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Abstract We explore the modeling and analysis of
nonlinear nonconservative dynamics of macro-fiber
composite (MFC) piezoelectric structures, guided by
rigorous experiments, for resonant vibration-based
energy harvesting, as well as other applications lever-
aging the direct piezoelectric effect, such as resonant
sensing. TheMFCs employ piezoelectric fibers of rect-
angular cross section embedded in Kapton with inter-
digitated electrodes to exploit the 33-mode of piezo-
electricity. Existing modeling and analysis efforts for
resonant nonlinearities have so far considered conven-
tional piezoceramics that use the 31-mode of piezoelec-
tricity. In the present work, we develop a framework to
represent and predict nonlinear electroelastic dynamics
of MFC bimorph cantilevers under resonant base exci-
tation for primary resonance behavior. The interdigi-
tated electrodes are shunted to a set of resistive electri-
cal loads to quantify the electrical power output. Exper-
iments are conducted on a set of MFC bimorphs over a
broad range of mechanical excitation levels to identify
the types of nonlinearities present and to compare the
harmonic balance model predictions and experiments.
The experimentally observed interaction of quadratic
piezoelectric material softening and cubic geometric
hardening effects is captured and demonstrated by the
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model. It is shown that the linearized version of the
model yields highly inaccurate results for typical base
acceleration levels and frequencies involved in vibra-
tion energy harvesting, while the nonlinear framework
presented here can accurately predict the amplitude-
dependent resonant frequency response.

Keywords Nonlinear · Vibration · Piezoelectricity ·
Energy harvesting · Composites

1 Introduction

Piezoelectricity is a reversible process in the form of
the direct effect (conversion of mechanical strain to
electric charge) and the converse effect (conversion of
electric potential to mechanical strain) and has been
used in numerous applications ranging from sensing
and actuation to vibration control and energy harvest-
ing over the past several decades. The most typical use
of piezoelectric materials in bending (flexural) mode
is through the utilization of the 31-mode with uniform
electrodes. The use of 31-mode in bending has been
well studied for sensing, energy harvesting, and static
or dynamic actuation for decades [1–13], while the 33-
mode has been conventionally used for longitudinal
(axial) deformations through the use of piezoelectric
stacks and bars [14–19].

It is well known that the 33-mode piezoelectric
strain constant is around 50–100% larger than that
of the 31-mode. The 33-mode was first utilized in
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bending using Active-Fiber Composite (AFC) struc-
tures via the implementation of interdigitated elec-
trodes (IDEs) as explored in the early work of Bent
and Hagood [20] and Bent et al. [21,22]. The AFC
technology used piezoelectric fibers with a circular
cross section which limited the contact area between
the fibers and electrodes, yielding reduced electrome-
chanical coupling and high dielectric loss. The Macro-
Fiber Composite (MFC) technology [23,24] developed
at the NASA Langley Research Center overcame this
issue by using fibers with rectangular cross section.
The MFC piezoelectric materials have been used in
structural sensing and vibration control [25,26], bio-
inspired locomotion [27,28], acoustic wave devices
[29,30], morphing- and flapping-wing structures [31–
34], and in-air/underwater dynamic actuation or energy
harvesting [27,35–41].

Constitutive modeling and experimental character-
ization of piezoelectric MFCs have been researched
by several groups. Williams et al. [42–44] presented
an experimentally validated model for equivalent ther-
mal expansion and mechanical properties of MFCs
using modified classical mixing rules. Deraemaeker
et al. [45] reported rule of mixtures calculations of
the equivalent linear parameters and compared their
calculations with manufacturers data and experimental
results. Shahab and Erturk [46] coupled homogenized
linear constitutivemodelingwith a geometrically linear
Euler–Bernoulli electro-elastodynamics framework for
energy harvesting, sensing, and actuation problems.
They implemented this linear model for linear under-
water bio-inspired actuation and thrust generation [47].
Nonlinear modeling of piezoelectric materials to date
has been mostly focused on monolithic piezoelectric
materials such as the geometrically linear (for stiff and
brittle piezoceramics) and materially nonlinear frame-
work by Leadenham and Erturk [10] (see others in their
references).

In the present paper, we aim to develop a geometri-
cally and materially nonlinear framework for resonant
mechanical excitation of MFC bimorph cantilevers
with a focus on energy harvesting from base excita-
tion. The linear constitutive equations are modified to
account for piezoelectric softening while capturing the
geometric hardening nonlinearity as well as dissipative
effects. In the following, the governing nonlinear elec-
troelastic equations are derived and then solved using
the method of harmonic balance. Experimental results
are compared with model simulations for a range of

base excitation levels and electrical load resistance val-
ues, and conclusions are drawn.

2 Nonlinear nonconservative electroelastic
equations for an MFC bimorph cantilever under
base excitation

For a piezoelectric material utilizing the 33-mode, the
electric enthalpy density, H , can be given by

H = 1

2
cE33S

2
3 − 1

3
γ |S3| S23 − e33S3E3 − 1

2
εS33E

2
3 (1)

where cE33 is the elastic modulus at constant electric
field, S3 is the strain, E3 is the electric field, e33 is the
piezoelectric stress constant, εS33 is the permittivity at
constant strain, and γ is a nonlinear strain coefficient to
account for ferroelastic softening in PZT-5A [10,48].
(These parameters are defined for the thin structure and
therefore reduced from the 3D constitutive equations.)
Note that the electromechanical coupling and electric
field nonlinearities are neglected since the focus of this
work is placed on energy harvesting from mechanical
base excitation, yielding relatively low electric fields.

The bending strain at any point in an Euler-Bernoulli
cantilever is given by S3 = −zθ,s , where θ is the angu-
lar displacement, z is the distance from the neutral axis,
and the subscript s refers to a spatial derivative with
respect to the arc length s. Although the electric field is
non-uniformwithin the piezoelectricmaterial, the elec-
tric field across two IDEs can be approximated by E3 ≈
− v

Le
= − λ̇

Le
, where v is the voltage across the IDEs,

λ̇ is the time derivative of the flux linkage, and Le is
the distance between two IDEs. Therefore, the potential
energy corresponding to the piezoelectric material is

Up =
∫ L

0

[∫ b

0

∫ h

0

(
1

2
cE33z

2θ2,s − 1

3
γ |z| z2 ∣∣θ,s

∣∣ θ2,s

− e33zθ,s
λ̇

Le
− 1

2

εS33

L2
e
λ̇2

)
dzdy

]
dx (2)

However, as described in Deraemaeker et al. [45]
and Shahab and Erturk [46] and illustrated in Fig. 1, the
rectangular piezoelectric fibers within an MFC (polar-
ized in the x-direction in Fig. 1) are separated by passive
layers of epoxy and then embedded within Kapton film
containing interdigitated copper electrodes perpendic-
ular to the piezoelectric fibers, creating an array of
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Fig. 1 MFC bimorph cantilever and a close-up of one of its
layers showing active piezoelectric fibers separated by epoxy
and embedded in Kapton film containing interdigitated copper

electrodes (left) and a representative volume element (M × N
representative volume elements exist in an MFC layer) and its
effective dimensions (right)

repeating representative volume elements (RVEs) [46].
Each RVE is of width be, length Le, and thickness h p

(as depicted on the right side of Fig. 1) and has mate-
rial properties defined by the mixing rules (i.e., rule of
mixtures) formulation [45,46,49]:

cE33,e = νcE33,p + (1 − ν) cE33,m

d33,e = 1

cE33,e
νd33,pc

E
33,p

εS33,e =
[
νεT33,p + (1 − ν) εT33,m

]
− d233,ec

E
33,e (3)

where ν is the volume fraction of PZT within a RVE,
εT33 is the permittivity under constant stress, d33 is the
piezoelectric charge constant, and the subscripts p, m,
and e correspond to the piezoelectric fiber properties,
the matrix (epoxy) properties, and the equivalent prop-
erties of the RVE, respectively. The section of theMFC
covered in piezoelectric fibers contains M RVEs in the
width direction and Na RVEs in the length direction,
making the active width bact = Mbe and the active
length Lact = NaLe. Part of the MFC is clamped in
a way that sections of the piezoelectric fibers remain
motionless and thus are not strained, so we define the
clamped active length as L = NLe.

The MFC bimorph is constructed by bonding two
MFCs back to back and wiring them in parallel, so
the total potential energy in an MFC bimorph can be
written as:

Up =
∫ L

0

(
1

2
E Ipθ

2
,s − 1

3
γ B

∣∣θ,s
∣∣ θ2,s

−ϑpλ̇ [H(s) − H(s − L)] θ,s − 1

2

Cp

NLe
λ̇2
)
ds

(4)

where H(s) is the Heaviside step function, and the dis-
tributed material properties of the piezoelectric fibers
within the MFC bimorph are

E Ip = 2
M∑

m=1

bec33,e

[(
h p + hk

)3 − (hk)3

3

]

B =
M∑

m=1

be

[(
h p + hk

)4 − (hk)4

2

]

ϑp = 2
M∑

m=1

bee33,e
Le

[(
h p + hk

)2 − (hk)2

2

]

= 2
M∑

m=1

e33,e
beh p

Le

(
h p

2
+ hk

)

≈ 2
M∑

m=1

e33,e
Aehpc
Le

Cp = 2
M∑

m=1

Na∑
n=1

εS33,e
beh p

Le
≈ 2

M∑
m=1

Na∑
n=1

εS33,e
Ae

Le
(5)
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where h p and hk correspond to the thickness of the
piezoelectric layer and the Kapton layer, respectively,
and the effective area Ae is introduced to account for
the approximation in the electric field (i.e., Ae is an
equivalent RVE area that corresponds to uniform elec-
tric field, identified from measured capacitance).

Equation (4) accounts for the potential energy asso-
ciated with all of the RVEs within the MFC bimorph,
but because copper has a higher Young’s Modulus than
the PZT-5A utilized in the MFC, the strain energy in
the Kapton–copper layers is not negligible:

Ukc =
∫ L

0

1

2
E Ikcθ

2
,sds

E Ikc = 2
M∑

m=1

be (Ecνc + Ek(1 − νc))

[
h3k
3

+
(
2hk + h p

)3 − (
hk + h p

)3
3

]
(6)

where νc is the volume fraction of copper within the
Kapton–copper layer (approximately 24%), and the
subscripts c, k, and kc refer to the copper properties, the
Kapton properties, and the combined Kapton–copper
properties, respectively.

The total potential energy for the entire MFC
bimorph can therefore be written as

U =
∫ L

0

(
1

2
E Ieffθ

2
,s − 1

3
γ B

∣∣θ,s
∣∣ θ2,s

−ϑpλ̇ [H(s) − H(s − L)] θ,s − 1

2

Cp

NLe
λ̇2
)
ds

(7)

where E Ieff = E Ip + E Ikc, and the kinetic energy can
be written as

T = 1

2
ms

∫ L

0

[
ux,t

2 + (uz,t + ub,t )
2
]
ds (8)

where ms is the structural mass per length of the MFC
bimorph and ub is the base displacement.

For an inextensible cantilever, the Lagrangian L =
T − U needs to include a Lagrange multiplier, �, to
account for the inextensibility condition [50–52]:

L = 1

2
ms

∫ L

0

[
ux,t

2 + (uz,t + ub,t )
2
]
ds

− 1

2
�

∫ L

0

[
(1 + ux,s)

2 + (uz,s)
2 − 1

]
ds +

−
∫ L

0

(
1

2
E Ieffθ

2
,s − 1

3
γ B

∣∣θ,s
∣∣ θ2,s

−ϑpλ̇ [H(s) − H(s − L)] θ,s − 1

2

Cp

NLe
λ̇2
)
ds

(9)

Applying Hamilton’s principle,
∫ t2
t1

(δL + δWNC)

dt = 0, where the virtual nonconservative work on the
structure includes linear structural damping and elec-
trical dissipation over a resistive load (of resistance R),

δWNC = ∫ L
0

(
−czuz,tδuz − λ̇

R
δλ

)
ds, we find

∫ t2

t1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ L

0

⎛
⎜⎜⎜⎝

msux,tδux,t + ms
(
uz,t + ub,t

)
δuz,t − czuz,tδuz

−�(1 + ux,s)δux,s − �uz,sδuz,s

+
(−E Ieffθ,s + γ Bθ2,ssgn(θ,s)

+ϑpλ̇ [H(s) − H(s − L)]

)
δθ,s

⎞
⎟⎟⎟⎠ds

+
(∫ L

0 ϑpθ,s [H(s) − H(s − L)] ds + Cpλ̇
)

δλ̇

− ∫ L
0

λ̇

R
δλds

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

dt = 0 (10)

First converting fromangular displacements into x- and
z-displacements, and then integrating by parts, Hamil-
ton’s principle yields three equations of motion (non-
linearities kept to cubic order):

[
�(1 + ux,s) + E Ieff

(
uz,suz,sss

)
− (ϑpλ̇ [H(s) − H(s − L)]

)
,suz,s

]
,s

= msux,t t
[

�uz,s−E Ief f
(
uz,sss+uz,su2z,ss

)+2γ B
∣∣uz,ss ∣∣ uz,sss

+(ϑpλ̇ [H(s) − H(s − L)]
)
,s

(
1 + ux,s

)
]

,s
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czuz,t − msub,t t = msuz,t t

−
∫ L

0
ϑp
(
(1 + ux,s)uz,ss − uz,sux,ss

)
,tds

−Cpλ̈ − λ̇

R
= 0 (11)

By spatial integration for ux and utilizing the appro-
priate boundary conditions, the Lagrange multiplier
becomes

� = −E Ieffuz,suz,sss − 1

2
ms

∫ s

L

(∫ δ

0
u2z,ξdξ

)
,t t
dδ

+ (ϑpλ̇ [H(x) − H(x − L)]
)
,suz,s (12)

which can be substituted into the equation for uz to find

⎡
⎢⎢⎢⎢⎢⎣

msuz,t t + czuz,t + 1
2ms

[
uz,s

∫ s
L

(∫ δ

0 u2z,ξdξ
)

,t t
dδ

]
,s

+ E Ieff
(
uz,sss + uz,s

(
uz,suz,ss

)
,s

)
,s

− 2γ B
(∣∣uz,ss∣∣ uz,sss),s

−ϑpv

[
∂δ(x)

∂s
− ∂δ(x − L)

∂s

]
− ϑpv [δ(x) − δ(x − L)]

(
uz,suz,ss

)

⎤
⎥⎥⎥⎥⎥⎦

= −msub,t t

Cp v̇ + v

R
+
∫ L

0
ϑp

(
uz,ss + 1

2
u2z,suz,ss

)
,t
ds = 0 (13)

If the base motion is harmonic about the first nat-
ural frequency of the structure, then a single mode
assumption can be made for primary resonance behav-
ior, uz(s, t) = φ(s)η(t), where φ(s) is the mass nor-
malized first mode shape of a cantilever,

φ(s) = A1

(
cos

λ1s

L
− cosh

λ1s

L

+ σ

(
sin

λ1s

L
− sinh

λ1s

L

))

σ = sin λ1 − sinh λ1

cos λ1 + cosh λ1
λ1 = 1.8751∫ L

0
msφi (s)φ j (s)ds = δi j (14)

This results in the equations of motion in modal
coordinates,

m∗η̈ + c∗η̇ + k∗ (1 − γ ∗ |η|) η + α∗

L2 η3

+ β∗

L2

(
ηη̇2 + η2η̈

)
− θpv − θNLvη2 = G∗ cos�t

Cp v̇ + v

R
+ θpη̇ + θNLη2η̇ = 0 (15)

which can be converted back into the measurement
coordinates by w = w(Lm, t) = φ(Lm)η(t), where

Lm is the distance from the base of the cantilever where
the velocity is experimentally measured, yielding the
final equations of motion which account for nonlinear
strain and the inextensibility condition of a cantilever:

m̂ẅ + ĉẇ + k̂
(
1 − γ̂ |w|)w + α̂

L2
w3

+ β̂

L2

(
wẇ2 + w2ẅ

)
− θpv − θNL

φ2(Lm)
vw2 = Ĝ cos�t

Cp v̇ + v

R
+ θp

φ(Lm)
ẇ + θNL

φ3(Lm)
w2ẇ = 0 (16)

where

m̂ = ms
∫ L
0 φ2(s)ds

φ(Lm)
∫ L
0 φ(s)ds

,

γ̂ = 2γ B
∫ L
0 φ(s)

(
φ′′(s)φ′′′(s)

)′ds
E Ieffφ(Lm)

∫ L
0 φ(s)φ′′′′(s)ds

,

ĉ = cz
∫ L
0 φ2(s)ds

φ(Lm)
∫ L
0 φ(s)ds

,

α̂ =
E Ief f L2

∫ L
0 φ(s)

{
φ′(s)

(
φ′(s)φ′′(s)

)′}′
ds

φ3(Lm)
∫ L
0 φ(s)ds

,

k̂ = E Ieff
∫ L
0 φ(s)φ′′′′(s)ds

φ(Lm)
∫ L
0 φ(s)ds

,

β̂ =
msL2

∫ L
0 φ(s)

[
φ′(s)

∫ s
L

∫ δ

0 φ′(s)2dξdδ
]′
ds

φ3(Lm)
∫ L
0 φ(s)ds

,

θp = ϑpφ
′(L), θNL = 1

2
ϑp
(
φ′(L)

)3
,

Ĝ = msab (17)

where m̂, ĉ, and k̂ are the equivalent linear mass, damp-
ing, and stiffness terms, γ̂ accounts for piezoelectric
softening, α̂ is the geometric hardening coefficient,
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β̂ is the inertial softening coefficient, θp is the linear
electromechanical coupling coefficient, θNL is the non-
linear electromechanical coupling coefficient resulting
from nonlinear strain, and Ĝ is the forcing term.

The coupled ODEs given by Eq. (16) are solved
using themethod of harmonic balance [53] for all resis-
tive loads and acceleration levels considered in the
experiments. Since the base excitation is assumed to
be harmonic with a driving frequency �, the mechan-
ical response solution and voltage output are expected
to have the same period as the mechanical excitation
and can be approximated by truncated Fourier series
expansions,

wQ =
Q∑

q=1

[
aq cos(q�t) + bq sin(q�t)

]

vQ =
Q∑

q=1

[
cq cos(q�t) + dq sin(q�t)

]
(18)

where Q is the number of harmonics considered and the
typical constant terms a0 and c0 in the Fourier series
expansions are zero because of the symmetry of the
structure. Substituting the approximate solutions into
Eq. (16) results in the residual functions

R1 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

m̂ẅQ + ĉẇQ + k̂
(
1 − γ̂

∣∣wQ
∣∣)wQ + α̂

L2w3
Q

+ β̂

L2

(
wQẇ2

Q + w2
QẅQ

)

−
(

θp + θNL

φ2(Lm)
w2

Q

)
vQ − Ĝ cos�t

R2 = Cp v̇Q + vQ

R
+ θp

φ(Lm)
ẇQ + θNL

φ3(Lm)
w2

QẇQ

(19)

Then, using the Galerkin method of mean weighted
residuals,

∫ 2π/�

0
R1 cos(q�t)dt=0,

∫ 2π/�

0
R2 cos(q�t)dt=0

∫ 2π/�

0
R1 sin(q�t)dt=0,

∫ 2π/�

0
R2 sin(q�t)dt=0

q = 1, . . . , Q

(20)

a systemof 4Q algebraic equations for the Fourier coef-
ficients aq , bq , cq , dq can be generated. Here we choose
to include Q = 5 harmonics, resulting in 20 equations
and 20 unknowns. These equations can be solved using
a multivariate Newton–Raphson method. Since reso-
nant excitation of the nonlinear structure results in a

Table 1 Dimensions and material properties of the MFC
bimorph

Property Symbol Value

Active length Lact 85 mm

Clamped active length L 75.5 mm

Clamped overall length Lo 83.5 mm

Active width bact 7 mm

Total thickness h 0.61 mm

Measured capacitance Cp 3.40 nF

First natural frequency (SC) fSC 40.5 Hz

saddle node bifurcation, the Fourier coefficients were
first solved for an off-resonance excitation frequency,
and then the driving frequency � was linearly swept
up and down around the first natural frequency using
the previous solutions for the Fourier coefficients as
seed values in the Newton–Raphson method in order
to capture both the high- and low-energy stable solu-
tions of the bifurcation. Another method to analyze the
overall nonlinear behavior is by using a multiple scales
approach [53] on the equation ofmotion in the short cir-
cuit condition. This method yields an equivalent nondi-
mensional cubic nonlinearity coefficient which com-
bines the effect of the geometric hardening from α̂ and
the inertial softening from β̂:

αeq = α̂

k̂
− 2

3

β̂

m̂
(21)

which is expected to be positive for the first bending
mode, indicating that the geometric hardening term
dominates the third-order behavior of the system.

3 Experimental setup

Two MFCs, model M8507-P1 from Smart Material
Corp., were vacuum bonded together without a sub-
strate to form a bimorph structure, the dimensions and
material properties of which are listed in Table 1. The
samplewas then placed in an aluminum clamp and onto
an APS 113 Electro-Seis long stroke shaker, as shown
in Fig. 2. An accelerometer was mounted to the base
of the clamp using wax, and the velocity of the MFC
bimorph was measured near the free end of the can-
tilever with a Polytec OFV-505 laser Doppler vibrom-
eter. The MFC samples in the bimorph were wired in
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Fig. 2 Cantilevered MFC bimorph mounted on a long stroke
shaker for base excitation and shunted to a resistive electrical
load box

parallel and placed in the short circuit condition. Lin-
ear noise burst experiments were performed to identify
the fundamental short circuit (SC) resonance frequency
(which is approximately the SC natural frequency due
to low damping) and then repeated for resistive loads
of 1 k�, 1.3 M�, and 100 M�.

Using a VCS 201 vibration controller, the root-
mean-square (RMS) acceleration level was set to 0.5g
and an up and down frequency sweep was performed
around the first short circuit natural frequency at
1 Hz/min. The frequency sweep was repeated at 0.4g,
0.3g, 0.2g, and 0.1g RMS, for the cases of resistive
loads of a short circuit, 1 k�, 1.3 M� and 100 M�.
The base acceleration level, tip velocity of the MFC
bimorph, as well as the voltage across the resistive
load were measured using an NI-9223 data acquisition
device during the nonlinear frequency sweeps.

4 Results

4.1 Experimental results

Figure 3 shows the mechanical and electrical response
of the MFC bimorph under base excitation under vari-
ous resistive loads including only the data correspond-
ing to the downward frequency sweep for clarity. For all
acceleration levels and resistive loads considered, the
quadratic piezoelectric softening dominates the nonlin-
ear behavior (resulting in an initially linear backbone
curve bent to the left), but when the response amplitude
is high enough, the third-order geometric hardening
behavior becomes visible as expected for the first mode

of an inextensible cantilever (resulting in a quadratic
bend of the backbone curve back to the right).

Using the RMS velocity data under the short circuit
condition, one can plot the detuning of the excitation
frequency relative to the short circuit natural frequency
versus the response amplitude inmeters and then create
a backbone curve by applying a polynomial fit over the
points corresponding to the maximum response ampli-
tudes, as shown in Fig. 4. This polynomial is of the form
σ = C1a2 + C2a + C3, where σ is the detuning and
a is the response amplitude. The nonlinear quadratic
piezoelectric softening coefficient γ̂ and the overall
nondimensional cubic nonlinearity coefficient αeq can
be approximated from this polynomial by:

γ̂ =
1 −

(
1 − σ1

ωn

)

a1

αeq = 8C1L2

3ωn
(22)

where a1 is a small response amplitude and σ1 is the
detuning corresponding to that small response ampli-
tude, which results in γ̂ = 155.32 1

m and αeq = 98.75
for this sample.

4.2 Theoretical results

Using the measured capacitance of the MFC bimorph,
the effective area Ae was calculated to be 0.0446 mm2.
The coefficients found in Eq. (16) were then calcu-
lated using Eqs. (3), (5), and (17), as well as with
the parameters extracted from the experimental results
usingEq. (22). The nonlinear equations ofmotion given
by Eq. (16) were then solved using the method of har-
monic balance for all resistive loads and acceleration
levels considered in the experiments as explained pre-
viously. The calculated velocity response and output
voltage are plotted in Fig. 5.

Both the experimental and theoretical RMS voltage
plots for the optimal resistive load (1.3 M�) were con-

verted into the average power plot using Pavg = V 2
RMS

R
for all base acceleration levels considered, as shown in
Fig. 6. The theoretical model shows good agreement
with the experiments performed, accurately predicting
the maximum power output as well as the jump fre-
quencies. However, the theoretical model slightly over-
predicts the output voltage and subsequently underpre-
dicts themechanical response of theMFCbimorph can-
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Fig. 3 Measured RMS tip
velocity and output voltage
of the MFC bimorph versus
resistive load and frequency
at RMS base acceleration
levels of 0.1g, 0.2g, 0.3g,
0.4g, and 0.5g using a
downward frequency sweep
(increasing base
acceleration level from
black to red). (Color figure
online)

Fig. 4 Experimentally
determined response
amplitude under the short
circuit condition versus
detuning relative to the short
circuit natural frequency
and the corresponding
quadratic backbone curve.
(Color figure online)

Fig. 5 Theoretical RMS tip
velocity and output voltage
of the MFC bimorph versus
resistive load and frequency
at RMS base acceleration
levels of 0.1g, 0.2g, 0.3g,
0.4g, and 0.5g using a
downward frequency sweep
(increasing base
acceleration level from
black to blue). (Color figure
online)

tilever. This discrepancy is likely due to other dissipa-
tive terms in the electrical domain (e.g., dielectric loss)
not accounted for in the present work.

The nonlinear governing equations given byEq. (16)
were linearized by setting the nonlinear coefficients γ̂ ,
α̂, β̂, and θNL to zero. The theoretical average power for
the five acceleration levels considered was calculated
for various resistive loads at 37, 38, 39, and 40Hzutiliz-
ing both the linearized model and the nonlinear model

presented in this work, and the results are compared
with the experimental results in Fig. 7. As expected, the
linearized model shows the highest output power near
the linear resonance frequency of the structure (around
40.5 Hz) and decreased output power as the driving
frequency moves away from the linear resonance. The
predictions of the linearized model are highly inaccu-
rate for the realistic base acceleration levels considered
in this work. The experimental data shown in Fig. 3
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Fig. 6 Experimental (red
circles) and theoretical (blue
lines) average power at
RMS base acceleration
levels of 0.1g, 0.2g, 0.3g,
0.4g, and 0.5g using a
downward frequency sweep
with a resistive load of
1.3 M�. (Color figure
online)

Fig. 7 Theoretical average power utilizing a linearized model
(black dashed lines) and the fully nonlinear model (blue solid
lines), as well as experimentally determined average power (red
markers) at RMS base acceleration levels of 0.1g, 0.2g, 0.3g,

0.4g, and 0.5g using a downward frequency sweep for various
resistive loads sampled at 37, 38, 39, and 40 Hz. (Color figure
online)

exhibit strong quadratic piezoelectric softening behav-
ior, resulting in larger response amplitudes at frequen-
cies below the short circuit natural frequency which
the fully nonlinear model accurately predicts. As the
base acceleration level increases, this nonlinear behav-
ior becomes more pronounced, leading to drastically
increased errors in the linearized model.

5 Conclusions

A nonlinear nonconservative electroelastic modeling
framework was developed for energy harvesting appli-
cations from base excitation of the 33-mode of anMFC
bimorph cantilever around its first bending mode. The
equivalent electromechanical properties of the MFC
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bimorph were calculated using a mixing rules formu-
lation, and the effective area of a single RVE as well
as piezoelectric softening coefficient were extracted
experimentally from the short circuit base excitation
case. The equations were solved for primary reso-
nance behavior using the method of harmonic balance
for multiple base acceleration levels, and the results
were experimentally validated over a range of resis-
tive electrical loads and excitation frequencies. The
experimentally observed nonlinear dynamics, which
includes quadratic material softening, cubic geomet-
ric hardening, cubic inertial softening, and a nonlinear
electromechanical coupling term resulting from geo-
metric effects, were all accommodated by the nonlinear
model. It was shown that the linearized model yields
highly inaccurate results for the realistic base acceler-
ation levels considered in this work for typical ambient
vibration frequencies, while the nonlinear model pro-
posed in this work yields very accurate representation
and prediction of the governing dynamics. This frame-
work successfully captures the dynamics ofMFC struc-
tures for energy harvesting and sensing applications
with relatively weak electric fields. For applications
such as resonant actuation with higher electric fields,
additional terms (e.g., coupling nonlinearities, electric
field nonlinearities, dielectric losses) may be required
and can be incorporated in a similar procedure.
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