin-
ear flutter speed of the plate, which corresponds to the neutral
stability boundary of the linear system, is 45.4 m·s−1. How-
ever, modified aeroelastic behavior is expected due to the pres-
ence of nonlinearities. In this work, geometric non-linearity
(related to large displacements) is taken into account by repla-
cing the linear FE model by the non-linear FE model (von
Kármán) of section 2.2, resulting in a non-linear aeroelastic
system. The simulations presented in this section consider the
non-linear geometric FE model (to model the steel substruc-
ture and also the piezoelectric layer) combined to linear and
to non-linear piezoelectricity (as discussed in section 2.1). A
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Figure 10. Numerical average power output of the double-bimorph considering (a) linear and (b) non-linear MFC models.

Figure 11. Average power output of the double-bimorph
considering the linear and non-linear MFC models for a load
resistance of 1 MΩ.

schematic of the double bimorph structure under airflow excit-
ation is presented in figure 7.

The non-linear aeroelastic system considering piezoelectric
non-linearity is obtained by combining the non-linear stiff-
ness function (equation (26)) and non-linear electromechan-
ical coupling (equation (27)) in the piezoaeroelastic model
(equation (33)). In all simulations (considering linear or non-
linear piezoelectricity), different load resistances are assumed
individually connected to each MFC to estimate the electrical
power output over a range of airflow speeds (40 m·s−1 to 80
m·s−1). The considered resistance values are 1 Ω, 100 kΩ, 1
MΩ, and 10 MΩ.

The predicted displacements (at the tip leading edge, point
A of figure 3) are shown in figures 8(a) and (b) considering
linear and non-linear MFC models, respectively. Both for the
linear and non-linear piezoelectricity, the cut-in speed for limit
cycle oscillations (LCOs) is 45.4 m·s−1 for a load resistance of
1 MΩ. The critical airflow speed for LCOs is slightly modified
for each load resistance considered in both cases. The bifurc-
ations for each resistance case are supercritical (Dimitriadis
2017).

Figure 9 displays the tip displacements for the load resist-
ance of 1MΩ (the load resistance that leads to the largest cut-in
speed in figure 8). Linear and non-linear piezoelectric cases are
shown for comparison purposes (in both cases the non-linear

geometric model is considered). Tip displacements are smaller
for the non-linear piezoelectric case than for the linear piezo-
electric case for airflow speeds smaller than 57.0 m·s−1. For
larger airflow speeds, tip displacements for the non-linear case
are larger than that for the linear case. It is important to note
that piezoelectric softening comes with non-linear dissipation
under larger amplitudes (Leadenham and Erturk 2015), that is
not considered in this work. One should also note that the tip
displacement in figure 9 is on the order of the plate thickness
(that includes the substructure and the MFCs).

Figure 10 shows the power output with increasing airflow
speed for each load resistance. The power output strongly
depends on the load resistance assumed in the electrical
domain, as shown in figures 10(a) for linear MFC model and
10(b) for non-linear MFC model (in both cases the non-linear
geometric model is considered). The reported values of power
output represent the total power obtained from the summation
of all four circuits. In both (linear and non-linear piezoelectri-
city) cases, the maximum average power output was predicted
for the load resistance of 1 MΩ. For the same load resistance
of 1 MΩ, figure 11 shows that the average power output is
modified due to the presence of piezoelectric non-linearity.

4. Conclusions

Linear and non-linear models were developed based on finite
element analysis for electromechanically coupled structures.
The linear model was developed considering Kirchhoff plate
assumptions and the geometrically non-linear one using von
Kármán’s approximation. Moreover, linear and non-linear
models were also implemented for the piezoelectric effect.

The non-linear geometric model combined to piezoelectric
non-linearity was succesfully validated against experimental
results from the literature for anMFC bimorph energy harvest-
ing case. The numerical model predicts the softening behavior
for increasing base acceleration levels both when tip velocity
and power output are considered. The numerical power output
slightly overpredicts the experimental one under large excita-
tions since non-linear dissipative effects are not considered in
the model. Numerical results for pure bending actuation case
of a double bimorph plate were successfully verified against
experimental data. Moreover, the double bimorph behavior
under pure twist resonant actuation as well as under combined
(bending-twist) resonant actuation was discussed. In the first
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case, the softening behavior at low excitations is due to piezoe-
letric non-linearity, while the hardening behavior is due to geo-
metric nonlinearities at high actuation levels. The same beha-
vior was observed for the twist mode when the combined actu-
ation was numerically investigated.

The non-linear structural model was combined to an
unsteady aerodynamic model to perform non-linear aer-
oelastic simulations for wind energy harvesting. The non-
linear aeroelastic behavior was discussed when linear and non-
linear piezoelectric models were considered. The presence of
piezoelectric non-linearity modifies the power output as com-
pared to the linear piezoelectric case. Nonlinear structural dis-
sipative effects could also be identified and incorporated in
the modeling framework. The resulting modeling and analysis
framework is applicable to both energy harvesting and actu-
ation applications in the presence of aerodynamic loads.
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