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Aspect Ratio-Dependent Dynamics of
Piezoelectric Transducers in Wireless

Acoustic Power Transfer
Ahmed Allam , Karim G. Sabra, and Alper Erturk

Abstract— Acoustic power transfer (APT) for wireless
electronic components has received growing attention as
a viable approach to deliver power to remotely located
small electronic devices. The design of an efficient APT
system requires accurate models to describe its individual
components as well as the interaction between them. Most
of the analytical models available to represent the bulk
piezoelectric transducers used in APT are limited to either
thin rod or thin plate transducers. However, transducers
with moderate aspect ratios are often used, especially at the
receiver end. In this work, in addition to reviewing standard
theories, models based on the Rayleigh and Bishop rod
theories are developed to analyze transducers [transmitter
(TX) or receiver (RX)] with various aspect ratios. Results
from these models are compared with experimental data
and finite-element analysis to determine the range of aspect
ratios in which they are valid. In addition, fluid loading
effects on the predictions of all models are investigated,
and the generated pressure fields by the transducers with
different aspect ratios are compared. The resulting models
are used to analyze the effect of aspect ratio on the perfor-
mance of the transducer when operated as a TX or an RX in
an APT setting.

Index Terms— Acoustics, piezoelectric, transducers,
wireless power transfer.

I. INTRODUCTION

W IRELESS electronic devices in the form of embedded
sensing, communication, and actuation modules

are used in a wide range of engineering applications. These
devices usually require minimal power to operate, but they are
often placed in remote, hazardous, or inaccessible locations.
Their presence in such locations prevents powering via wires
and require other practical means for power delivery. When
sufficient usable energy is present in the ambient environment,
it could be collected and converted to electrical energy using
energy-harvesting devices [1]–[6]. However, if the ambient
energy is limited, external energy can be supplied to these
electronic devices using a wireless power transfer system.
Such a system consists of a transmitter (TX) connected to
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an electric power source/circuit and a receiver (RX) that
is integrated into the electronic device to be powered. TX
converts the source electric power into another form of power
(e.g., electromagnetic or acoustic), which can travel through
the medium. RX then captures this power and converts
it back to usable electric power usually through a signal
conditioning circuit. The nature of the medium through which
power is transferred, the electric load characteristics, and the
separating distance between TX and RX are among the main
factors to be considered when selecting how the power will
be transmitted and, hence, the type of the transducers used as
TX and RX. When the separating distance is small and the
medium is air, electromagnetic transduction in the form of
magnetic coupling is a popular approach to transfer energy
between TX and RX [7]–[9]; however, the energy transfer
efficiency of magnetically coupled transducers is reduced
drastically with increased separation distance compared with
TX and RX dimensions [10]. Moreover, certain applications
impose limitations on the maximum amplitude of the
electromagnetic waves used for power transfer that then limits
the use of this transduction mechanism [11]. On the other
hand, acoustic power transfer (APT) has found applications
in powering biomedical implants [12], transmitting energy
through metallic walls [13]–[15], and powering wireless
sensors along industrial pipelines [16], [17] among others.

In a typical APT system (see Fig. 1), piezoelectric transduc-
ers are the most popular choice to convert electric power into
acoustic waves and then back to electric power at the receiving
end. The height (or thickness) of the transducer (h) dominantly
controls its operating frequency range at which maximum
acoustic-to-electric power conversion (or vice versa) takes
place. A low resonance frequency is preferred for reduced
attenuation of propagating wave energy, but this requires a
thicker transducer. Piezoelectric transducers operating around
1 MHz are usually a few millimeters thick, while those oper-
ating around 100 kHz could be as thick as a few centimeters
for efficient operation. Transducers that generate a focused
ultrasonic beam in an open medium generally need to have
a large radius (a) relative to their thickness making plate-
like transducers a popular choice for ultrasonic TX design.
The relationship between the transducer thickness, radius,
operating frequency, and directionality requires a careful
investigation of the effect of transducer’s aspect ratio on its
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Fig. 1. Schematic of a typical wireless APT system.

performance, as well as its ability to function as a TX or an
RX in wireless power transfer.

Several analytical techniques exist in the literature to model
piezoelectric transducers. Perhaps the most common of them
are Krimholtz, Leedom, and Matthae (KLM) and Mason [18]
type of equivalent circuit models. These equivalent circuit
models are convenient and easily simulated using available
circuit analysis tools [19]; however, their accuracy and applica-
bility depend on the dimensions of the transducer, specifically
its aspect ratio (β = h/a), unless the model parameters are
identified from experiments. When derived from first princi-
ples (rather than being identified from experiments), KLM and
Mason models are best suited for extreme aspect ratios: the
thickness expander plate (thin infinite plate assumption) that
can be only used for very small β or the length expander bar
that can be only used for very large β. These assumptions
are difficult to satisfy when there are size limitations on the
dimensions of the receiver, as for many of the suggested APT
systems, size, and frequency constraints lead to transducers
with moderate aspect ratios [20]–[23]. Analytical models
based on the continuum dynamics of the transducers have also
been investigated [24]–[27]. While these models offer insights
into the factors affecting the power conversion capabilities of
the transducers, their applicability is limited to transducers
with extreme aspect ratios. To overcome these limitations
experimentally, the parameters of both the equivalent circuit
and analytical models are usually fit to the response of the
actual transducers when they cannot be accurately modeled as
a thin bar or a thin plate. This limits the usefulness of such
models when the actual response of the transducer is critical to
the performance of the APT system and prevents optimizing
the system in the design phase.

Recently, we explored several continuum analytical models
to approximate the response of a thickness-mode piezoelectric
transducer, where each model is applicable within a specific
range of aspect ratios [28]. The validity range of these models
was investigated by comparing their numerical predictions to
the values obtained using the finite-element method (FEM)
simulations as well as experimental measurements of the
impedance of thickness-mode PZT transducers. In this work,
the introduced models are derived from basic principles, and
the equations of the derived models are put in S-parameters
(i.e., scattering parameters) matrix form, which can be easily
imported to the abundantly available circuit simulators. This
facilitates integrating their design with the other electrical

components involved in the APT system. The analytical and
numerical methods are then used to analyze the effect of aspect
ratio on the generated pressure field from the transducers when
used as TX and the generated electrical power when used
as RX.

In the following, dynamics of thickness-mode piezoelectric
transducers are studied analytically, and transducer models
based on the thin rod, Rayleigh (also known as Rayleigh-
Love), Bishop (also known as Rayleigh-Bishop), and thin plate
assumptions are derived using energy approaches in Section II.
The impedance of each transducer is measured experimentally
and compared with the analytical predictions and to numerical
simulations in Section III. The effect of transducer’s aspect
ratio on its performance is analyzed when used as a transmitter
in Section IV and as an RX in Section V. A summary of the
findings of the work and concluding remarks are presented in
Section VI.

II. THICKNESS-MODE DYNAMICS OF A PIEZOELECTRIC

TRANSDUCER WITH CIRCULAR CROSS SECTION

A continuum of piezoelectric material is governed by the
piezoelectric constitutive equations that are given in their
stress-charge form by

T = CE S − eT E (1)

D = eS + εS E (2)

where T and S are the mechanical stress and strain vectors,
respectively, E and D are the electric field and electric
displacement vectors, respectively, CE is the stiffness matrix
at constant electric field, εs is the electric permittivity matrix
at constant strain, and e is the piezoelectric coupling matrix.
Structural (mechanical) and dielectric losses are considered in
the form of complex elastic and dielectric constants

CE = CE
undamped(1 − γ i), εS = εS

undamped(1 − δi)

where γ and δ are the structural and dielectric loss factors,
respectively.

A cylindrical piezoelectric transducer with height h and
radius a is considered [see Fig. 2(a)]. The transducer is poled
in the longitudinal (z) direction, and thin metallic electrodes
are deposited on its circular faces. The lateral components
of the electric field and the electric displacement vanish;
therefore, (1) and (2) can be simplified to

T1 = C11S1 + C12S2 + C13S3 − e31 E3 (3)

T2 = C12S1 + C22S2 + C13S3 − e31 E3 (4)

T3 = C13S1 + C13S2 + C33S3 − e33 E3 (5)

T4 = C44S4 (6)

T5 = C44S5 (7)

T6 = C11 − C12

2
S6 (8)

D3 = e31S1 + e31S2 + e33S3 + ε33 E3 (9)

where the index 3 indicates the polarization direction, and
(1,2) indicate the directions normal to the polarization vectors.
Indices (4)–(6) follow the Voigt notation to represent shear
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Fig. 2. (a) Schematic of a piezoelectric rod transducer. (b) Three-port
element representation. (c) Incident and reflected voltage and pressure
waves on the transducer.

stresses and strains. In the cylindrical coordinates (r, θ, z), the
mechanical strain is related to the displacement field by [29]

S1 = dur

dr
, S2 = 1

r

(
duθ

dθ
+ ur

)
, S3 = duz

dz

S4 = 1

r

duz

dθ
+ duθ

dz
, S5 = dur

dz
+ duz

dr

S6 = 1

r

(
dur

dθ
− uθ

)
+ duθ

dr
(10)

where ur , uθ , and uz are the displacements in the r -, θ -, and
z-directions, respectively. The modified Hamilton’s principle
for a piezoelectric volume is given by [30], [31]∫ t2

t1
δ(T − U + We + Wnc)dt = 0 (11)

where T is the total kinetic energy of the rod, U is the
total potential (elastic) energy of the rod, We is the electric
energy stored in the rod, and Wnc is the work due to the non-
conservative forces acting on the rod including the external
mechanical and electrical forces given by

T = 1

2

∫
V

ρ
(
u̇2

r + u̇2
θ + u̇2

z

)
dV (12)

U = 1

2

∫
V

6∑
i=1

Ti si dV (13)

We = 1

2

∫
V

E3 D3dV (14)

Wnc =
∫

S
(tr ur + tθuθ + t zuz − qφ)d A (15)

where ρ is the mass density, V is the volume, S is the external
surface of the transducer, t is the external traction acting on
the surface of the transducer, q is the external surface charge
density, and φ is the electric potential applied to the surface.

The response of the transducer cannot be estimated ana-
lytically unless certain assumptions are made regarding the
displacement fields inside it. These assumptions can be made
when the aspect ratio (β = (h/a)) of the transducer is very

high (thin rod, Rayleigh, and Bishop theories) or very low
(thickness vibration of an infinite plate).

A. Classical Thin Rod Model

For a symmetric thin rod, the lateral stresses and shear
stresses are assumed to be very small, that is

T1 = T2 = T4 = T5 = T6 = 0. (16)

The longitudinal displacement uz is assumed to have the form

uz = u(z, t) (17)

and the electric potential φ(z, t) is related to the electric field
E3 by

E3 = −∂φ

∂z
. (18)

Substituting (16)–(18) into (3)–(9) and (10) yields

T3 = C33u(1,0)(z, t) + e33φ
(1,0)[z, t]

− 2C13(C13u(1,0)(z, t) + e31φ
(1,0)(z, t))

C11 + C12
(19)

D3 = e33u(1,0)(z, t) − ε33φ
(1,0)(z, t)

− 2e31(C13u(1,0)(z, t) + e31φ
(1,0)(z, t))

C11 + C12
(20)

where the superscript (m, n) indicates the mth derivative
with respect to z and the nth derivative with respect to t .
Substituting (16)–(20) in (12)–(15) and neglecting the lateral
inertia terms (u̇r = u̇θ = 0) yield the formula for the
conserved energies inside the rod in terms of the longitudinal
displacement u(z, t) and electric potential φ(z, t)

T = 1

2

∫
V

ρ(u(0,1)(z, t)2)dV (21)

U = 1

2

∫
V

((
C33 − 2C2

13

C11 + C12

)
u(1,0)(z, t)2

+
(

e33− 2C13e31

C11+C12

)
φ(1,0)(z, t)u(1,0)(z, t)

)
dV

(22)

We = 1

2

∫
V

((
ε33 + 2e2

31

C11 + C12

)
φ(1,0)(z, t)2

−
(

e33− 2C13e31

C11+C12

)
u(1,0)(z, t)φ(1,0)(z, t)

)
dV .

(23)

For the rod shown in Fig. 2(a), the nonconservative work is
given by

Wnc = P1(t)u(0, t) + P2(t)u(h, t) − Q(t)φ(h, t) (24)

where Q(t) is the total electric charge flowing into or from
the transducer’s domain. Substituting (21)–(23) back into (11),
taking the variation of the integral with respect to u(z, t)
and φ(z, t), and performing integration by parts yields the
electromechanical governing equations

ρu(0,2)(z, t) − Cu(2,0)(z, t) + eφ(2,0)(z, t) = 0 (25)

eu(2,0)(z, t) − εφ(2,0)(z, t) = 0 (26)
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and the boundary conditions

−A p(Cu(1,0)(z, t) + eφ(1,0)(z, t)) + P1,2(t) = 0|z=0,h (27)

δu(z, t) = 0|z=0,h (28)

A p(eu(1,0)(z, t) − εφ(1,0)(z, t)) − Q(t) = 0|z=0,h (29)

δφ(z, t) = 0|z=0,h (30)

where

C = C33 − 2C2
13

C11 + C12
, e = e33 − 2C13e31

C11 + C12

ε = ε33 + 2e2
31

C11 + C12
(31)

and A p is the cross-sectional area of the transducer. Equa-
tions (27) and (28) are the mechanical natural and essential
boundary conditions, while (29) and (30) are the electrical
natural and essential boundary conditions, respectively. The
solution of (26) is obtained by integration

φ(z, t) = e

ε
u(z, t) + c1z + c2. (32)

The value of c1 could be expressed by substituting (32) in the
electrical natural boundary condition (29)

c1 = Q(t)

A pε
. (33)

The value of c2 is arbitrary since it represents the absolute
electric potential. The potential difference between the elec-
trodes is given by

V (t) = φ(h, t) − φ(0, t)

= h

A pε
Q(t) + e

ε
(u(h, t) − u(0, t)). (34)

Substituting (26) in the first equation of motion [see (25)]
yields the mechanical wave equation

ρu(0,2)(z, t) − C
D

u(2,0)(z, t) = 0 (35)

where C
D = C + (e2/ε) is the reduced stiffness of the bar at

constant charge (open-circuit conditions). Assuming harmonic
plane-wave solution of the form

u(z, t) = Auei(ωt−kz) + Buei(ωt+kz) (36)

where k = (ω/c) is the wavenumber, ω is the angular
frequency of the wave, c = (C

D
/ρ)1/2 is the speed of sound in

the transducer, and Au and Bu are the complex amplitudes of
the forward and backward traveling displacement waves. The
value of Au and Bu can be evaluated from the mechanical
boundary conditions given by (27) or (28).

A more general approach, however, for the estimation of
the response of the transducer is to consider it as a three-port
element and focus on relating the inputs and outputs of these
elements in a generic sense. In this approach, the interface
matching conditions given by (27) and (28) and the electrical
boundary conditions (34) can be used to express a scattering
matrix that relates incident and reflected waves at each port

(both electrical and mechanical waves). The transducer scat-
tering matrix S is given by⎡

⎣B1
B2
Bv

⎤
⎦ = S

⎡
⎣A1

A2
Av

⎤
⎦ =

⎡
⎣S11 S12 S13

S21 S22 S23
S31 S32 S33

⎤
⎦

⎡
⎣A1

A2
Av

⎤
⎦ (37)

where A1, B1, A2, and B2 are the incident and reflected
pressure waves on faces 1 and 2, while Av and Bv are the
incident and reflected voltage waves on the electrodes as
shown in Fig. 2(c).

To evaluate the scattering matrix, the total pressure on
both faces P1(t) and P2(t) as well as the voltage across the
electrodes V (t) are written in the form of incident and reflected
waves, as shown in Fig. 2(c), in the form

P1(z1t) = A1ei(ωt−km z1) + B1ei(ωt+km z1) (38)

P2(z2, t) = A2ei(ωt−km z2) + B2ei(ωt+km z2) (39)

V (t) = (Av + Bv )e
iωt (40)

and the acoustic velocities (v1(z1, t)) and electric current
flowing into the transducer are then given by

v1(z1, t) = 1

Zm
(A1ei(ωt−km z1) − B1ei(ωt+km z1)) (41)

v2(z2, t) = 1

Zm
(A2ei(ωt−km z2) − B2ei(ωt+km z2)) (42)

I (t) = Av − Bv

Ze
eiωt (43)

where km = (ω/cm) is the wavenumber of the external
medium, Zm = ρmcm is the acoustic impedance of the external
medium, ρm and cm are the mass density and speed of sound
in the surrounding medium (surrounding fluid), and Ze is an
arbitrary reference electric impedance. Applying continuity
equations to both the mechanical and electrical interfaces

u(0,1)(0, t) = v1(0, t), u(0,1)(h, t) = −v2(0, t) (44)

I (t) = d Q

dt
(45)

and substituting (38)–(40) in (27), (34), and (44) yields

A p Zeeω(A2 + B2)e
ihk + i(Av − Bv )e

ihke

+i A p Zekω(Au − Bue2ihk)(e2 + C
D
ε) = 0

(Av − Bv )e + −i A p Zeωε(A1 + B1)

+ A p Zekω(Au − Bu)(e2 + C
D
ε) = 0

ε(Av + Bv ) = (A(−1 + e−ihk) + B(−1 + eihk))e

− i(Av − Bv )h

A p Zeω

iωA p Zm(Au + Bu) = A1 − B1

iωA p Zme−ihk (Au + Bue2ihk) = −A2 + B2 (46)

(46) is then arranged into the matrix form

M1
[
B1 B2 Bv Au Bu

]T = M2
[
A1 A2 Av

]
(47)

where M1 and M2 are (5 × 5) and (5 × 3) system matrices.
The scattering matrix is then given by

S = M3M−1
1 M2 (48)
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where

M3 =
⎡
⎣1 0 0 0 0

0 1 0 0 0
0 0 1 0 0

⎤
⎦ . (49)

B. Rayleigh Model

The thin rod assumption neglects the lateral inertia of the
rod that limits its applicability to rods with very large β values
(i.e., very slender rods). The Rayleigh rod theory includes the
effect of lateral inertia by assuming the displacement fields for
an axisymmetric thin rod to have the form [29]

uz = u(z, t), ur = −νru(1,0)(z, t), uθ = 0 (50)

where ν = C13/(C11 + C12) is Poisson’s ratio. This model
can be used for transducers with lower aspect ratios up to the
limit where radial and shear deformations start affecting the
response of the transducer.

As for the thin rod case, the electric potential is assumed
to have the form φ(z, t). Equation (50) can then be used
alongside (32) to express the strain fields inside the rod
by substituting them in (10), which in turn can be used to
express the stresses and electric displacements through (3)–(9).
Substituting everything into the energy equations (12)–(15),
neglecting the shear stresses (T4 and T5), taking the variation
of the integral with respect to u(z, t) and φ(z, t), and perform-
ing integration by parts yields the electromechanical governing
equations

A pρu(0,2)(z, t) = A pCu(2,0)(z, t) + A peφ(2,0)(z, t)

+ Ipν2ρu(2,2)(z, t) (51)

eu(2,0)(z, t) − ε33φ
(2,0)(z, t) = 0 (52)

and the boundary conditions

−A pCu(1,0)(z, t) − A peφ(1,0)(z, t) − Ipν2ρu(1,2)(z, t)

+ P1,2(t) = 0|z=0,h (53)

δu(z, t) = 0|z=0,h (54)

A p(eu(1,0)(z, t) − ε33φ
(1,0)(z, t)) − Q(t) = 0|z=0,h

δφ(z, t) = 0|z=0,h (55)

where Ip is the polar moment of inertia of the rod. The
electrical equation of motion (52) has the same form as the
thin rod case (26), and thus, its solution is also given by (34)
except for replacing the modified electric permittivity (ε) with
(ε33). Substituting back in (51) yields

A pρu(0,2)(z, t) = A pC
D

u(2,0)(z, t)+ Ipν
2ρu(2,2)(z, t). (56)

The solution of (56) can be written in the form

u(z, t) = (Aue−ikz + Bueikz)eiωt (57)

where k is given by

k = ω

√
A pρ

A pC
D − Ipν2ρω2

. (58)

As with the thin rod case, the electrical and mechanical
interface matching conditions can be used to construct the
scattering matrix using (48).

C. Bishop Model

The Bishop rod theory accounts for the coupling between
longitudinal and radial displacements inside the rod through
the shear elastic modulus C44. Following the same energy
approach yields slightly more involved governing equations

A pρu(0,2)(z, t) + C44 Ipγ
2u(4,0)(z, t)

= A pCu(2,0)(z, t)+ A peφ(2,0)(z, t)+ Ipν
2ρu(2,2)(z, t) (59)

eu(2,0)(z, t) − ε33φ
(2,0)(z, t) = 0 (60)

and boundary conditions

−A pCu(1,0)(z, t) − A peφ(1,0)(z, t) + Ipν
2(C44u(3,0)(z, t)

−ρu(1,2)(z, t)) + P1,2(t) = 0|z=0,h (61)

u(2,0)(z, t) = 0|z=0,h, δu(z, t) = 0|z=0,h (62)

δu(1,0)(z, t) = 0|z=0,h (63)

A p(eu(1,0)(z, t) − ε33φ
(1,0)(z, t)) − Q(t) = 0|z=0,h

δφ(z, t) = 0|z=0,h . (64)

Again, the electrical governing equations are the same as those
obtained from the Rayleigh assumption, yielding a simplified
mechanical governing equation in the form

A pρu(0,2)(z, t) + C44 Ipν
2u(4,0)(z, t)

= A pC
D

u(2,0)(z, t) + Ipν
2ρu(2,2)(z, t) .(65)

The solution of (65) can be written in the form

u(z, t) = (
Au1e−ik1 z + Bu1eik1 z + Au2e−ik2 z + Bu2eik2 z)eiωt

(66)

where

k2
1,2 = ρ Ipν2ω2 − A pC

D − A pe2

2C44 Ipν2

±

√
4A pC44 Ipν2ρω2 +

(
A pC

D + Ape2

ε − Ipν2ρω2
)2

2C44 Ipν2 .

(67)

As with the Rayleigh case, the electrical and mechan-
ical interface matching conditions can be used to con-
struct the scattering matrix. The main difference is the
additional two mechanical boundary equations introduced
in (61)–(63).

The interface matching equations could then be arranged in
the matrix form

M1
[
B1 B2 Bv Au1 Bu1 Au2 Bu2

]T=M2
[
A1 A2 Av

]T (68)

where, in this case, M1 and M2 are (7×7) and (7×3) system
matrices. The scattering matrix is then given by

S = M3M−1
1 M2 (69)

and

M3 =
⎡
⎣1 0 0 0 0 0 0

0 1 0 0 0 0 0
0 0 1 0 0 0 0

⎤
⎦ . (70)
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D. Infinite Plate Model

When the lateral dimensions of the transducer are much
larger than its thickness (very low aspect ratio β), the lateral
strains are neglected compared with the strain in the thickness
direction, and only the thickness vibrations of the transducer
are taken into consideration, that is

uz = u(z, t).

Following a similar procedure as the thin rod case and substi-
tuting S3 = (duz/dz) = u(1,0)(z, t) into (5) and (9) yields

T3 = C33u(1,0) (z, t) + e33φ
(1,0)(z, t) (71)

D3 = e33u(1,0) (z, t) − ε33φ
(1,0) (z, t) . (72)

Substituting (71) and (72) in the energy equations (12)–(15)
and then into Hamilton’s principle (11) then taking the vari-
ation of the integral with respect to u(z, t) and φ(z, t) and
performing integration by parts yield the electromechanical
governing equations

ρu(0,2)(z, t) − Cu(2,0)(z, t) + e33φ
(2,0)(z, t) = 0 (73)

e33u(2,0)(z, t) − ε33φ
(2,0)(z, t) = 0 (74)

and boundary conditions

−A p(C33u(1,0)(z, t) + e33φ
(1,0)(z, t)) + P1,2(t) = 0|z=0,h

(75)

δu(z, t) = 0|z=0,h (76)

A p(e33u(1,0)(z, t) − ε33φ
(1,0)(z, t)) − Q(t) = 0|z=0,h (77)

δφ(h, t) = 0|z=0,h (78)

which are very similar to (25)–(30) in the thin rod case with the
only difference being that the system constants (C33,e33, and
ε33) are used instead of the reduced constants (C, e, and ε).
Since the governing equations have the same form as the thin
rod case, the same solution approach could be used to reach
the simplified mechanical governing equation in the form

ρu(0,2)(z, t) − C Du(2,0)(z, t) = 0 (79)

where C D = C33 + (e33/ε33) is the stiffness of the plate at
constant electric displacement (open-circuit conditions).
Assuming the harmonic plane-wave solution in the form

u(z, t) = Auei(ωt−kz) + Buei(ωt+kz) (80)

k = ω

c1

where c1 = (C D/ρ)1/2 is the bulk speed of sound in the plate
and Au and Bu are the complex amplitudes of the forward and
backward traveling displacement waves.

As with the thin rod case, the electrical and mechanical
interface matching conditions can be used to construct the
scattering matrix using (48). It should be noted that the
scattering matrix obtained in this case would be identical to
that expressed by considering both KLM and Mason’s thick-
ness expander-plate equivalent circuits since they are derived
from the same assumptions. These assumptions constrain the
applicability of these models to certain aspect ratios for the
transducer, which is investigated in Section III.

III. RESULTING DYNAMICS AND COMPARISON OF THE

ANALYTICAL MODELS

The accuracy of the analytical model predictions is inves-
tigated through comparisons to FEM simulations and exper-
imental measurements of the impedance of PZT transducers
with different aspect ratios under different loading conditions.

A. Numerical Model

COMSOL Multiphysics [32] was used to construct a 2-D
axisymmetric model for a cylindrical piezoelectric transducer.
A coupled multiphysics model was constructed to model the
behavior of the transducer both in vacuo (air)1 and submerged
in a fluid (water/oil). Piezoelectric elements that include direct
structural-electrostatic coupling were used to discretize the
transducer, and acoustic elements were used for the medium
surrounding the transducer. Both domains were discretized
using a free triangular mesh with ten elements per wavelength
of the generated acoustic waves inside the fluid medium. This
ensures accurate sampling of the waves in all domains, since
the wavelength inside PZT for both shear and longitudinal
waves is larger than the acoustic wavelength in air, water, and
oil. The boundaries of the piezoelectric and acoustic domains
were coupled to model the acoustic-structure interaction.
Furthermore, radiation boundary conditions on the external
boundaries of the medium were enforced to minimize reflec-
tion from the boundaries and simulate an infinite medium.
The voltage of the nodes on each face of the transducer was
coupled together and connected to lumped electrical circuit
elements to model the electrical connections to the transducer
(i.e., a voltage supply when the transducer is used as a TX
and a load resistance when used as a receiver).

B. Experimental Validation

The electrical impedance of two cylindrical piezoelec-
tric transducers, manufactured by Steiner and Martins Inc.,
was measured both in air and in oil using a Solartron SI
1260 impedance analyzer. Since the impedance of air is much
smaller than that of piezoelectric ceramics, measurement in
air represents free boundary conditions on the transducer.
Oil, being an electrically nonconductive fluid, was selected
to avoid adding insulating layers to the transducer, which
might have affected its performance. The dimensions of the
first transducer were 10 mm in diameter and 25 mm in
height (β = 5) to represent a moderately thick rod, while
the second one had a 14 mm in diameter and 12 mm in height
(β = 1.7) representing a cylinder of moderate diameter to
height. Both transducers were made of a modified PZT-5 with
a thin layer of silver electrodes on each circular face. Thin
wires were soldered to the edge of each electrode to connect
the transducers to the signal analyzer. The same wires were
used to suspend the transducers both in air and in oil. The
impedance was recorded at each frequency and averaged
over an integration time of 0.2 s with a linear frequency
spacing of 500 Hz. The mass density and dielectric permittivity

1Note that for these stiff piezoelectric transducers, air (in the experiments)
is a good approximation of in vacuo condition.
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TABLE I
MEASURED/IDENTIFIED MATERIAL PROPERTIES OF MODIFIED PZT-5

Fig. 3. Comparison of the electrical impedance in air for two cylindrical
transducers with aspect ratios. (a) β = 5. (b) β = 1.7. Experimental
results are compared with those estimated numerically using FEM and
analytically using thin rod, Rayleigh, and Bishop rod theories.

of the transducers were measured experimentally, and the
piezoelectric and elastic constants of the transducers material
were identified using a least-squares regression algorithm to fit
the FEM to experimental impedance measured for the β = 1.7
transducer in air. The measured/identified material properties
are summarized in Table I.

C. Electrical Impedance in Air

Fig. 3 shows the magnitude plot of the electrical impedance
in air for both transducers. The results obtained experimentally
are compared with that obtained using the numerical and
the different analytical models. The boundary conditions for
the transducer in air resembles a free–free boundary in the
analytical and FEM models. To obtain the impedance of
the transducer using FEM, a voltage source was connected
between the two electrodes of the transducer, and natural
free boundary conditions were applied to all surfaces of
the transducer. The results of the analytical model were
generated using Qucs open-source circuit simulation package
[33]. A voltage source was connected to the electric port
(port 3) of the scattering matrix [evaluated from (48) and (69)],

Fig. 4. In-air resonance frequency of the first thickness mode of a
PZT transducer (hp = 12 mm) with the variation of the aspect ratio β.
Frequency values are shown in solid lines, and percentage errors relative
to FEM are shown in dashed lines of the same color.

and the short circuit (zero impedance) was connected to the
acoustic ports (ports 1 and 2). To find the impedance for both
cases, the applied voltage was divided by the electric current
flowing to the transducer.

For the β = 5 transducer [see Fig. 3(a)], an excellent
agreement is observed between the experimental results and
FEM, Rayleigh, and Bishop models. The thin rod model for
this aspect ratio predicts 2% higher resonance and antires-
onance frequencies. This indicates that the effects of lateral
inertia cannot be neglected for this aspect ratio or lower.
The predictions of both Rayleigh and Bishop models are
quite similar, with the relatively simplified Rayleigh model
producing slightly more accurate results. This behavior is
expected for relatively thin rods since the Rayleigh model
tends to better approximate the FEM prediction of a con-
tinuous cylinder at low frequencies (around the first mode
of the transducer), while it deviates more quickly for higher
frequencies [29].

For the β = 1.7 transducer [see Fig. 3(b)], only the FEM
model perfectly matches the experimental impedance, while
all the analytical models predict higher values for the first
thickness resonance (95 kHz) of the transducer. While the
thin rod approximation is clearly not appropriate anymore for
this aspect ratio, predictions of the Rayleigh and Bishop only
deviate 3% higher than the FEM value. The analytical models
fail to capture the first radial resonance appearing around
(146 kHz). This is because all the investigated theories are pure
longitudinal theories (with one kinematic variable in the end)
and even though the effects of lateral inertia are accounted
for in Rayleigh and Bishop models, lateral modes are still
not considered in the kinematics of the problem. For this
aspect ratio, the lateral and longitudinal modes appear at close
frequency ranges, such that more complicated coupled modes
start to appear. The accuracy of the analytical predictions
when changing β is investigated in Fig. 4. The resonance
frequency of the first thickness mode is plotted against β while
keeping the transducer height h p = 12 mm constant. As β
approaches one, the effects of lateral inertia start to become
more prominent as evident from the shift in the FEM results.
Since the Rayleigh and Bishop theories include these effects,
they follow the same trend predicted by the FEM up to β < 2,
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where the effects of lateral resonance cause a dramatic increase
in the error of both models compared to FEM.

D. Electrical Impedance in Oil

For most practical applications, thickness-mode transduc-
ers are rarely used in air due to the large impedance mis-
match between PZT and air. In many applications, either
one face of the transducer or the entire transducer is embed-
ded in a solid or liquid domain that would change its
dynamic response. To investigate the validity of the ana-
lytical models in such conditions, the impedances of the
investigated transducers were measured, while the transduc-
ers were submerged in soybean oil (c = 1465 m/s and
ρ = 917 kg/m3) [34]. To capture the effect of fluid loading,
the fluid domain around the transducer was included in the
simulation, and coupled acoustic-structure boundaries were
applied between the structural and acoustic domains.

For the presented analytical models, the presence of the
transducer in a fluid domain is accounted for using the
unbaffled acoustic radiation impedance Zrad present on the two
acoustic ports. The value of this impedance represents the
effect of the fluid on the two circular faces of the transducer.
This is compared with the simpler baffled radiation impedance
case, where the circular face of the transducer is surrounded
by a hard baffle, i.e., the transducer is radiating into only a
half-space.

The radiation impedance appearing on a circular radiator
depends mainly on the relation between the wavenumber
inside the fluid (km) and the radius of the radiator (a). Simple
approximate formulas for the unbaffled radiation impedance
only exist for the cases where kma � 1 and kma � 1.
For the investigated aspect ratios, kma is 1.14 and 2.9 for
β = 5 and β = 1.7, respectively, which does not allow using
such approximations. In this case, the radiation impedance
becomes too complicated to be expressed analytically, since
the pressure field generated by the transducer is not only
dependent on the circular face but is also affected by those
generated from the lateral side as well as the back face of the
transducer. Neglecting the interactions between the back and
lateral sides of the transducer, the radiation impedance can
be estimated from [35]. The resulting formula is complicated,
and usually, normalized plots [36] are used directly instead
of the formula itself.

The effect of fluid loading on the electrical impedance of
both transducers is shown in Fig. 5. For both transducers,
a very good agreement is observed between the experimental
and FEM results. Since lateral fluid loading is neglected,
the analytical models predict higher/sharper resonance values
when the value of β is small enough for lateral stresses to
be substantial but not too small that the lateral surface area
becomes negligible. Generally, for β > 10 or β < 0.1, the
effect of lateral fluid loading is very small and could be
safely ignored.

IV. EFFECT OF ASPECT RATIO ON THE PERFORMANCE

OF A THICKNESS-MODE TRANSMITTER

When the transducer is operating as a transmitter, the main
design objective is to provide directionally focused ultrasonic

Fig. 5. Comparison of electrical impedance in oil for two cylindrical
transducers with aspect ratios. (a) β = 5. (b) β = 1.7. Experimental
results are compared with those estimated numerically and analytically.

waves at the maximum allowed level toward the receiver. Usu-
ally, within practical limitations, the size of the TX is less
constrained than the size of the receiver. Also, the boundary
conditions of the transmitter (sideloading/backing) are often
easier to control than those of the receiver. For resonant
operating transducers, surrounding the back and sides of the
transducer with air seems to be the best approach to maximize
the energy generated at the front face of the TX [20], [37].
For many energy transfer applications such as biomedical
implementations and those involving solid (e.g., metal) walls,
this represents the easiest approach as the TX is usually
naturally surrounded by air. Consequently, the TX is connected
to the medium through one face only, which makes it easy to
create a hard baffle around this face to maximize the energy
transferred toward the receiver and improve the directionality
of the generated acoustic beam. This also facilitates the
analytical modeling of the TX since free boundary conditions
could be assumed on the back and sides of the transducer. The
coupled performance of the transducer is then easily analyzed
analytically by connecting a voltage source to the electrical
port (port 3), assuming one of the acoustic ports (port 1) to
be free (short circuit/zero impedance) and applying the baffled
piston radiation impedance to the other acoustic port (port 2).
The radiation impedance of a baffled piston (Zrad) is readily
available in the literature in the form [38]

Zrad = Zm

(
1 − J1(2kma)

kma
+ j

H1(2kma)

kma

)
(81)

where J1 and H1 are the first-order Bessel and Struve func-
tions. The surface velocity of port 2 represented by the current
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Fig. 6. Effect of aspect ratio on the average normal surface velocity of the transducers. The aspect ratio is varied between (a) β = 10, (b) β = 5,
(c) β = 1, and (d) β = 0.1. Insets: surface plots of the distribution of the surface velocity in the axis direction of the transducer (z-direction). In all
cases, the applied electric field is the same (1 kV/m).

flowing through Zrad could then be used to estimate the
pressure field outside the transducer by solving the Rayleigh
integral [38]

P(r, z) = iωρmUo

2π

∫
d S

e−ikm R

R
d S. (82)

The effect of aspect ratio on the performance of the trans-
ducer could be evaluated using two approaches: the height
of the transducer could be fixed, and hence its resonance
frequency, while its radius is varied to change the aspect
ratio. This means that the volume of the transducer would
change as its aspect ratio changes. Another approach would
be to keep the volume of the transducer fixed and vary the
aspect ratio changing the relative values of both its radius
and its thickness. Since the efficiency of receivers and energy
harvesters is usually characterized by the output power per unit
volume of the material, the second approach will be followed.
A cylindrical transducer with a constant volume of 1 cm3

made of modified PZT-5 is considered. The aspect ratio is
varied from β = 10 (thin rod case) to β = 5 (thick rod) to
β = 1 (comparable height to radius cylinder) to β = 0.1 (thick
plate).

All the analytical models considered in this work assume
that the velocity across the face of the transducer is constant.
In general, this is not perfectly accurate as the longitudinal
velocity of the surface varies with the radius of the transducer.
This behavior is difficult to capture analytically but could
be captured in the FEM simulation. In order to compare
the analytical predictions with the FEM ones, the average
surface velocity of the transducer Uo is compared in both
cases.

Fig. 6 shows the effect of aspect ratio of the transducer
at constant volume on the average surface velocity of its face
when generating ultrasonic waves in water. For all transducers,
the electric field applied to the transducer is kept constant at
1 kV/m (as a convenience), which corresponds to an applied
voltage v ≈ 32, 20, 7, 2 V for aspect ratios β = 10, 5, 1, 0.1,
respectively.

Since the fluid loading of the domain is only applied to the
circular face of the transducer, the analytical models capture
the effect well for thin and moderately thick rods (β = 10, 5),
as shown in Fig. 6(a) and (b). For moderately thick plates (β =
0.1), the infinite plate approximation captures the resonance
of the plate; however, it tends to overestimate the average
surface velocity of the transducer, as shown in Fig. 6(d).
This happens because, for thick plates, the higher order radial
modes affect the first thickness mode, yielding a nonuniform
normal velocity on the surface of the transducer, as shown
in the inset of Fig. 6(d). Keeping the same thickness and
decreasing the aspect ratio further to β = 0.01 [also Fig. 6(d)]
converges toward the thin plate (infinite plate) approximation;
however, this aspect ratio might not be practical, especially for
air backed transducers. For β = 1 [see Fig. 6(c)], both lateral
and longitudinal modes are highly coupled, yielding inaccurate
estimations of the normal surface velocity for both the thin
plate and Bishop approximations. The longitudinal mode is
still dominant in this aspect ratio, as shown in the inset of
Fig. 6(c); however, the radial and longitudinal mode coupling
results in lower overall surface velocity for this aspect ratio
for all the modes.

The near-field pressure plots at resonance calculated using
the FEM for the considered aspect ratios are summarized in
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Fig. 7. Effect of aspect ratio on the near-field sound pressure level
(SPL) generated by the baffled TX estimated using FEM for (a) β = 10,
(b) β = 5, (c) β = 1, and (d) β = 0.1. The color contour inside the
transducer represents the normalized velocity in the axial direction.

Fig. 7. As the pressure directivity is only controlled by the
relationship between the wavelength inside the medium and
the radius of the radiator kma, it comes as no surprise that the
directivity of the transducer improves with reducing β. For
the considered aspect ratios, kma at resonance varies between
kma = 0.6, 1, 3.6, and 95.5. This shows that, although the
average surface velocity for the thin rod case is relatively
higher compared with the other cases, the generated pressure
field is almost spherical, and the generated pressure diverges
in an open medium making it less suitable for this particular
application and perhaps more suitable for applications where
the waves could be guided to the RX end.

V. EFFECT OF ASPECT RATIO ON THE PERFORMANCE

OF A THICKNESS-MODE RECEIVER

We consider the case in which the RX is completely
submerged in an unbounded medium. To focus the analysis
on the performance of the transducer, a uniform incident plane
wave with an amplitude of Pi = 1 kPa is assumed, and only
normal incidence on the circular face of the transducer is
considered. Similar to the TX case, a constant volume of 1 cm3

of modified PZT-5 and the same aspect ratios are considered.
The load resistance connected across the electrodes of the
transducer is varied across a wide range of resistance values to
capture optimum load resistance for maximum power output.
The frequency of excitation for each aspect ratio is varied
around the expected first longitudinal mode of the transmitter.

The RX case presents a challenge for the analytical models
considered here for all aspect ratios. This is because, for rods,
fluid loading and pressure incident from the side face cannot
be neglected, and for plates, higher order radial modes appear
alongside the thickness mode. For the cases where β ≈ 1,
it is even more involved since the pressure field around the
transducer becomes too complicated beyond any analytical
approach to the problem. Exceptions to these issues are the
extreme cases where the transducer is a very thin long rod
(β � 1) or a very large thin plate (β � 1); however, these
cases are of limited practical importance for a single thickness-
mode receiver.

A numerical approach is the best approach to tackle the
RX problem. The FEM model results for the output power
for different aspect ratios are shown in Fig. 8. For each
aspect ratio, the load resistance was varied to ensure that
the peak power output of the RX is captured. It is observed
that as β decreases, the optimum load resistance decreases.
This is because the capacitance and resonance frequency of
the transducer increases with reduced values of β, which
decreases the effective electrical impedance of the transducer.
It should be noted that for β = 1 case, a different trend for
the power output is observed when the resistance is higher
than the optimum value of 1 k
. Multiple thickness and
radial modes are coupled for this aspect ratio, and they are
affected by the electromechanical coupling differently. Modes
that are better coupled to the electrical domain tend to shift
to higher frequencies as the connected resistance increases
causing increased bandwidth, but lower amplitude.

The maximum absolute power output among all the consid-
ered cases was that of the lowest value for β Fig. 8(d), since
the normal area to the incident acoustic intensity is the largest
for this case. One might also consider the ratio of the output
electric power (�o) to the acoustic power incident normal to
the transducer face (�i )

�i = P2
i A p

2ρmcm

where Pi is the pressure amplitude of the incident acoustic
wave. In this case, the performance of the rod transducer [see
Fig. 8(a) and (b)] is found to be better than that of the low
β case [see Fig. 8(d)]. The output power for higher values
of β is, in fact, higher than the incidence acoustic power on
the front face of the transducer. This can be explained by
considering Fig. 9, where the power output of the submerged
transducer is compared with a flushed transducer where the
medium is coupled to the transducer from the front face only.
For the β = 10 case, the output power is much higher in the
submerged case when it is compared with the flushed case.
This indicates that the acoustic power is not only captured
by the front face but also by the lateral and rear faces of the
transducer. In addition, the intensity streamlines (shown in the
insets) indicate that the area of the effective acoustic power
captured by this aspect ratio is larger than just the normal face
area of the transducer. This can be explained by comparing the
lateral dimensions of the transducer to the incident wavelength.
Since kma < 1 for this case, the transducer is effectively a
point receiver, and its directivity is almost spherical, as shown
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Fig. 8. Effect of the aspect ratio on RX power output of RX for (a) β = 10, (b) β = 5, (c) β = 1, and (d) β = 0.1. The transducers are submerged
in water and subjected to incident plane harmonic waves of amplitude (1 kPa) and the power output under different values for the load resistance is
estimated using the FEM. Insets: normalized displacement amplitude of the transducers.

Fig. 9. Output power of the RX at the optimal load when completely submerged inside the fluid medium versus the flushed case where only the
front face of the transducer is coupled to the fluid and the other faces are free. The aspect ratio is varied between (a) β = 10, (b) β = 5, (c) β = 1,
and (d) β = 0.1. Insets: acoustic intensity streamlines for the submerged case. The normalized displacement amplitude of the transducers is also
shown.

in the TX case Fig. 7(a). In comparison, for the β = 0.1 case
[see Fig. 9(a)], the acoustic power from the submerged case is
less than the flushed case. This results from the fact that for
the submerged case, the acoustic power is only incident from
the front face of the transducer and a portion of it is radiated

from the back face as expected when kma � 1. Another
aspect to consider is the strength of the longitudinal mode,
and how well it is excited by the incident acoustic waves.
When considering the maximum absolute power output for
the β = 5 case, we find that it is smaller than the β = 10
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case even though it has higher normal area intercepting the
incident acoustic waves. This is because the longitudinal mode
for higher β values is less coupled to the lateral motion and,
thus, the incident acoustic waves are converted more efficiently
into longitudinal motion and hence generates more electric
power. It also explains the degraded peak power output of the
β = 1 case where the longitudinal and lateral motions are
strongly coupled, and no dominant mode is observed. As a
result, peak power output is smaller compared with all the
other cases.

VI. CONCLUSION

Several continuum analytical models for estimating the
thickness-mode dynamics of a piezoelectric transducer with
a cylindrical shape have been investigated with a focus on
the effect of aspect ratio. When the radius of the transducer
is very small (i.e., β > 10), the thin rod analytical model
can be used to predict the surface velocity of the transducer
around its resonance frequency. The Rayleigh and Bishop rod
models can be used to predict the surface velocity of rod
transducers with (β > 3) around their resonance frequency,
given that the lateral sides of the transducer are not fluid
loaded. When the diameter of the transducer is comparable to
its length (β ≈ 2), the longitudinal and lateral motion/modes
are strongly coupled, and they become difficult to model
analytically. Only when the radius of the transducer is very
large compared with its thickness (β < 0.1), the thin plate
thickness vibration continuum model can be used to describe
the behavior of the transducer. All these analytical models
cannot predict the effect of fluid loading on the lateral sides
of the transducer, which only becomes significant when the
diameter of the transducer is comparable to its length. The
analytical models are also not accurate for modeling the fluid
loaded transducer except for cases with extreme aspect ratios
when (β � 1 or β � 1).

For RX applications of the transducers, the electric power
generated by a rod-like RX (β = 10) was higher than
the acoustic power incident on its front face. The effective
receiving area of the transducer was higher than the normal
area to the incident acoustic wave. This indicates that arrays of
rod-like transducers might be more efficient than a plate-like
RX of the same size. Also, since the directivity of the rod-like
RX is almost spherical, it would be less sensitive to variations
in the angle of incidence of the acoustic beam (e.g., due to
the misalignment of the transmitted beam with respect to the
RX axis), making it a more effective omnidirectional receiver.
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