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Nonreciprocal piezoelectric metamaterial framework and circuit strategies
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Recent research has shown that a proper spatiotemporal modulation of material properties (i.e., mass density
or stiffness) can break reciprocity for elastic waves; however, such concepts are challenging to implement exper-
imentally in mechanical waveguides. Piezoelectric metamaterials offer the possibility of parameter modification
via electrical circuitry, constituting a convenient platform for spatiotemporal modulation. We introduce a fully
coupled electromechanical framework and circuit strategies to enable nonreciprocal piezoelectric metamaterials
using various schemes that include capacitive and inductive shunts as well as smooth modulation and nonsmooth
switching. The high-fidelity framework presented herein does not rely on the assumption of simplified effective
material property representation, and can be used to explore and predict the complete dynamics of the modulated
system, accounting for full-system stability, circuit limitations, and more complex modulation schemes. A set
of results is presented based on nonreciprocal configurations that illustrate potential implementation schemes,
and demonstrate the versatility of piezoelectric materials for the design of truly integrated acoustic/elastic wave
devices featuring nonreciprocal transmission.
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I. INTRODUCTION

In conventional time-invariant materials, the principle of
reciprocity states that waves will propagate symmetrically
between two points, such that the source and receiver are
interchangeable. Research has been shown across a variety
of physical domains that reciprocity can be broken through
nonlinearity or the introduction of directional bias (i.e., by
relaxing the time-invariant constraint), with numerous po-
tential applications in wave isolation [1,2], such as blocking
reflections from returning to a source.

Numerous techniques have been proposed to break wave
reciprocity in elastic or acoustic wave devices. Introducing
strong nonlinearity into a medium can break reciprocity
through frequency conversion [3–5], but this technique is
fundamentally amplitude dependent and dramatically changes
the spectral content of the input wave. Linear techniques
typically rely on the use of active components, either by
introducing a form of directional bias [6] or other control
techniques [7–9]. In recent years, research interest has grown
in so-called spatiotemporal periodic structures [10–15], or
structures whose material properties vary periodically in both
space and time. Trainiti and Ruzzene [10] demonstrated nu-
merically that rods and beams with spatiotemporal periodic
stiffness and density exhibit nonreciprocal wave propagation.
Nassar et al. [13] investigated a modulated phononic crystal
using a Willis model [16], but noted that experimental real-
ization of such a structure poses a significant challenge. In
another work, Nassar et al. [14] also investigated a modu-
lated locally resonant spring-mass chain using a perturbation
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method, obtaining directional band gaps by modulating the
local resonator coupling stiffness. Vila et al. [12] developed
a generalized Bloch procedure for analyzing elastic waves
in modulated discrete spring-mass systems. Riva et al. [17]
developed a similar plane-wave expansion approach to obtain
the dispersion of modulated systems.

The preceding research in spatiotemporal periodic struc-
tures relies upon a material or component whose material
properties are strongly modulated periodically in time, some-
thing that is challenging to realize experimentally. Several
concepts have been proposed to achieve this, such as mag-
netoelastic polymers [18] or piezoelectric media [19]. Still,
there has been limited experimental realization of reciprocity-
breaking elastic metamaterials, suggesting that more thorough
analysis is required to understand the dynamics of these
modulated systems. To address this issue, this work develops
a fully coupled electromechanical modeling framework for
piezoelectric metamaterials with time-varying shunt circuitry.
Similar to direct modulation of material properties, appropri-
ate modulation of shunt circuit parameters can break elas-
tic wave reciprocity. Importantly, time-varying circuit com-
ponents are straightforward to obtain in real systems, e.g.,
through the use of electrical switches or digital control and
synthetic impedance [20]. Additionally, the use of a complete
circuit model enables analysis of more complex material
property modulation, such as modulation with frequency-
dependent effective properties.

II. GENERALIZED PLANE-WAVE EXPANSION METHOD
FOR SPATIOTEMPORAL PERIODIC PIEZOELECTRIC

METAMATERIALS

Consider an infinite piezoelectric bimorph plate made from
a two-dimensional Bravais lattice of unit cells, each with a
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FIG. 1. Schematic for the unit cell of the piezoelectric bimorph
plate. The system has a primitive unit cell (shown by the dashed line)
with lattice vectors a1 and a2. Circuit modulation in space extends the
periodic unit cell to the supercell (here with rm = 3, sm = 2) which
has lattice vectors ã1 and ã2.

single electrode pair, with lattice vectors a1 and a2, shown
schematically in Fig. 1. The bimorph plate consists of two
transversely isotropic piezoelectric layers sandwiching a cen-
tral shim, which is assumed to be an ideal conductor. The two
piezoelectric layers are assumed to be transversely isotropic
(e.g., piezoceramics) and poled in the same direction through
the thickness. A periodic unit cell is introduced via electrode
segmentation on the external faces of the plate (alternatively
piezoelectric patches can be segmented), with each unit cell
comprising one symmetric pair of opposing electrodes, elec-
trically connected to each other for parallel wire operation.

The governing equations for this system are given by [21]

(
DE∇4 + mp

∂2

∂t2

)
w(P, t )

−ϑ
∑
r,s

vrs,0(t )∇2d (P − Prs) = 0, (1)

Cpv̇rs,0(t ) + ϑ
d

dt

∫
D

d (P − Prs)∇2w(P, t )dD = irs(t ), (2)

where w(P, t ), DE , mp, and ϑ are the transverse displace-
ment, short circuit flexural rigidity, mass per unit area, and
piezoelectric coupling of the plate, respectively; Cp is the
piezoelectric capacitance of each unit cell; and the lattice
coordinates (r , s) denote the unit cell whose origin is at a
position Prs = ra1 + sa2, which has corresponding electrode
voltage vrs,0(t ) and current input irs(t ) (using the active sign
convention). Furthermore, the electrode shape function d (P)

FIG. 2. Concept for a nonreciprocal piezoelectric metamaterial.
Wavelike modulation of the shunt circuit coefficients ak (P, t ) results
in transmission from A to B at frequency ω0, but no transmission
from B to A.

is defined as

d (P) =
{

1, P ∈ D0

0, otherwise, (3)

where D0 ⊆ D is the subdomain of the electrode in the unit
cell at the origin, such that d (P − Prs) defines the electrode
of the unit cell at (r , s). We neglect the mass and stiffness
introduced by the thin metallic electrodes and associated
wiring, making the assumption that the wires used are thin
and flexible to reduce their effect on the system dynamics.
Experimental realization of such a system will require wiring
all electrodes to a dedicated circuit that supplies the current
input irs(t ) for each electrode pair, but this circuit can be kept
physically separate from the primary structure.

The current input irs(t ) in Eq. (2) is determined by the
dynamics of the shunt circuit connected to the piezoelectric
electrodes. We assume that each shunt circuit in the metamate-
rial has an identical layout with N circuit nodes (including the
piezoelectric electrode pair), but with time-periodic compo-
nents that can differ in phase. For a general shunt circuit with
N nodes connected by time-varying components, application
of Kirchhoff’s current law at each node yields an equation of
the form

irs(t )δp,0 =
∑
k,q

[Ak (Prs, t )]pqv
(k)
rs,q(t ), (4)

where (Ak )pq are the elements of the the N × N coefficient
matrix Ak corresponding to the kth voltage derivative, and
vrs,q are the node voltages. We assume the elements of
Ak (P, t ) vary in a wavelike fashion, each with temporal period
Tm and spatial period Prmsm , with rm , sm ∈ Z+. This modu-
lation scheme is shown schematically in Fig. 2 for the case
of a single-node system, in which case the matrix Ak (P, t )
becomes the scalar ak (P, t ).

The spatially discrete time-periodic coefficient matrices
Ak (Prs, t ) are sampled from the spatiotemporal periodic
Ak (P, t ), which can be expanded as a Fourier series of the
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form

Ak (P, t ) =
∑
l,m,n

Cklmnei(lωmt−G̃mn·P) (5)

with Fourier coefficients

Cklmn = 〈
ei(G̃mn·P−lωmt )Ak (P, t )

〉
, (6)

where

〈 f (P, t )〉 � 1

rmsmTm

rm−1∑
r=0

sm−1∑
s=0

∫ Tm

0
f (Prs, t )dt (7)

denotes the elementwise average over both space and time,
and G̃mn = mb̃1 + nb̃2 is the (m , n) reciprocal lattice vector,
where b̃1 and b̃2 are the reciprocal lattice vectors correspond-
ing to the supercell lattice vectors ã1 = rma1 and ã2 = sma2

(see Fig. 1).
For a wave at frequency ω, it is hypothesized that the

voltage on each electrode pair and associated circuit nodes
will be harmonic at the wave frequency shifted by integer
multiples of the modulation frequency ωm, such that

vrs,q(t ) = eiωt
∑

l

Vrslq(ω, k)eilωmt . (8)

Similarly, for a wave with Bloch wave vector k, consider
plane-wave solutions for the plate displacement w(P, t ) of the
form

w(P, t ) = ei(ωt−k·P)
∑
l,m,n

Wlmn(ω, k)ei(lωmt−G̃mn·P). (9)

The remainder of the analysis follows a typical plane-wave ex-
pansion procedure. Substituting Eqs. (8) and (9) into Eqs. (1)
and (2) and applying the orthogonality of the complex expo-
nentials, the following system of equations is obtained (in the
following, dependence on ω and k will be omitted for clarity):[

DE‖k + G̃mn‖4 − mp(ω + lωm)2
]
Wlmn

−ϑ

rm−1∑
r=0

sm−1∑
s=0

�mnrsVrslqδq,0 = 0, (10)

[i(ω + lωm)]

[
CpVrslu + ϑ�D̃

∑
m,n

�∗
mnrsWlmn

]
δu,0

=
∑

v,k,q,m,n

(Ck,l−q,m,n)uve−iG̃mn·Prs [i(ω + qωm)]kVrsqv,

(11)

where the coupling term �mnrs is given by

�mnrs = 1

�D̃
ei(k+G̃mn )·Prs

∫
D0

∇2ei(k+G̃mn )·PdD (12)

and �D̃ = ‖ã1 × ã2‖ = rmsm‖a1 × a2‖ is the area of the su-
percell. Equations (10) and (11) form a rational eigenvalue
problem [22] that can be used to solve for the dispersion
relation for spatiotemporal periodic piezoelectric metamate-
rials. To solve the eigenvalue problem, the summations over
the plane-wave indices (m, n) and the harmonic index q in
Eqs. (10) and (11) must be truncated at some finite value. For
maximum plane-wave index M and maximum harmonic index

L (i.e., m , n ∈ [−M , M], q ∈ [−L , L]), with N total circuit
nodes per shunt circuit, the system matrices are size

Ntot = [(2M + 1)2 + rmsmN](2L + 1). (13)

With this truncation, Eqs. (10) and (11) take the form

R(ω, k)x = 0, (14)

where

R(ω, k) = P (ω, k) −
k∑

i=1

1

di(ω)
Ei(k). (15)

Here, P is an Ntot × Ntot matrix polynomial in ω, di(ω) are
scalar polynomials that depend on the modulation scheme,
and Ei are coefficient matrices that depend only on the wave
number k. The order of the polynomial P and the number
of rational terms k depends on the modulation scheme. Note
that this problem can be challenging to solve numerically in
general (see, e.g., [22]), but many types of circuit modula-
tion yield no rational terms, leaving a polynomial eigenvalue
problem that is significantly easier to solve. For example, the
use of inductive components will always generate rational
terms in Eq. (15), because their current output depends on
a voltage antiderivative. However, the use of fixed inductive
components will yield only trivial rational terms with denom-
inator dn(ω) = ωn, such that they can be multiplied through
and included in the polynomial P (ω, k).

Solving for the eigenfrequencies ω at each value of k in the
irreducible Brillouin zone yields the dispersion curves of the
system. However, the introduction of time modulation gener-
ates additional copies of the dispersion branches at multiples
of the modulation frequency ωm, making it necessary to select
only the physically relevant wave branches for plotting. Here
we adopt the weighting method proposed by Vila et al. [12].
Each calculated (ω , k) point is weighted by its corresponding
zero-order plane-wave amplitude |W000(ω, k)|, which is as-
sumed to be the leading term in the plane-wave expansion. For
each value of k, define the set of eigenvalues as �(k) and the
corresponding eigenvectors as X (k). For each eigenvalue ωi ∈
�(k) and the corresponding eigenvector xi ∈ X (k), define the
zero-order plane-wave component as α(ωi, k). Then, define
the weighting

σ (ωi, k) = |α(ωi, k)|
|αmax(k)| (16)

where

|αmax(k)| = max
ωi∈�(k)

|α(ωi, k)| (17)

is the maximum fundamental wave amplitude over all of the
eigenvectors of the resonant frequencies ω at the specified
Bloch wave vector k. The resulting points [k , ωi , σ (ωi, k)]
are plotted as the dispersion curves, with a threshold on σ to
highlight only the dominant wave modes. This methodology
is numerically validated in a later case study through com-
parison of the predicted dispersion branches and the spectrum
corresponding to time-domain simulation.
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FIG. 3. Open circuit dispersion curve (left) and waterfall plot
(right) of a representative transient response. The excitation center
frequency is shown by the horizontal dashed line in the dispersion
plot. The system does not exhibit a band gap, and so waves propagate
symmetrically.

III. CASE STUDIES

Consider a 5 cm × 5 cm square unit cell with an aluminum
shim and PZT-5H piezoelectric layers, with parameters DE =
149.8 Nm, mp = 17.7 kg/m2, ϑ = −0.047 C. For concrete-
ness, assume that each unit cell has a square electrode,
with dimensions 4.5 cm × 4.5 cm, centered in the unit cell,
corresponding to capacitance Cp = 78 nF. To highlight the
reciprocity breaking phenomenon, only modulation and wave
propagation along the �X direction (i.e., along the x axis)
is considered here. For waves propagating in this direction,
the Bloch wave vector k is given by k = μG̃10 where μ is
a dimensionless normalized wave number. Due to the sign
convention of Eq. (9), positive μ corresponds to waves prop-
agating in the positive �X direction.

For implementation of these spatiotemporal periodic con-
cepts in real systems, it is desirable to use the minimum
required number of unit cells in the supercell without limiting
performance. It has been noted in previous work that using
two unit cells is insufficient to generate nonreciprocal behav-
ior, since each modulated unit cell generates counterpropa-
gating waves [17]. Thus, the results of this section consider
a supercell of rm = 3 and sm = 1 unit cells along the x and
y directions, respectively. Dispersion diagrams are calculated
using Eqs. (10) and (11) by computing the eigenfrequencies
ω at each value of μ. Time-domain results are obtained by
direct integration (ode45 in Matlab) of Eqs. (1) and (2) using
a Fourier discretization in space (periodic boundary condi-
tions) and 904 primitive unit cells, large enough to prevent
reflections at the domain edges. Note that the effect of varying
the number of unit cells per supercell can be quantified using
this framework (analogous to similar studies by the authors
[21,23]), which may be of interest for controlling the scatter-
ing band-gap center frequency.

First, the baseline dispersion curves and transient response
are examined with all of the shunt circuits at open circuit,
with results shown in Fig. 3. The dispersion curves exhibit the
expected reciprocal behavior, i.e., the curves are symmetric
about the μ = 0 axis. The transient simulation results are sum-
marized using a waterfall plot, which shows the velocity time
history v(xi, t ) at various positions xi along the propagation
direction. The waterfall plots show that the input at the center
generates symmetrically propagating waves corresponding to
the μ > 0 and μ < 0 dispersion branches.

FIG. 4. (a) Dispersion curve corresponding to spatial capacitive
modulation shown in (b). The excitation center frequency is shown
by the horizontal dashed line in (a), yielding the waterfall plot in (c).
As shown by the waterfall plot, all wave propagation is prevented
within the band gap.

A. Capacitive spatiotemporal modulation

Capacitive loading results in a change to the piezoelectric
metamaterial’s static stiffness [21], with no frequency de-
pendence. As such, spatial variation of shunt capacitance is
analogous to a static, periodic variation in structure stiffness,
which generates the well-known Bragg band gap [24,25] at
the μ = ±1 points of the dispersion curve. This dispersion
behavior is illustrated in Fig. 4, together with the waterfall plot
showing that waves do not propagate within the band gap.

Next, we consider a single-node shunt circuit with time-
varying capacitance (e.g., a moving-plate parallel plate capac-
itor), with current given by

irs(t ) = Crs(t )
dvrs,0

dt
+ dCrs

dt
vrs,0(t ). (18)

We consider both smooth sinusoidal capacitive modulation

Crs(t ) = C0 + �C cos

(
ωmt − 2πr

rm

)
(19)

and square-wave modulation

Crs(t ) = C0 + �C sgn

[
cos

(
ωmt − 2πr

rm

)]
(20)

representative of switching the shunt capacitance between
two values, C0 + �C and C0 − �C. Dispersion curves and
waterfall plots are shown in Figs. 5 and 6 for sinusoidal
and square modulation, respectively, highlighting the resulting
nonreciprocal behavior.

Figure 5 shows that sinusoidal spatiotemporal modulation
of the shunt capacitance generates two direction-dependent
band gaps, denoted by the red and blue shaded regions in
Fig. 5(a). Note that the bandwidth of each band gap depends
largely on the extent of negative capacitance used in the
modulation, as this determines the extent of the effective
stiffness modulation in the system. The shift in each band
gap is approximately ωm/2, and the band gap in the same
direction as the modulation wave (i.e., the +μ band gap)
shifts upward, in agreement with previously obtained results
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FIG. 5. (a) Dispersion curves for sinusoidal spatiotemporal
modulation of shunt capacitance (b), with C0 = 0, �C = 0.7Cp,
ωm/(2π ) = 50 Hz. (c) Waterfall plot for a center frequency of
ω/ωm = 5.43 [blue horizontal dashed line in (a)], showing propa-
gation in the −μ direction only. (d) Waterfall plot for a center fre-
quency of ω/ωm = 4.43 [red horizontal dashed line in (a)], showing
propagation in the +μ direction only.

for spatiotemporal periodic systems [10]. The bandwidths of
the upper and lower nonreciprocal band gaps are 31.25 and
31.15 Hz, respectively.

Square modulation results in qualitatively similar behav-
ior to sinusoidal modulation, but may be more practical to
implement using switching circuits. The bandwidths of the
upper and lower nonreciprocal band gaps are 46.5 and 46 Hz,
respectively. Note that the band gaps generated by square
modulation (Fig. 6) have greater bandwidth than the equiv-
alent sinusoidal modulation case (Fig. 5), due to the larger
capacitance mismatch between adjacent unit cells.

FIG. 6. (a) Dispersion curves for square-wave spatiotemporal
modulation of shunt capacitance (b), with C0 = 0, �C = 0.7Cp,
and ωm/(2π ) = 50 Hz. (c) Waterfall plot for a center frequency of
ω/ωm = 5.66 [blue horizontal dashed line in (a)], showing propaga-
tion in the −μ direction only. (d) Waterfall plot for a center frequency
of ω/ωm = 4.66 [red horizontal dashed line in (a)], showing propa-
gation in the +μ direction only.

FIG. 7. (a) Schematic of the modulated inductive circuit and
(b) its equivalent representation with a single time-varying resistor.
The switch is periodically opened and closed at the modulation
frequency ωm = 2π/Tm. The wiring resistance R is assumed to be
small and is included to avoid singularities at short circuit.

B. Inductive spatiotemporal modulation

The mathematical framework presented here enables an
analysis of fully general time-varying circuit networks with
multiple nodes. Such systems have the potential to enable
wave reciprocity breaking without using negative capacitance,
which is associated with many practical stability challenges.
To illustrate this point, we consider a circuit with a static
inductance that is periodically connected and disconnected
from the piezoelectric electrodes as shown in Fig. 7.

For convenience, we replace the switch and resistance R
with a single time-varying resistor Rrs(t ), which switches
between the wiring resistance R and open circuit. The current
output from the circuit in Fig. 7(b) is given by[

irs

0

]
= 1

Rrs(t )

[−1 1
−1 1

][
vrs,0

vrs,1

]
+ 1

L

[
0 0
0 1

][
vrs,0

vrs,1

](−1)

,

(21)

where vrs,1 is the voltage across the inductor. For a given
admittance function Yrs(t ) = 1/Rrs(t ), substituting Eq. (21)
into Eqs. (6), (10), and (11) yields a quadratic eigenvalue
problem that can be solved for the dispersion characteristics of
this system. For concreteness, we consider circuit parameters
R = 100 � and L = 2.65 H, corresponding to an undamped
electrical resonant frequency of ωt/(2π ) = 350 Hz while the
switch is closed. To facilitate time-domain numerical inte-
gration, a differentiable approximation to a square switching
function is used, i.e.,

Yrs(t ) = 1

2R
+ 1

πR
tan−1

[
1

δ
cos

(
ωmt − 2πr

rm

)]
, (22)

where δ is a small parameter that determines the sharpness of
the transition from open circuit to the short circuit resistance
R.

With modulation in space only (i.e., ωm = 0), this system
exhibits both a locally resonant band gap near the resonant
frequency ωt and a scattering band gap due to the stiffness
mismatch between shunted and open circuit unit cells. The
dispersion and waterfall plots for the spatially periodic in-
ductive system are shown in Fig. 8 for the case of a single
connected inductor and two disconnected inductors. Waves
are strongly attenuated in both band gaps.
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FIG. 8. (a) Dispersion curves for spatial inductive modulation
using the modulated resistance shown in (b). This system exhibits
both a locally resonant band gap (c) that occurs at ω/ωt = 0.95 and
a scattering band gap (d) at ω/ωt = 0.62. As shown by the waterfall
plots, propagation is prevented in both band gaps.

To break reciprocity in the inductive system, we intro-
duce temporal modulation at a frequency ωm/(2π ) = 30 Hz
with switching parameter δ = 10−6. Additionally, a constant
resistance Rb = 1 M� is placed between the piezoelectric
electrodes and ground and between the two terminals of the
inductor to improve numerical stability. Dispersion predic-
tions and transient simulation results are shown in Fig. 9.

The developed plane-wave expansion technique yields dis-
persion curves that closely match the transient simulation
results, validating the weighting technique described in Sec. II
for plotting a single dispersion curve in the time-modulated
system. Introducing spatiotemporal switching into the induc-
tive system breaks wave reciprocity at the scattering band gap,
shifting the band gaps as with the previously shown cases
of capacitive modulation. The bandwidths of the upper and
lower nonreciprocal band gaps are 28.1 and 29 Hz, respec-
tively. Importantly, this modulation scheme requires only a
fixed inductance and switching circuit. For such systems, the
effective material property description becomes less effective,
as it is unclear how frequency-dependent effective properties
change under time modulation.

FIG. 9. Plane-wave expansion dispersion curves (solid lines)
and transient simulation two-dimensional fast Fourier transform
(heatmap) for switched inductive loading. For the plane-wave expan-
sion method, L = 13 and M = 1 harmonics were used. Nonrecipro-
cal behavior is observed at the scattering band gaps near μ = ±1.
There is excellent agreement between the plane-wave expansion
predictions and the transient simulations.

IV. CONCLUSIONS

We introduce a fully coupled electromechanical framework
to enable nonreciprocal piezoelectric metamaterials. By in-
cluding circuit dynamics directly, the developed model cap-
tures the reciprocity-breaking phenomenon without relying
on the assumption of modulated equivalent material proper-
ties. Specifically, a generalized electromechanical plane-wave
expansion method is presented for analyzing the dispersion
relations of piezoelectric metamaterial plates with time- and
space-modulated shunt circuits. It is shown that the most
general case of spatiotemporal periodic modulation of shunt
circuit parameters yields a rational eigenvalue problem. Case
studies demonstrate that spatiotemporal modulation of capac-
itance can break reciprocity and create unidirectional band
gaps. Importantly, it is demonstrated that switched inductive
loading is sufficient to break wave reciprocity, avoiding the
power consumption and stability issues associated with neg-
ative capacitance. Additionally, the developed framework can
describe modulation schemes with no clear effective material
property representation, as in the case of frequency-dependent
effective properties.
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