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a b s t r a c t 

We present an analytical modeling framework and its analysis for thin piezoelectric metamaterial plates 

to enable and predict low-frequency bandgap formation in finite structural configurations with specified 

boundary conditions. Using Hamilton’s extended principle and the assumptions of classical (Kirchhoff) 

plate theory, the governing equations and boundary conditions for the fully coupled two-dimensional 

electromechanical system are obtained. The two surfaces of the piezoelectric bimorph are segmented into 

non-overlapping opposing pairs of electrodes of arbitrary shape, and each pair of electrodes is shunted to 

an external circuit. This formulation can be used to study the effect of electrode shape on plate response 

for topology optimization and other vibration control applications. Using modal analysis, we show that 

for a sufficient number of electrodes distributed across the surface of the plate, the effective dynamic 

stiffness of the plate is determined by the shunt circuit admittance applied to each pair of electrodes 

and the system-level electromechanical coupling. This enables the creation of locally resonant bandgaps 

and broadband attenuation, among other effects, in analogy with our previous work for one-dimensional 

piezoelectric structures with synthetic impedance shunt circuits. It is also demonstrated that piezoelec- 

tric bimorph plates display significantly improved performance (i.e. electromechanical coupling) over bi- 

morph beams, but require additional electrode segmentation to achieve metamaterial-type performance. 

The governing equations are also used for dispersion analysis using the plane wave expansion method, 

enabling the analytical dispersion analysis of unit cells with arbitrary electrode shapes. The modeling 

framework and approximate closed-form bandgap expressions are numerically validated using finite ele- 

ment analysis. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Piezoelectric materials have been used for a wide range of

tructural engineering applications, ranging from vibration control

 Bailey and Hubbard, 1985; Hagood and von Flotow, 1991; For-

ard, 1979; Dosch et al., 1992; Arafa and Baz, 20 0 0 ) to energy

arvesting ( Erturk and Inman, 2009 ). Using the piezoelectric ef-

ect, vibration can be dissipated with external circuitry, removing

he need for bulky actuators or mass-based solutions. This con-

ept of piezoelectric shunt damping has a rich history of research,

overing topics from the use of negative capacitance shunt cir-

uits ( Tang and Wang, 2001; Park and Baz, 2005; De Marneffe

nd Preumont, 2008 ), to more general multi-mode damping cir-

uits ( Fleming et al., 2002; Niederberger et al., 2004 ) or distributed
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E-mail address: alper.erturk@me.gatech.edu (A. Erturk). 

a  

a  

m  

ttps://doi.org/10.1016/j.ijsolstr.2019.08.011 
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etworks ( Moheimani et al., 20 04; Fleming and Moheimani, 20 04;

reumont et al., 2008; Yu and Wang, 2009 ). More recently, these

hunt damping concepts have been extended to elastic metamate-

ials ( Casadei et al., 2010; Chen et al., 2014; Sugino et al., 2017;

hen et al., 2017; Li et al., 2018; Sugino et al., 2018 ), yielding rich

ynamical behavior with attractive vibration attenuation proper-

ies, such as the formation of low-frequency vibrational bandgaps.

y changing the shunt circuitry used with the metamaterial, the

ffective dynamic stiffness of the structure can be changed, giv-

ng unprecedented control over its dynamic performance. In our

revious work, we derived the governing equations for a finite

iezoelectric bimorph beam with segmented electrodes, deriving

he effective stiffness of the bimorph beam, as well as the edge

requencies of the locally resonant bandgap. Such one-dimensional

tructures may not be viable for many structural applications,

nd so the goal of this work is to extend that one-dimensional

nalysis to a two-dimensional electromechanical metastructure (i.e

etamaterial-based finite structure with specified boundary condi-

https://doi.org/10.1016/j.ijsolstr.2019.08.011
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a

tions) consisting of a piezoelectric bimorph plate with segmented

electrodes. 

Piezoelectric plate vibration has been studied extensively in

the literature ( Mindlin, 1972; Lee, 1990; Dimitriadis et al., 1991;

Mitchell and Reddy, 1995; Heyliger and Saravanos, 1995; Saravanos

et al., 1997; He et al., 2001; Zhong and Shang, 2003; De Mar-

qui et al., 2009; Tiersten, 2013 ). However, relatively little atten-

tion given to simplified models for thin bimorph plates, despite

their applicability to a wide range of engineering systems. Anal-

ogous simplified theories for piezoelectric bimorph beams have

been used extensively for studying vibrational energy harvesting

( Erturk and Inman, 2009 ). Extensions to thin bimorph plates have

generally considered a specific form of electrode segmentation,

such as rectangular electrodes ( Kim et al., 2005; Qiu et al., 2007;

Aridogan et al., 2014 ), or specific plate geometries ( Wang et al.,

2001 ), but there is still need for more general models. For sys-

tems with a large number of segmented electrodes such as elec-

tromechanical metamaterial systems, irregular segmentation pat-

terns may be significantly more practical, potentially enabling elec-

trode lead access from the plate edges. Additionally, although some

work has studied the unit-cell based analysis of infinite piezoelec-

tric metamaterial plates ( Sheng-Bing et al., 2013; Chen et al., 2014;

Zhang et al., 2015 ), the effects of the finiteness of the structure and

boundary conditions have not been directly accounted for. Here

we present a theoretical framework applicable to piezoelectric bi-

morph plates with general segmentation into multiple electrodes

of arbitrary shape, enabling the modal analysis of these structures

as well as optimization of the electrode placement and shape. Us-

ing modal analysis, we demonstrate that the piezoelectric bimorph

plate acts as an electromechanical metastructure for a sufficient

number of electrodes placed across the surface of the plate. Fur-

thermore, the effective electromechanical coupling of the plate is

derived in terms of geometrical and material properties, and the

effective dynamic stiffness of the plate is obtained. Numerical stud-

ies are performed to demonstrate the vibration attenuation perfor-

mance of locally resonant electromechanical metamaterial plates,

and the effect of the number and placement of electrodes is ex-

plored. Using the developed equations, unit-cell based dispersion

analysis is performed using the plane wave expansion method. To

validate the results, finite element simulations were performed in

COMSOL Multiphysics for a thin locally resonant bimorph plate and

compared with the developed theory. 

2. Piezoelectric bimorph locally resonant metamaterial plate 

Consider a thin piezoelectric bimorph plate made from two

continuous and symmetrically located piezoelectric layers sand-

wiching a central isotropic layer (i.e. shim). The piezoelectric lay-

ers are poled in the same direction through the thickness for par-

allel operation under transverse vibrations, and the central shim

is assumed to be an ideal conductor. The shim has thickness h s ,

Young’s modulus E s , Poisson’s ratio νs , and density ρs . For sim-

plicity, only the case of transversely isotropic piezoelectric ma-

terials (e.g., piezoceramics) will be considered here. Orthotropic

piezoelectric materials can be considered under a similar model-

ing framework using Hamilton’s principle. The piezoelectric layers

are assumed to have the same material properties, with identi-

cal thickness h p and density ρp , and constitutive law given as de-

scribed in Appendix A , with effective stiffness coefficients at con-

stant electric field c̄ E 
11 

, c̄ E 
12 

, c̄ E 
66 

, piezoelectric coupling ē 31 , and per-

mittivity at constant strain ε̄ S 
33 

, given respectively as 

c̄ E 11 = 

s E 11 (
s E 

11 
+ s E 

12 

)(
s E 

11 
− s E 

12 

) (1)
¯
 

E 
12 = 

−s E 12 (
s E 

11 
+ s E 

12 

)(
s E 

11 
− s E 

12 

) (2)

¯
 

E 
66 = 

1 

s E 
66 

= 

1 

2 

(
c̄ E 11 − c̄ E 12 

)
(3)

¯
 31 = 

d 31 

s E 
11 

+ s E 
12 

(4)

¯ S 33 = ε T 33 −
2 d 2 31 

s E 
11 

+ s E 
12 

(5)

here the overbars indicate properties obtained from the full con-

titutive equations under the assumptions of plane stress and volt-

ge applied through the thickness. A representative schematic of

he plate is shown in Fig. 1 . 

.1. Governing equations 

Under the assumptions of Kirchhoff-Love plate theory and using

amilton’s principle (see Appendix B for the full derivation), the

overning equations for transverse vibrations can be obtained as 

 

E ∇ 

4 w ( P , t) + m p 
∂ 2 w ( P , t) 

∂t 2 
− ϑ∇ 

2 v ( P , t) = f ( P , t) , P ∈ D (6)

ˆ 
 p 
∂ v ( P , t) 

∂t 
+ ϑ 

∂ 

∂t 
∇ 

2 w ( P , t) = J( P , t) , P ∈ D (7)

here w ( P , t) is the transverse displacement at a point P in the

wo-dimensional domain D at time t , v ( P , t) is the voltage between

he surface of the piezoelectric layers and the central shim, D 

E is

he effective flexural rigidity of the plate at constant electric field

i.e. short circuit), m p is the mass per area of the plate, ϑ is the cou-

ling parameter in physical coordinates, and 

ˆ C p is the piezoelectric

apacitance per area, given respectively as 

 

E = D s + D p (8)

 p = ρs h s + 2 ρp h p (9)

 = ē 31 (h s + h p ) (10)

ˆ 
 p = 

2 ̄ε S 33 

h p 
(11)

here D s and D p are the flexural rigidity contributions from the

tructural layer and piezoelectric layers respectively, given by 

 s = 

E s h 

3 
s 

12 

(
1 − ν2 

s 

) , D p = c̄ E 11 

(
1 

6 

h p 

(
4 h 

2 
p + 6 h p h s + 3 h 

2 
s 

))
(12)

urthermore, f ( P , t ) is the external loading applied to the plate,

nd J ( P , t ) is the external current density field flowing out of the

xternal surfaces of the piezoelectric layers and into the central

him. Eqs. (6) and (7) apply for points P within a two-dimensional

omain D , which has a continuous one-dimensional boundary ∂D .

ote that no assumptions have been made regarding the voltage

eld v ( P , t) , which is allowed to vary freely in the domain D . The

oupling through the Laplacian operator in Eq. (6) can be inter-

reted as the in-plane force resulting from voltage applied to the

iezoelectric layers operating in the 3-1 mode. 

The use of Hamilton’s principle immediately yields the bound-

ry conditions for the fully coupled problem as 
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Fig. 1. Schematic of the bimorph plate showing a cross section and single electrode. Note that the plate geometry, coordinate system, and electrode shapes are all arbitrary, 

and are only shown here for illustration. 
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ither w = 0 or 
∂ 

∂s 
M ns − D 

E ∂ 

∂n 

∇ 

2 w + ϑ 

∂v 
∂n 

= 0 on ∂D 

(13a) 

nd 

ither 
∂w 

∂n 

= 0 or M n + ϑv = 0 on ∂D (13b)

here 

 n = −D 

E ∇ 

2 w + D 

E (1 − ν) 

(
∂ 2 w 

∂s 2 
+ 

1 

R 

∂w 

∂n 

)
(14)

 ns = −D 

E (1 − ν) 
∂ 2 w 

∂ n∂ s 
(15)

here n and s denote the normal and tangential directions to the

oundary, R is the local radius of curvature on the boundary, and

is a term analogous to the Poisson’s ratio of the bimorph, given

y 

= 

D s νs + D p νp 

D 

E 
(16) 

here 

p = 

c̄ E 12 

c̄ E 
11 

= − s E 12 

s E 
11 

(17) 

s the effective Poisson’s ratio of the transversely isotropic piezo-

lectric layers. The Laplacian operator in normal and tangential co-

rdinates is given by 

 

2 = 

∂ 2 

∂n 

2 
+ 

1 

R 

∂ 

∂n 

+ 

∂ 2 

∂s 2 
(18) 

Additionally, the “corner condition” encountered in plate

oundary value problems must be satisfied, i.e. 

 ns δw 

∣∣
∂D 

= 0 (19) 

ither explicitly or implicitly. Note that both natural boundary con-

itions are altered by the coupling between the displacement and
oltage fields. In principle these equations can be used to solve

or the exact solutions to the fully coupled boundary value prob-

em formed by Eqs. (6) and (7) , along with the boundary condi-

ions Eqs. (13a) and (13b) . However, note that when both surfaces

f the bimorph are short circuited to the central shim, v ( P , t) = 0 ,

q. (6) simplifies to the classical plate vibration equation, and both

qs. (13a) and (13b) immediately simplify to typical plate bound-

ry conditions Meirovitch (1997) . In the following, it is assumed

hat the resulting short-circuit boundary value problem has been

olved for the short-circuit mode shapes φr ( P ) and natural fre-

uencies ω r , and that the mode shapes are normalized to satisfy

he orthogonality conditions 

D 

m p φr ( P ) φs ( P ) dD = δrs , r, s = 1 , 2 , . . . (20) 

D 

D 

E φr ( P ) ∇ 

4 φs ( P ) dD = ω 

2 
r δrs , r, s = 1 , 2 , . . . (21) 

hese solutions are readily available in the literature for a wide

ariety of boundary conditions and plate geometries, but the fol-

owing analysis is fully general and does not rely on closed-form

xpressions for the mode shapes or natural frequencies. 

.2. Short and open circuit conditions 

Both short circuit and open circuit conditions are easily inves-

igated from the form of the governing equations in Eqs. (6) and

7) . Short circuit corresponds to the case v ( P , t) = 0 , such that

q. (6) becomes 

 

E ∇ 

4 w ( P , t) + m p 
∂ 2 w ( P , t) 

∂t 2 
= f ( P , t) , P ∈ D (22)

hich is the typical field equation for a uniform plate in bend-

ng (see e.g. Meirovitch (1997) ). In the case of open circuit, no ad-

itional external current can flow through the piezoelectric mate-

ial, and so J( P , t) = 0 . In this case, Eq. (7) can be substituted into
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Eq. (6) to obtain 

D 

E (1 + α) ∇ 

4 w ( P , t) + m p 
∂ 2 w ( P , t) 

∂t 2 
= f ( P , t) , P ∈ D (23)

which again is the typical field equation for a uniform plate in

bending, where 

α = 

ϑ 

2 

D 

E ˆ C p 
(24)

is a dimensionless term that gives the system-level electrome-

chanical coupling, which relates the short-circuit (constant electric

field) flexural rigidity D 

E to the open-circuit (constant electric dis-

placement) flexural rigidity D 

D , given by 

D 

D = D 

E (1 + α) (25)

Note that the open-circuit voltage field v D ( P , t) can be recovered

from the open-circuit displacement field as 

v D ( P , t) = − ϑ 

ˆ C p 
∇ 

2 w ( P , t) (26)

Importantly, this scenario is distinct from the commonly encoun-

tered case of surface electrodes being left at open circuit, since the

voltage varies continuously across the surface of the plate. Addi-

tionally, it should be noted that, although the governing equation

for open circuit ( Eq. (23) ) is identical to the governing equation for

the classical plate boundary value problem, the boundary condi-

tions are altered by the voltage coupling to the structure. Namely,

substituting Eq. (26) into Eqs. (13a) and (13b) yields 

either w = 0 or 

−D 

E (1 − ν) 
∂ 3 w 

∂ n∂ 2 s 
− D 

D ∂ 

∂n 

∇ 

2 w = 0 on ∂D (27a)

and 

either 
∂w 

∂n 

= 0 or 

−D 

D ∇ 

2 w + D 

E (1 − ν) 

(
∂ 2 w 

∂s 2 
+ 

1 

R 

∂w 

∂n 

)
= 0 on ∂D 

(27b)

Thus, it is insufficient to simply replace the short circuit flexural

rigidity D 

E with the open circuit flexural rigidity D 

D in the bound-

ary conditions of the plate. This may or may not change the actual

boundary conditions, depending on the plate geometry and type of

boundary being considered. Clearly, systems with purely geomet-

ric boundary conditions would be unaffected, but certain natural

boundary conditions are unchanged as well. For example, a simply

supported edge of a rectangular plate at open circuit would still

yield boundary conditions 

w = 0 , 
∂ 2 w 

∂n 

2 
= 0 

which are identical to the typical simply supported boundary con-

ditions. However, this will not generally be the case, and the

change in boundary conditions may affect the perceived coupling

factor, typically measured via the change in resonant frequencies

from short to open circuit. 

2.3. Governing equations for segmented electrodes 

Control authority over the plate response comes via the exter-

nal current density J ( P , t ). In a real structure, this current can-

not be varied continuously in space over the domain D , and so

it becomes necessary to segment the surfaces of the piezoelec-

tric bimorph into pairs of opposing electrodes. Each elctrode is as-

sumed to have a constant voltage over its surface and a uniform
i.e. lumped) current density. Thus, we assume a voltage field of

he form 

 ( P , t) = 

S ∑ 

j=1 

v j (t) d j ( P ) (28)

here v j (t) is the voltage between the j th electrode pair and the

entral shim, 

 j ( P ) = 

{
1 , P ∈ D j 

0 , otherwise 
(29)

s a step-type function identifying the region of the j th electrode,

 j ⊆D is the subdomain corresponding to the j th electrode, and S

s the total number of electrodes. Due to the assumption of par-

llel wire operation, each electrode in a pair of opposing elec-

rodes has the same voltage level referenced to the central shim.

q. (28) requires both surfaces of the piezoelectric material to be

hort-circuited wherever there are no electrodes, resulting in volt-

ge discontinuities at the boundary of each electrode. As such,

q. (28) is an approximation, but it provides significant simplifi-

ations in the following analysis. Higher order models could ac-

ount for larger open-circuit regions or smooth voltage transitions

etween electrodes, but this is beyond the scope of this work. Ad-

itionally, the accuracy of the approximation in Eq. (28) will be

valuated through comparison with finite element results. 

Substituting Eq. (28) into Eq. (7) and integrating over the j th

lectrode D j yields 

 p, j ̇ v j (t) + Y j 

[
v j (t) 

]
+ ϑ 

∂ 

∂t 

ˆ
D j 

∇ 

2 w ( P , t) dD = 0 , j = 1 . . . S 

(30)

here C p , j is the effective capacitance of the j th electrode pair,

iven by 

 p, j = 

ˆ C p �D j = 

ˆ
D j 

ˆ C p dD (31)

here �D j is the area of the j th electrodes, and it has been as-

umed that 

D j 

J( P , t) dD = −Y j 

[
v j (t) 

]
(32)

.e. that the external current into the j th electrode is due to a

umped admittance Y j acting on the voltage of the electrode v j (t) .

To discretize the transverse displacement field, we assume a

odal expansion of the form 

 ( P , t) = 

N ∑ 

r=1 

φr ( P ) ηr (t) (33)

here φr ( P ) are the mass-normalized (see Eqs. (20) and (21) )

hort-circuit mode shapes, ηr ( t ) are the modal coordinates to be

etermined, and N is the total number of modes used in the ex-

ansion. Substituting Eqs. (28) and (33) into Eq. (6) , multiplying

y some mode shape φr ( P ) and integrating over the entire domain

 gives 

¨ r (t) + ω 

2 
r ηr (t) − ϑ 

S ∑ 

j=1 

v j (t) 

ˆ
D 

φr ( P ) ∇ 

2 d j ( P ) dD = q r (t) (34)

here 

 r (t) = 

ˆ
D 

f ( P , t) φr ( P ) dD (35)

s the r th modal excitation. Substituting Eq. (33) into Eq. (30) gives

 p, j ̇ v j (t) + Y j 

[
v j (t) 

]
+ ϑ 

N ∑ 

r=1 

˙ ηr (t)
r, j = 0 (36)
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here 

r, j = 

ˆ
D 

d j ( P ) ∇ 

2 φr ( P ) dD = 

ˆ
D j 

∇ 

2 φr ( P ) dD (37)

s the coupling between the r th mode shape and the j th voltage.

o obtain symmetric coupling between the two equations, we use

he identity 

r ∇ 

2 d j = ∇ ·
(
φr ∇ d j − d j ∇ φr 

)
+ d j ∇ 

2 φr (38)

uch that the integral in Eq. (34) becomes 

D 

φr ( P ) ∇ 

2 d j ( P ) dD = 
r, j + 

‰
∂D 

(
φr ( P ) ∇d j ( P ) − d j ( P ) ∇φr ( P ) 

)
· n dS 

(39) 

where the divergence theorem has been used to obtain the

oundary integral, whose path is oriented to be aligned with the

ransverse axis by the right hand rule. This boundary integral will

anish under the condition that either (1) purely geometric bound-

ry conditions apply or (2) the voltage vanishes at the boundaries

i.e. that no electrodes are placed on the boundary). Otherwise,

ny nonzero voltage on the boundary exerts a moment or effec-

ive shear that will affect the boundary conditions of the plate.

ere, we assume the voltage and its normal derivative go to zero

t the boundary, or that electrodes are not placed directly on the

oundary of the plate. Boundary-adjacent electrodes may be han-

led more thoroughly by accounting for them in the original mode

hapes used as basis functions, in which case the symmetric form

f the orthogonality integral Eq. (21) must be altered to include

he boundary electrodes. 

Assuming that the boundary integral vanishes, the discretized

overning equations can be summarized as 

¨ r (t) + ω 

2 
r ηr (t) − ϑ 

S ∑ 

j=1 

v j (t )
r, j = q r (t ) , r = 1 . . . N (40) 

 p, j ̇ v j (t) + Y j 

[
v j (t) 

]
+ ϑ 

N ∑ 

r=1 

˙ ηr (t)
r, j = 0 , j = 1 . . . S (41) 

or a specified set of shunt admittances Y j and electrode shapes

 j , Eqs. (40) and (41) can be solved using typical ordinary differen-

ial equation techniques. Note that the coupling between the two

quations takes the form of an integral that depends on the elec-

rode shapes D j which must be computed to solve the fully cou-

led problem. For electrodes with smoothly parameterized bound-

ries (e.g., circular electrodes), it may be simpler to use the alter-

ate form 

r, j = 

ˆ
D j 

∇ 

2 φr ( P ) dD = 

‰
∂D j 

∇φr ( P ) · n ds (42)

which can be computed numerically as integration over a single

ariable. 

Taking the Laplace transform of Eqs. (40) and (41) and substi-

uting Eq. (41) into (40) yields 

(s 2 + ω 

2 
r ) H r (s ) + 

αs 

s + h (s ) 

N ∑ 

k =1 

H k (s ) 
S ∑ 

j=1 

D 

E 

�D j 


k, j 
r, j = Q r (s ) (43)

here 

 (s ) = 

Y j (s ) 

C p, j 

(44) 

s a normalized version of the shunt circuit admittance, assumed to

e identical for every pair of electrodes, Y j ( s ) is the Laplace trans-

orm of Y j (i.e. the shunt admittance in the Laplace domain), and

is the dimensionless electromechanical coupling term given by
q. (24) . Since the mode shapes are continuous, application of the

ean value theorem yields 


r, j 

�D j 

= 

1 

�D j 

ˆ
D j 

∇ 

2 φr ( P ) dD = ∇ 

2 φr ( P r, j ) , P r, j ∈ D j (45)

here the point P r , j depends on the mode and electrode being

onsidered and may not be unique. Note that in practice it is much

impler to calculate the left hand side of this equation, rather than

nd the specific point P r , j . Thus, 

(
s 2 + ω 

2 
r 

)
H r (s ) + 

αs 

s + h (s ) 

N ∑ 

k =1 

H k (s ) 
S ∑ 

j=1 

D 

E ∇ 

2 φr ( P r, j ) 

∇ 

2 φk ( P k, j )�D j = Q r (s ) (46) 

q. (46) is a system of N linear equations that can be solved nu-

erically for the modal response for a given excitation. However,

ote that in the limit as the number of electrodes approaches in-

nity, the points P r , j and P k , j collapse to the same point, and 

lim 

→∞ 

S ∑ 

j=1 

D 

E ∇ 

2 φr ( P r, j ) ∇ 

2 φk ( P k, j )�D j = 

ˆ
D 

D 

E ∇ 

2 φr ( P ) ∇ 

2 φk ( P ) dD = ω 

2 
r δrk

(47) 

.e., the summation forms a Riemann sum of the symmetric form

f the orthogonality integral in Eq. (21) , and hence the system

f equations decouples. In this case, the modal response can be

olved for in closed form 

H r (s ) 

Q r (s ) 
= 

1 

s 2 + ω 

2 
r 

(
1 + 

αs 

s + h (s ) 

) (48) 

hich is identical to the expression obtained for piezoelectric bi-

orph beams in Sugino et al. (2017) , although both α and h ( s )

ave slightly different forms. Since Eq. (48) holds for every mode

f the structure, it is clear that the effective dynamic stiffness of

he structure is given by 

D̄ (s ) 

D 

E 
= 1 + 

αs 

s + h (s ) 
(49) 

here D̄ (s ) is the effective dynamic flexural rigidity of the metas-

ructure. Note that at open circuit, h (s ) = 0 , and we recover D̄ (s ) =
 

D = D 

E (1 + α) . For real systems with a finite number of elec-

rodes, it is necessary to check that the approximation 

S 
 

j=1 

D 

E ∇ 

2 φr ( P r, j ) ∇ 

2 φk ( P k, j )�D j ≈
ˆ

D 

D 

E ∇ 

2 φr ( P ) ∇ 

2 φk ( P ) dD 

(50) 

s satisfied in the frequency range of interest. 

.4. Electromechanical coupling 

The system-level electromechanical coupling α is vital for un-

erstanding the performance of piezoelectric bimorph plates, as it

etermines the passively realizable variation of the effective stiff-

ess of the structure. Expanding Eq. (24) , the electromechanical

oupling can be written in terms of dimensionless quantities as 

= (k p ) 2 
(

6 ̂

 h ( ̂ h + 1) 2 

γ + 2 ̂

 h (4 ̂

 h 

2 + 6 ̂

 h + 3) 

)
(51) 

here 

= 

E 

c̄ E (1 − ν2 
s ) 

, ˆ h = 

h p 

h s 
, (k p ) 2 = 

ē 2 31 

ε̄ S c̄ E 
(52)
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Table 1 

Geometric and material properties for the plate considered in Section 2.6 . 

The plate is rectangular with dimensions a × b , an aluminum central shim, 

and PZT-5H as the piezoelectric material. 

Parameter Value Parameter Value 

h s 1 mm h p 1mm 

ρs 2700 kg/m 

3 ρp 7500 kg/m 

3 

E 68.9 GPa c̄ E 11 66.2 GPa 

νs 0.33 νp 0.29 

a 80 cm ε̄ S 33 17.29 nF/m 

b 70 cm ē 31 -23.38 C/m 
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s  
are dimensionless terms giving the stiffness ratio, thickness ratio,

and the piezoelectric planar radial electromechanical coupling co-

efficient respectively. Note that the planar radial electromechanical

coupling coefficient can be related to other commonly encountered

electromechanical coupling coefficients as 

(k p ) 2 = 

k 2 p (1 + νp ) 

2(1 − k 2 p ) 
= 

k 2 31 (1 + νp ) 

1 − νp − 2 k 2 
31 

(53)

where k 2 p is the planar electromechanical coupling coefficient, and

k 2 31 is the extensional mode coupling factor. The system-level cou-

pling α can be maximized at a given value of γ by satisfying 

γ = 

4 ̂

 h 

3 

1 + 3 ̂

 h 

(54)

although more typically Eq. (54) is solved for the optimal ˆ h for a

certain value of γ , since γ is determined solely by the material

properties of the central shim and piezoelectric layers. The corre-

sponding maximum value of α for a given thickness ratio ˆ h is 

αopt ( ̂ h ) = (k p ) 2 
(

( ̂ h + 1)(3 ̂

 h + 1) 

(2 ̂

 h + 1) 2 

)
(55)

such that the maximum value of α across its entire parameter

space is 

αmax = (k p ) 2 (56)

These material properties are readily available for piezoceramics

(e.g., PZT-5A or PZT-5H), making it straightforward to evaluate α
for any particular plate design. Interestingly, the plate model pre-

dicts a much larger value of α than the beam model developed in

Sugino et al. (2017) , which predicted a maximum value of 

αmax,beam 

= 

k 2 31 

1 − k 2 
31 

= 

αmax (1 − νp ) 

(1 + νp )(1 + αmax ) 
< αmax (57)

Even neglecting the Poisson effect, the coupling predicted in

Sugino et al. (2017) is always smaller than the value predicted

here. For reference, for PZT-5H the maximum value of α predicted

in Sugino et al. (2017) is 0.178, whereas the maximum value pre-

dicted here is 0.478. Note however that the plate-type system re-

quires additional electrode segmentation to achieve convergence to

Eq. (50) . 

2.5. Locally resonant bandgap 

Since the form of Eq. (48) is identical to the form presented

in Sugino et al. (2017) and Sugino et al. (2018) , the analysis in

those works applies identically to the system considered here. In

summary, the locally resonant bandgap can be obtained by using

purely inductive shunt circuits, yielding normalized admittance 

h (s ) = 

ω 

2 
t 

s 
(58)

where ω t is the resonant frequency of the LC shunt circuit. With

this type of shunt circuit, the effective modal response is given by

H r (s ) 

Q r (s ) 
= 

1 

s 2 + ω 

2 
r 

(
1 + 

αs 2 

ω 

2 
t + s 2 

) (59)

The effective dynamic flexural rigidity of the system is then 

D̄ (s ) 

D 

E 
= 1 + 

αs 2 

ω 

2 
t + s 2 

(60)

which becomes negative in the frequency range 

ω t √ 

1 + α
< ω < ω t (61)
f  
hich defines the locally resonant bandgap. Unlike a typical an-

iresonance, the locally resonant bandgap is characterized by a

ide range of relatively constant vibration attenuation, associated

ith the effective dynamic stiffness becoming negative. The excep-

ion to this is at s = jω t , an antiresonance that is present for ev-

ry mode of the structure, yielding zero vibration amplitude every-

here on the plate. 

.6. Finite number of electrodes 

For real systems with a finite number of electrodes, the approx-

mation of Eq. (50) is never fully satisfied. However, for a large

umber of electrodes placed throughout the surface of the plate,

e can observe good convergence to the infinite-electrode type

erformance. 

For simplicity, we consider a simply supported rectangular plate

f dimensions a × b in the x and y directions respectively. The

ass-normalized mode shapes of a rectangular simply supported

late are 

mn (x, y ) = 

2 √ 

m p ab 
sin 

(
mπx 

a 

)
sin 

(
nπy 

b 

)
(62)

ith corresponding natural frequencies 

 mn = π2 

[(
m 

a 

)2 

+ 

(
n 

b 

)2 
]√ 

D 

E 

m p 
(63)

his modeling framework can be used to study performance for ar-

itrary electrode shapes by appropriate evaluation of the coupling

ntegral of Eq. (42) ; however, for simplicity, only the case of rect-

ngular electrodes is considered here. For rectangular electrodes

panning a region x L 
j 
< x < x R 

j 
, y L 

j 
< y < y R 

j 
, with dimensions �x j =

 

R 
j 
− x L 

j 
and �y j = y R 

j 
− y L 

j 
, the coupling integral in Eq. (42) is given

y 

mn, j = −
2 π2 �D j 

(
b 2 m 

2 + a 2 n 

2 
)

a 2 b 2 
√ 

m p ab 
sinc 

(
mπ�x j 

2 a 

)
sinc 

(
nπ�y j 

2 b 

)

× sin 

(
mπ(x L 

j 
+ x R 

j 
) 

2 a 

)
sin 

(
nπ(y L 

j 
+ y R 

j 
) 

2 b 

)
(64)

here �D j = �x j �y j is the area of the electrode, and the sinc

unction is defined as 

inc x = 

{ 

1 x = 0 

sin x 

x 
otherwise 

(65)

n the remainder of this section, geometric and material param-

ters as described in Table 1 will be used, with PZT-5H as the

iezoelectric material and an aluminum shim. For these dimen-

ions and materials, the predicted value of the dimensionless cou-

ling is α = 0 . 422 . 

First, the response of a locally resonant bimorph plate with a

pecific set of electrodes is investigated. The transmissibility FRF

or a plate with a uniform 10 × 10 grid of rectangular electrodes
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Fig. 2. Transmissibility between input at (x , y ) = (0 . 85 a , 0 . 84 b) and output at (x , y ) = (0 . 15 a , 0 . 16 b) for a simply supported bimorph plate with parameters as given in 

Table 1 . The target frequency is 10 ω 1 , 0.5% damping was added to each shunt, and the locally resonant bandgap predicted by Eq. (61) is shown by the shaded gray 

region. The insets show the real part of the transverse displacement for the entire plate for frequencies before, inside, and after the bandgap ( ω/ω 1 = 8 . 13 , 9.09, and 10.45, 

respectively). In each inset, the input force location is shown by a blue circle, and the output is shown by a white circle. (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.) 
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nd a target frequency of ω t = 10 ω 1 is shown in Fig. 2 . There is ex-

ellent agreement between the observed locally resonant bandgap

nd the edge frequencies predicted by Eq. (61) . 

Next, to investigate the influence of the number of resonators

n the plate response, we assume a square grid of electrodes

ith S x = S y electrodes along each plate edge. Note that in general

 x = S y may not be required for convergence to Eq. (50) , depending

n the plate geometry and boundary conditions, but this assump-

ion provides a straightforward technique to evaluate performance.

ith this assumption, the plate response can be computed as a

unction of S x = S y for a specified target frequency ω t . These re-

ults are shown in Fig. 3 for ω t = 5 ω 1 , 10 ω 1 , and 20 ω 1 . There is

lear convergence to the expected bandgap as the number of elec-

rodes becomes sufficiently large in all cases, but more electrode

egmentation is required to create the bandgap at high frequen-

ies. This type of analysis can be used to study the performance of

ther combinations of electrode shape, plate boundary conditions,

nd plate shapes (e.g., circular plates). 

. Dispersion calculation using the plane wave expansion 

ethod 

The governing equations derived in Section 2 can also be used

or unit-cell based dispersion analysis using the plane wave expan-

ion (PWE) method. Assuming a two-dimensional Bravais lattice of

nit cells with lattice vectors a 1 and a 2 and harmonic excitation at

 frequency ω, Eqs. (6) and (30) become 

D 

E ∇ 

4 − m p ω 

2 
)
w̄ ( P , jω) − ϑ 

∑ 

r,s 

v̄ rs ∇ 

2 d( P − P rs ) = 0 (66) 
∇  
( j ωC p + Y ( j ω) ) ̄v rs + j ωϑ 

ˆ
D 

d ( P − P rs ) ∇ 

2 w̄ ( P , j ω) d D = 0 (67) 

here w̄ ( P , jω) is the transverse displacement amplitude at a

oint P and frequency ω, P rs = r a 1 + s a 2 denotes the position of

he origin of the unit cell at lattice coordinates ( r , s ) for r, s ∈ Z ,

¯
 rs is the voltage on the electrode at unit cell ( r , s ), and d ( P ) is

he electrode shape function (see Eq. (29) ) defined for the unit cell

0 , 0). To use the plane wave expansion method, we assume a dis-

lacement field of the form 

¯
 ( P , jω) = 

∑ 

m,n 

W ( G mn , jω) e − j( k + G mn ) ·P (68)

here G mn = m b 1 + n b 2 is the ( m , n ) reciprocal lattice point,

here b 1 and b 2 are the reciprocal lattice vectors, W ( G mn , j ω) is

he plane wave amplitude corresponding to G mn , and k is the Bloch

avevector. Substituting Eq. (68) into Eqs. (66) and (67) yields ∑ 

m,n 

W ( G mn , jω ) 
(
D 

E ‖ k + G mn ‖ 

4 − m p ω 

2 
)
e − j ( k + G mn ) ·P 

−ϑ 

∑ 

rs 

v̄ rs ∇ 

2 d ( P − P rs ) = 0 (69) 

( j ωC p + Y ( j ω) ) ̄v rs + j ωϑ 

∑ 

m,n 

W ( G mn , j ω) ‖ k + G mn ‖ 

2 

×
ˆ

D 

d ( P − P rs ) e 
− j( k + G mn ) ·P d D = 0 (70) 

here we have used the simplification 

 

2 e − j( k + G mn ) ·P = ‖ k + G mn ‖ 

2 e − j( k + G mn ) ·P (71)
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Fig. 3. Plate transmissibility (input at (0.85 a , 0.85 b ) and output at (0.15 a , 0.15 b )) 

and resonant frequencies vs. number of electrodes and normalized excitation fre- 

quency for (a) ω t = 5 ω 1 , (b) ω t = 10 ω 1 , and (c) ω t = 20 ω 1 using N = 900 plate 

modes in the expansion. The heatmap shows the plate transmissibility vs. number 

of electrodes and excitation frequency. Horizontal dashed lines indicate the bandgap 

predicted by Eq. (61) . More electrode segmentation is required to create the locally 

resonant bandgap at higher frequency ranges (i.e. higher modal neighborhoods). 
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where ‖·‖ denotes the Euclidean norm. Note that, since the sys-

tem is periodic, integrating over the unit cell ( r , s ) is equivalent to

integrating a shifted exponential over unit cell at the origin, i.e. 

ˆ
D 

d ( P − P rs ) e 
− j( k + G mn ) ·P d D = 

ˆ
D 

d ( P ) e − j( k + G mn ) ·( P + P rs ) d D (72)

= e − j( k + G mn ) ·P rs ̂

D 

d ( P ) e − j( k + G mn ) ·P d D (73)

Using Eq. (70) , it can be shown that the above implies 

v̄ rs = e − j k ·P rs v 0 (74)

where v 0 = v̄ 00 is the voltage on the electrode in unit cell (0 , 0).

Thus, it is only necessary to calculate v 0 to obtain the voltage at

every unit cell. Substituting Eq. (74) into (69) gives ∑ 

m,n 

W ( G mn , jω )(D E ‖ k + G mn ‖ 

4 − m p ω 

2 ) e − j G mn ·P 

−ϑv 0 
∑ 

r,s 

e j k ·( P −P rs ) ∇ 

2 d( P − P rs ) = 0 (75)
ote that the summation over r , s forms a periodic function in

pace, which can be expanded with a Fourier series of the form 

 

r,s 

e j k ·( P −P rs ) ∇ 

2 d( P − P rs ) = 

∑ 

m,n 

D( G mn ) e 
− j G mn ·P (76)

here 

( G mn ) = 

1 

�D 

‖ k + G mn ‖ 

2 ̂

d 0 

e j( k + G mn ) ·P dD (77)

= 

1 

�D 

˛
∂d 0 

∇e j( k + G mn ) ·P · n dS (78)

here d 0 indicates the region where d ( P ) is equal to one (i.e. the

lectrode of the (0 , 0) unit cell), and �D is the area of the unit

ell. The second form of the coupling integral may be more conve-

ient for electrodes with smoothly parameterized boundaries (e.g.,

ircular electrodes). Summarizing, we have equations 

 ( G mn , jω ) 
[
D 

E ‖ k + G mn ‖ 

4 − m p ω 

2 
]

− ϑv 0 D( G mn ) = 0 (79)

( jω + h ( jω)) v 0 + jω 

ϑ 

ˆ C p 

∑ 

m,n 

W ( G mn , jω) D 

∗( G mn ) = 0 (80)

here () ∗ denotes the complex conjugate. It is straightforward to

xtend these equations to the case of unit cells with multiple

on-overlapping electrode pairs with separate shunt circuits. These

quations can be solved numerically for the plane wave amplitudes

 and voltage v 0 for a given excitation frequency ω and Bloch

avevector k . Alternatively, these equations can be solved for the

esonant frequencies ω for k in the irreducible region of the first

rillouin zone to obtain the dispersion curves of the unit cell. For

xample, for inductive shunting, we obtain the generalized eigen-

alue problem 

 ( G mn , jω ) 
[
D 

E ‖ k + G mn ‖ 

4 − m p ω 

2 
]

− ϑv 0 D( G mn ) = 0 (81)

ω 

2 
t − ω 

2 
)
v 0 − ω 

2 ϑ 

ˆ C p 

∑ 

m,n 

W ( G mn , jω) D 

∗( G mn ) = 0 (82)

r in matrix form, 

K − ω 

2 M 

)
q = 0 (83)

ote that the coupling term D( G mn ) depends on the shape of the

lectrode in the unit cell. For simple electrode shapes (e.g., rect-

ngular or circular electrodes), this integral can be computed in

losed form in terms of the reciprocal lattice point coordinates m

nd n . This provides a straightforward technique to perform topol-

gy optimization, e.g., by discretizing the electrode geometry into

 grid of small rectangular electrodes. 

. Numerical validation 

To validate the results of Sections 2 and 3 , numerical studies

ere performed using the commercially available finite element

oftware COMSOL Multiphysics. The results are separated into the

nalysis of a finite plate with free boundaries, to validate the re-

ults of Section 2 , and the unit-cell based dispersion analysis of an

nfinite plate, to validate the results of Section 3 . Note that the fi-

ite element model cannot handle the discontinuities imposed by

he assumption of Eq. (28) , and so we introduce thin regions at the

oundaries of each electrode that are left at open circuit. This al-

ows the voltage to vary smoothly between the voltage level of the

lectrode and any short-circuit regions on the plate ( Fig. 4 ) 



C. Sugino, M. Ruzzene and A. Erturk / International Journal of Solids and Structures 182–183 (2020) 281–294 289 

Fig. 4. Schematic showing the differences between the analytical model and finite 

element model. A thin open circuit region is introduced at the boundary of each 

electrode to remove the discontinuities in voltage for the finite element model. 
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.1. Finite plate 

The dimensions and material properties of the plate considered

re identical to those in Section 2 , but free boundary conditions

ere used to avoid singularities in the finite element solver. To

educe the model size, it is assumed that the plate is excited at

he center, reducing the degrees of freedom by a factor of four us-

ng symmetry. The full plate has a 16 × 14 grid of 4.5cm square

lectrodes, with 1cm of spacing between adjacent electrodes and

.5cm between the electrodes and the plate edges. To remove volt-

ge discontinuities, a transition region of width 0.25cm was left at

pen circuit around each electrode, while the remaining surface of

he plate was left at short circuit. Each pair of electrodes was as-

umed to have constant voltage over its surface, and shunted to an

nductance of 5H. 

The plate transmissibility at (x , y ) = ( 15 cm , 15 cm ) is shown in

ig. 5 . To validate the analytical model, we compare the locally res-
ig. 5. Plate transmissibility at (x , y ) = ( 15 cm , 15 cm ) for an input at (x , y ) = ( 40 cm , 35 cm

he estimated bandgap using the analytical model, showing good agreement to the finite

24Hz, and 260Hz, i.e. frequencies just before, inside, and just after the locally resonant b
nant bandgap of the finite element model to the bandgap predic-

ions of Eq. (61) . The right edge frequency was estimated as 258Hz

the first resonance post-bandgap), yielding a left edge frequency

f 216.4Hz. These frequencies are shown by the shaded gray region

n Fig. 5 , demonstrating that the simplified analytical model can be

sed to predict the bandgap of the finite element model. Note that

he right edge frequency is slightly lower than the predicted value

f f t = 268 Hz , which can be attributed to fringing effects at the

dges of each electrode. Fringing fields would increase the effec-

ive piezoelectric capacitance, resulting in a lower-than-predicted

hunt resonance. 

.2. Unit-cell dispersion analysis 

To validate the plane wave expansion method formulated here

or bimorph plates, we perform numerical studies using a finite

lement model of a single unit cell with periodic boundary con-

itions. We consider a square unit cell of dimensions a = b = 5 cm ,

ith h s = h p = 1 mm , and an aluminum shim with PZT-5H piezo-

lectric layers, as in Section 4.1 . For the PWE method, a max-

mum plane wave index of M = 7 was used, giving a total of

(2 M + 1) 2 + 1 = 226 degrees of freedom, three orders of magni-

ude smaller than the finite element model. The dispersion curves

or a rectangular and circular electrodes are shown in Figs. 6 and 7 ,

espectively. In both cases, it is clear that there is excellent agree-

ent between the finite element results and the results of analyti-

al model developed here. Both the bandgap edge frequencies and

igher frequency modes are predicted well. 

Discrepancies between the analytical model and finite element

odel can be attributed to the assumptions in the analytical

odel, especially the assumption of zero voltage outside the elec-
 ) for the finite element model of a bimorph plate. The shaded gray region shows 

 element model. The insets show the full transverse plate displacement at 216Hz, 

andgap, respectively. 
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Fig. 6. Dispersion curves calculated with the plane wave expansion method (solid lines) and finite element analysis (dots) for a unit cell with a square electrode with length 

�x = �y = 0 . 9 a centered in the unit cell, with a transition region of thickness 0.025 a . The unit cell geometry is shown on the right. An inductance of 5H was placed between 

the two electrodes and the central shim. 

Fig. 7. Dispersion curves calculated with the plane wave expansion method (solid lines) and finite element analysis (dots) for a unit cell with circular electrode with radius 

r = 0 . 45 a centered in the unit cell, with a transition region of radius 0.025 a . The unit cell geometry is shown on the right. An inductance of 5H was placed between the two 

electrodes and the central shim. 
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trode regions of the surface. Although the size of the open circuit

transition region in the finite element model was kept relatively

small, the effects of fringing fields and the smooth variation in

voltage across this region are not accounted for in the analytical

model. 

5. Conclusions 

The fully coupled electromechanical boundary value problem

for the transverse vibration and voltage field of a thin piezoelec-

tric bimorph locally resonant metamaterial plate was derived us-

ing Hamilton’s principle. The governing equations can be used to

model bimorph metamaterial plates of any shape with arbitrary

electrode segmentation. Further, it was shown that by segment-

ing the surface of the plate into a sufficient number of discrete

electrodes, the effective dynamic stiffness of the bimorph plate is
etermined solely by the system electromechanical coupling and

he shunt admittance applied to each electrode. The edge frequen-

ies of the locally resonant bandgap were obtained in closed form,

nd the system-level electromechanical coupling was derived in

erms of material and geometric parameters. Numerical case stud-

es demonstrated clear convergence to the ideal locally resonant

andgap for a rectangular simply supported plate with a rectangu-

ar grid of electrodes. Finally, finite element results validated the

implified analytical model for both the vibration response of a fi-

ite plate and dispersion analysis of a single unit cell. 
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ppendix A. Piezoelectric Constitutive Equations 

The constitutive equations for the transversely isotropic piezo-

lectric layers is given in contracted notation as 

 

 

 

 

 

 

 

 

 

 

 

 

S 1 
S 2 
S 3 
S 4 
S 5 
S 6 
D 1 

D 2 

D 3 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

s E 11 s E 12 s E 13 0 0 0 0 0 d 31 

s E 12 s E 11 s E 13 0 0 0 0 0 d 31 

s E 13 s E 13 s E 33 0 0 0 0 0 d 33 

0 0 0 s E 55 0 0 0 d 15 0 

0 0 0 0 s E 55 0 d 15 0 0 

0 0 0 0 0 s E 66 0 0 0 

0 0 0 0 d 15 0 ε T 11 0 0 

0 0 0 d 15 0 0 0 ε T 11 0 

d 31 d 31 d 33 0 0 0 0 0 ε T 33 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

T 1 
T 2 
T 3 
T 4 
T 5 
T 6 
E 1 
E 2 
E 3 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(A.1) 

here s E 
i j 

are the compliance components at constant electric field,

 ij are piezoelectric constants, and ε T 
i j 

are the permittivity compo-

ents at constant stress. Under the assumptions of plane stress (for

 thin plate), and assuming voltage is applied through the thick-

ess, such that E 3 is the dominant electric field component, the

educed constitutive equation can be written as 
 

 

 

T 1 
T 2 
T 6 
D 3 

⎤ 

⎥ ⎦ 

= 

⎡ 

⎢ ⎣ 

c̄ E 11 c̄ E 12 0 −ē 31 

c̄ E 12 c̄ E 11 0 −ē 31 

0 0 c̄ E 66 0 

ē 31 ē 31 0 ε̄ S 33 

⎤ 

⎥ ⎦ 

⎡ 

⎢ ⎣ 

S 1 
S 2 
S 6 
E 3 

⎤ 

⎥ ⎦ 

(A.2) 

here 

¯
 

E 
11 = 

s E 11 (
s E 

11 
+ s E 

12 

)(
s E 

11 
− s E 

12 

) (A.3) 

¯
 

E 
12 = 

−s E 12 (
s E 

11 
+ s E 

12 

)(
s E 

11 
− s E 

12 

) (A.4) 

¯
 

E 
66 = 

1 

s E 
66 

= 

1 

2 

(
c̄ E 11 − c̄ E 12 

)
(A.5) 

¯
 31 = 

d 31 

s E 
11 

+ s E 
12 

(A.6) 

¯ S 33 = ε T 33 −
2 d 2 31 

s E 
11 

+ s E 
12 

(A.7) 

here the overbars indicate properties obtained from the full

onstitutive equations ( Eq. (A.1) ) under the assumptions of plane

tress and voltage applied through the thickness. 

ppendix B. Derivation of Governing Equations 

1. Stress and strain 

Since the system is symmetric across the central plane of the

late, the mid-plane deformation problem is decoupled from the

ransverse motion. Under the kinematic assumptions of Kirchhoff

late theory, we consider displacement field 

 1 = −z 
∂w 

∂x 
(B.1) 

 2 = −z 
∂w 

∂y 
(B.2) 

 3 = w (x, y ) (B.3)

nd corresponding strains 

xx = −z 
∂ 2 w 

2 
(B.4) 
∂x 
yy = −z 
∂ 2 w 

∂y 2 
(B.5) 

xy = −z 
∂ 2 w 

∂ x∂y 
(B.6) 

e further assume plane stress conditions, such that the constitu-

ive law for the piezoelectric layers is given as in Appendix A . For

he isotropic central shim, the stress field in contracted notation is

iven by 

 1 = − Ez 

1 − ν2 
s 

(
∂ 2 w 

∂x 2 
+ νs 

∂ 2 w 

∂y 2 

)
(B.7) 

 2 = − Ez 

1 − ν2 
s 

(
∂ 2 w 

∂y 2 
+ νs 

∂ 2 w 

∂x 2 

)
(B.8) 

 6 = − Ez 

1 + νs 

∂ 2 w 

∂ x∂y 
(B.9) 

 3 = T 4 = T 5 = 0 (B.10)

2. Kinetic energy 

The kinetic energy of the bimorph plate is 

 = 

1 

2 

ˆ
V s 

ρs 

(
∂w 

∂t 

)2 

d V s + 

1 

2 

ˆ
V p 

ρp 

(
∂w 

∂t 

)2 

d V p (B.11)

= 

1 

2 

m 

ˆ
D 

(
∂w 

∂t 

)2 

dD (B.12) 

here 

 p = ρs h s + 2 ρp h p (B.13)

s the mass per unit area of the bimorph plate. Taking the first

ariation, 

T = 

1 

2 

m p 

ˆ
D 

δ

(
∂w 

∂t 

)2 

dD 

= m p 

ˆ
D 

∂w 

∂t 

∂ (δw ) 

∂t 
dD 

nd integrating w.r.t. time: 

t 2 

t 1 

δT dt = m p 

ˆ
D 

ˆ t 2 

t 1 

∂w 

∂t 

∂ (δw ) 

∂t 
d td D 

= m p 

ˆ
D 

{
∂w 

∂t 
δw 

∣∣∣t 2 

t 1 

−
ˆ t 2 

t 1 

∂ 2 w 

∂t 2 
δwdt 

}
dD 

= −m p 

ˆ t 2 

t 1 

[ˆ
D 

∂ 2 w 

∂t 2 
δwdD 

]
dt 

3. Electromechanical potential 

The total contribution to the potential energy from the central

ayer is 

 s = 

1 

2 

ˆ
V s 

σi j εi j dV s (B.14) 

= 

D s 

2 

ˆ
D 

{ [ (
∂ 2 w 

∂x 2 

)2 

+ 2 νs 
∂ 2 w 

∂x 2 
∂ 2 w 

∂y 2 
+ 

(
∂ 2 w 

∂y 2 

)2 
] 

+ 2(1 − νs ) 

(
∂ 2 w 

∂ x∂y 

)2 
} 

dD (B.15) 
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D s = 

E 

1 − ν2 
s 

ˆ h s / 2 

−h s / 2 

z 2 dz = 

E 

1 − ν2 
s 

z 3 

3 

∣∣∣h s / 2 

−h s / 2 
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Eh 

3 
s 

12(1 − ν2 
s ) 

(B.16)

is the flexural rigidity contribution from the central shim. For the

piezoelectric layers, we have electrical enthalpy 

H p = 

1 

2 

ˆ
V p 

( U − E i D i ) dV p (B.17)

= 

1 

2 

ˆ
V p 

(
c̄ E 11 S 

2 
1 + 2 ̄c E 12 S 1 S 2 + c̄ E 11 S 

2 
2 + c̄ E 66 S 

2 
6 + ē 31 E 3 S 1 

+ ̄e 31 E 3 S 2 − ε̄ S 33 E 
2 
3 

)
dV p (B.18)

= 

D p 

2 

ˆ
D 

{ [ (
∂ 2 w 

∂x 2 

)2 

+ 

(
∂ 2 w 

∂y 2 

)2 
] 

+ 2 

c̄ E 12 

c̄ E 
11 

∂ 2 w 

∂x 2 
∂ 2 w 

∂y 2 
+ 4 

c̄ E 66 

c̄ E 
11 

(
∂ 2 w 

∂ x∂y 

)2 
} 

dD 

+ 

ˆ
D 

[
ϑv ∇ 

2 w + 

ˆ C p 

2 

v 2 
]

dD (B.19)

where it has been assumed that E 3 = ±v ( P , t) /h p (i.e. uniform

electric field) in the top and bottom piezoelectric layers respec-

tively, 

D p = c̄ E 11 

(
1 

6 

h p 

(
4 h 

2 
p + 6 h p h s + 3 h 

2 
s 

))
(B.20)

is the effective flexural rigidity contribution of the piezoelectric

layers, and 

ϑ = ē 31 (h s + h p ) (B.21)

ˆ 
 p = 

2 ̄ε 33 

h p 
(B.22)

are the coupling parameter in physical coordinates and effective

piezoelectric capacitance per area. Note there are no assumptions

yet on the voltage distribution v ( P , t) . In summary, the total elec-

trical enthalpy can be written as 

H = 

1 

2 

ˆ
D 

{
(D s + D p ) 

[ (
∂ 2 w 

∂x 2 

)2 

+ 

(
∂ 2 w 

∂y 2 

)2 
] 

+ 2 

(
D p 

c̄ E 12 

c̄ E 
11 

+ D s νs 

)
∂ 2 w 

∂x 2 
∂ 2 w 

∂y 2 

+ 2 

(
D p 

2 ̄c E 66 

c̄ E 
11 

+ D s (1 − νs ) 

)(
∂ 2 w 

∂ x∂y 

)2 

− 2 

[
ϑv ∇ 

2 w + 

ˆ C p 

2 

v 2 
]}

dD (B.23)

Taking the first variation, 

δH = 

ˆ
D 

{
(D s + D p ) 

(∇ 

4 wδw + ∇ · (∇ 

2 w ∇(δw ) − δw ∇ ∇ 

2 w ) 
)

− D 

E (1 − ν) ∇ · �∇(δw ) 

−
[
ϑ 

(∇ 

2 wδv + δw ∇ 

2 v + ∇ · (v ∇(δw ) − δw ∇v ) 
)

+ 

ˆ C p v δv 
]}

dD (B.24)

where 

� = 

[
w yy −w xy 

−w xy w xx 

]

here we used the identity 

 · ( f∇g − g∇ f ) = f∇ 

2 g − g∇ 

2 f 

ith f = ∇ 

2 w, g = δw, and with f = v , g = δw . By applying the

ivergence theorem, the divergence terms only affect the system’s

oundary conditions. Thus, we separate the divergence terms out

s 

H = 

ˆ
D 

{[
D 

E ∇ 

4 w − ϑ∇ 

2 v 
]
δw −

[
ϑ∇ 

2 w + 

ˆ C p v 
]
δv 

}
dD 

+ 

˛
∂D 

{(
D 

E ∇ 

2 w − D 

E (1 − ν)� − ϑv 
)∇(δw ) 

+ 

(
−D E ∇ ∇ 

2 w + ϑ∇v 
)
δw 

}
· n dS (B.25)

4. Virtual work 

Work is done either through external current or force applied

o the piezoelectric plate. Thus, 

W nc = 

ˆ
D 

f ( P , t) δw ( P , t) dD + 

ˆ
D 

Q( P , t) δv ( P , t) dD 

= 

ˆ
D 

f ( P , t) δw ( P , t) dD −
ˆ

D 

[ˆ t 

t 0 

J( P , τ ) δv ( P , τ ) dτ

]
dD 

here J ( P , t ) is the current density flowing out of the electrodes of

he bimorph into the central shim 

5. Boundary conditions 

Boundary terms arise only from the electrical enthalpy, since

e have no added mass contributions. Define moments and shear

s 

 x = −D 

E w xx − D 

E νw yy (B.26)

 y = −D 

E w yy − D 

E νw xx (B.27)

 xy = −(D E − D ν ) w xy (B.28)

 x = 

∂ M x 

∂x 
+ 

∂ M xy 

∂y 
= −D E (w xxx − w xyy ) (B.29)

 y = 

∂ M y 

∂y 
+ 

∂ M xy 

∂x 
= −D E (w yyy − w xxy ) (B.30)

hen we have 

D 

E ∇ 

2 w − D 

E (1 − ν)�
]∇(δw ) · n = −

[
M x δw x + M xy δw y 

M xy δw x + M y δw y 

]
· n 

(B.31)

ransform to normal and tangent components to the boundary via

otation by an angle φ: 

x = −ds sin φ, dy = ds cos φ (B.32)

nd 

∂ 

∂x 
= cos φ

∂ 

∂n 

− sin φ
∂ 

∂s 
(B.33)

∂ 

∂y 
= sin φ

∂ 

∂n 

+ cos φ
∂ 

∂s 
(B.34)

hen the normal vector n is given by 

 = 

[
cos φ
sin φ

]
(B.35)

nd 

w x = δw n cos φ − δw s sin φ (B.36)
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w y = δw n sin φ + δw s cos φ (B.37)

e can then rewrite the moment term in Eq. (B.31) as 

M x δw x + M xy δw y 

M xy δw x + M y δw y 

]
· n = M n δw n + M ns δw s (B.38) 

he voltage term simplifies more easily as 

v ∇(δw ) · n = ϑv δw n (B.39) 

verall, the boundary integrals are then 

 = 

˛
∂D 

{ (−M n − ϑv ) δw n − M ns δw s 

+ 

(
−D E 

∂ 

∂n 

∇ 

2 w + ϑ 

∂v 
∂n 

)
δw 

}
dS (B.40) 

ext, we integrate by parts to remove the extra boundary condi-

ion: 

∂D 

M ns 
∂ (δw ) 

∂s 
dS = M ns δw 

∣∣∣
∂D 

−
˛
∂D 

∂ M ns 

∂s 
δwdS (B.41) 

ote that the term M ns δw | ∂D is responsible for the “corner condi-

ion,” which is unchanged by the voltage coupling. Assuming the

erm vanishes, we have boundary integral 

 = 

˛
∂D 

{
(−M n − ϑv ) δw n + 
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∂s 
− D E 
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∂n 
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δw 
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dS 

(B.42) 

nd so we have boundary conditions summarized as: 

ither w = 0 on ∂D (B.43) 

r 
∂ M ns 

∂s 
− D E 

∂ 

∂n 

∇ 

2 w + ϑ 

∂v 
∂n 

= 0 on ∂D (B.44)

nd either 
∂w 

∂n 

= 0 on ∂D (B.45) 

r M n + ϑv = 0 on ∂D (B.46)

he voltage coupling contributes to both the natural boundary con-

itions, as voltage on the boundary applies a moment and con-

ributes to the effective shear. 

6. Domain equations 

Substituting into Hamilton’s Principle and removing the bound-

ry terms: 

 = 

ˆ t 2 

t 1 

( δT − δU + δW nc ) dt 

= 

ˆ t 2 

t 1 

{ ˆ
D 

[
−m p 

∂ 2 w 

∂t 2 
− D 

E ∇ 

4 w + ϑ∇ 

2 v + f ( P , t) 

]
δwdD 

+ 

ˆ
D 

[
ϑ∇ 

2 w + 

ˆ C p v −
ˆ t 

t 0 

J( P , τ ) dτ

]
δv d D 

}
d t 

ince this equation must be satisfied for any δw and δv as well as

ny t 1 and t 2 , we can obtain the governing equations as 

 

E ∇ 

4 w ( P , t) + m p 
∂ 2 w ( P , t) 

∂t 2 
− ϑ∇ 

2 v ( P , t) = f ( P , t) (B.47) 
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∂ v ( P , t) + ϑ 

∂ ∇ 

2 w ( P , t) = J( P , t) (B.48) 
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