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Introduction

Vibration-based energy harvesting has received dramatically 
growing attention over the last two decades [1–7]. The main 
research motivation for this field derives from the reduced 
power requirement of small electronic components, such 
as the wireless sensor networks used in passive and active 
monitoring applications. The ultimate goal in this research 
area is to power such small electronic devices by using the 
vibrational energy available in their environment. In this way, 
the requirement of an external power source, as well as the 
maintenance costs and the chemical waste due to conventional 

batteries, can be reduced, if not totally eliminated. The three 
basic vibration-to-electric energy conversion mechanisms are 
the electromagnetic [8, 9], electrostatic [10, 11] and piezo-
electric [12–14] transduction techniques. Other techniques 
that have received less attention include magnetostriction [15, 
16] and the use of electroactive polymers [17, 18]. The main 
advantages of piezoelectric materials in energy harvesting are 
their high power density and ease of application. Voltage out-
puts in electromagnetic energy harvesting are typically very 
low and often multi-stage post-processing is required to reach 
a voltage level that can charge a storage component. In piezo-
electric energy harvesting, however, usable voltage outputs 
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Abstract
Vibration-based energy harvesting is a growing field for generating low-power electricity 
to use in wireless electronic devices, such as the sensor networks used in structural health 
monitoring applications. Locally resonant metastructures, which are structures that comprise 
locally resonant metamaterial components, enable bandgap formation at wavelengths 
much longer than the lattice size, for critical applications such as low-frequency vibration 
attenuation in flexible structures. This work aims to bridge the domains of energy harvesting 
and locally resonant metamaterials to form multifunctional structures that exhibit both 
low-power electricity generation and vibration attenuation capabilities. A fully coupled 
electromechanical modeling framework is developed for two characteristic systems and their 
modal analysis is presented. Simulations are performed to explore the vibration and electrical 
power frequency response maps for varying electrical load resistance, and optimal loading 
conditions are presented. Case studies are presented to understand the interaction of bandgap 
formation and energy harvesting capabilities of this new class of multifunctional energy-
harvesting locally resonant metastructures. It is shown that useful energy can be harvested 
from locally resonant metastructures without significantly diminishing their dramatic vibration 
attenuation in the locally resonant bandgap. Thus, integrating energy harvesters into a 
locally resonant metastructure enables a new potential for multifunctional locally resonant 
metastructures that can host self-powered sensors.
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can be obtained directly from the piezoelectric material itself. 
In electrostatic energy harvesting, an input voltage or charge 
needs to be applied so that the relative vibratory motion of 
the capacitor elements creates an alternating electrical output. 
The voltage output in piezoelectric energy harvesting emerges 
from the constitutive behavior of the material, which elimi-
nates the requirement of an external voltage input. As another 
advantage, piezoelectric devices can be fabricated in micro-
scale owing to the well-established thick-film and thin-film 
fabrication techniques [3]. Various piezoelectric energy har-
vester configurations have been developed lately, including 
both linear and nonlinear piezoelectric energy harvesters, 
such as linear cantilevers [12–14] as well as bistable beam [4, 
19, 20] and bistable plate [4, 21] configurations.

In a separate body of work, researchers have long investi-
gated phononic crystals for their potential to filter or redirect 
elastic waves [22]. Phononic crystals exhibit bandgaps (i.e. 
frequency ranges where elastic or acoustic waves cannot prop-
agate) produced by Bragg scattering [23–25], which occurs 
when the wavelength of the incident wave is on the order of 
the lattice constant of the crystal [26, 27]. Therefore, a funda-
mental limitation of Bragg-based phononic crystals is that it 
is only possible to create low-frequency bandgaps using very 
large structures. In their seminal work, Liu et al [28] showed 
the potential for locally resonant metamaterials to create band-
gaps at wavelengths much larger than the lattice size, enabling 
the creation of low-frequency bandgaps in relatively small 
structures. Locally resonant metamaterials contain resonating 
elements, whether mechanical [28, 29] or electromechanical 
[30–32], which are capable of storing and transferring energy. 
A significant body of research has examined locally resonant 
elastic/acoustic metamaterials of various types. Ho et al [29] 
examined a similar system to the one in Liu et al [28] using 
a rigid frame with rubber-coated metal spheres as resonators. 
For that type of system, Liu et al [33] found analytic expres-
sions for the effective mass densities of 3D and 2D locally 
resonant metamaterials, showing that the effective mass 
becomes negative near the resonant frequency. Simplifying 
the analysis, others used lumped-mass models to obtain the 
locally resonant bandgap [34, 35]. Other researchers have 
studied different implementations for resonators for different 
types of elastic waves [36–42], and two-degree-of-freedom 
resonators [43]. Moving towards analytical predictions for the 
bandgap edge frequencies, Xiao et al [44] used the plane wave 
expansion method to study flexural waves in a plate with peri-
odically attached resonators, yielding a method to predict the 
edges of the bandgap. Peng and Pai [45] also studied a locally 
resonant metamaterial plate, finding an explicit expression for 
the bandgap edge frequencies.

In the existing literature, the combination of energy har-
vesting and vibration attenuation was explored mainly for 
the classical vibration absober configuration (e.g. Ali and 
Adhikari [46]). Beyond the well-known vibration absorbers, 
locally resonant metastructures are natural choices for the 
inclusion of vibrational energy harvesters [47], as they already 
include numerous resonating elements that can be used 
to harvest energy. This leads to the idea of multifunctional 
locally resonant metastructures that, in addition to showing 

dramatic vibration reduction in a locally resonant bandgap, 
can recover low-power electricity for sensing or other appli-
cations. Recently, we developed modal analysis frameworks 
for metastructures made from locally resonant metamat erials 
under bending vibration [48–50]. In the following, we bridge 
the domains of vibration energy harvesting and locally reso-
nant metamaterials to enable multifunctional energy har-
vesting-metastructures (based on the Euler–Bernoulli beam 
theory, i.e. for transverse vibrations/waves). We present an 
analytical electromechanical framework for two multifunc-
tional energy harvesting locally resonant metastructures, 
one with mechanical resonators as energy harvesters, and 
another made from a piezoelectric bimorph with segmented 
electrodes, shunted with inductors and resistors to add local 
resonance but also harvest useful energy. For ease of refer-
ence, the structure with mechanical resonators as energy har-
vesters will be referred to as the ‘mechanical metastructure’, 
while the piezoelectric bimorph with segmented electrodes 
will be referred to as the ‘electromechanical metastruc-
ture’ although clearly both systems are electromechanical  
in nature.

Mechanical locally resonant metastructure  
with energy harvesters

Consider a mechanical metastructure whose governing equa-
tions are altered from the form presented in [50] to add piezo-
electric coupling to the resonator equations:

L [w(P, t)] + m(P)ẅ(P, t)−
S∑

j=1

(kjuj(t) + cju̇j(t))

δ(P − Pj) = f (P, t), P ∈ D
 

(1)

mjüj + cju̇j + kjuj − ϑjvj = −mjẅ(Pj, t) (2)

Cp,jv̇j + Yj [vj] + ϑju̇j = 0 (3)

where L is a linear, self-adjoint differential operator (called 
the ‘stiffness operator’) of order 2p, where p � 1 is an integer 
defining the order of the system, w(P, t) is the displacement 
of a point P in the domain D at time t, m(P) is the mass dis-
tribution at P, kj, cj, mj, uj, and Pj  are the stiffness, damping 
constant, mass, displacement, and position of the jth resonator 
respectively, S is the total number of resonators, δ(P) is the 
Dirac delta function, f (P, t) is the external forcing, ϑj, Cp,j and 
Yj  are the electromechanical coupling, effective piezoelectric 
capacitance, and admittance operator of the shunt circuit on 
the jth resonator. The only damping modeled explicitly in 
these equations is viscous damping from the resonators, with 
the understanding that modal damping can be introduced in 
the discretized equations. An example of such a system would 
be a beam (the primary structure) with multiple cantilever-
type [13] energy harvesters with tip masses as the resonators, 
as shown schematically in figure 1.

Following a procedure similar to [50], we assume a modal 
analysis type expansion for w in the mode shapes of the struc-
ture without resonators (i.e. the ‘plain structure’)
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w(P, t) =
N∑

r=1

ηr(t)φr(P)
 

(4)

where N is the number of modes used in the expansion, φr(P) 
is the rth mode shape of the plain structure, and ηr(t) is the 
corresponding modal weighting. These mode shapes satisfy 
the orthogonality conditions

∫

D
m(P)φr(P)φs(P)dD = δrs, r, s = 1, 2, . . . (5)

∫

D
φr(P)L [φs(P)] dD = ω2

r δrs, r, s = 1, 2, . . . (6)

where ω2
r  is the squared natural frequency of the rth mode 

shape of the plain structure and δrs is the Kronecker delta. By 
substituting equation (4) into equation (1), multiplying by the 
mode shape φk , and integrating across the domain, we obtain 
the discretized version of the primary structure’s governing 
partial differential equation:

η̈r + 2ζrωrη̇r + ω2
r ηr −

S∑
j=1

(kjuj + cju̇j)φr(Pj) = qr, r = 1, 2, . . . , N

 (7)
where

qr(t) =
∫

D
φr(P) f (P, t)dD (8)

and ζr  is the rth modal damping factor. Substituting equa-
tion  (4) into equations  (2) and (3) gives the other two dis-
cretized equations:

mjüj + cju̇j + kjuj − ϑjvj = −mj

N∑
r=1

φr(Pj)η̈r (9)

Cp,jv̇j + Yj [vj] + ϑju̇j = 0. (10)

For a specified set of parameters, equations (7)–(10) can be 
solved using typical linear multi-degree-of-freedom dynam-
ical systems techniques. Alternatively, taking the Laplace 

transforms of equations  (7)–(10) and rearranging, the fol-
lowing linear system of equations can be obtained:

(s2 + 2ζrωrs + ω2
r )Hr(s)

+
s2(2ζωts + ω2

t )
∑S

j=1 mjφr(Pj)
∑N

k=1 φk(Pj)Hk(s)

s2 + 2ζωts + ω2
t

(
1 + γs

s+h(s)

) = Qr(s)

 (11)
where Hr(s) and Qr(s) are the Laplace transforms of ηr(t) 
and qr(t) respectively, ω2

t = kj/mj is the short-circuit squared 
resonant frequency of every resonator, ζ = cj/2ωtmj  is the 
damping ratio of every resonator, h(s) = Yj(s)/Cp,j is the 
normalized shunt circuit admittance of all of the harvesting 
circuits, where Yj(s) is the Laplace transform of Yj , and γ is a 
dimensionless coupling term, defined as

γ =
ϑ2

j

kjCp,j
 (12)

which is also assumed to be the same for each resonator. As 
suggested in [50], the resonator masses mj can be selected to 
be proportional to the mass distribution m(P) at the respective 
resonator locations, or

mj = µm(Pj)∆Dj (13)

where μ is a dimensionless parameter termed the ‘mass ratio’, 
defining the ratio of total resonator masses to the mass of the 
plain structure, and ∆Dj is a portion of the domain D around 
the jth resonator. With this simplification, we obtain

(s2 + 2ζrωrs + ω2
r )Hr(s)

+
µs2(2ζωts + ω2

t )
∑N

k=1 Hk(s)
∑S

j=1 m(Pj)φr(Pj)φk(Pj)∆Dj

s2 + 2ζωts + ω2
t

(
1 + γs

s+h(s)

) = Qr(s).

 (14)
As the number of resonators becomes sufficiently large, we 
can use the approximation

S∑
j=1

∆Djm(Pj)φr(Pj)φk(Pj) ≈
∫

D
m(P)φr(P)φk(P)dD = δrk

 (15)
such that we obtain

Hr(s)
Qr(s)

=
1

s2

[
1 + µ(2ζωts+ω2

t )

s2+2ζωts+ω2
t (1+ γs

s+h(s) )

]
+ 2ζrωrs + ω2

r

.
 (16)

When all of the resonators are short-circuited (i.e. h(s) → ∞) 
and undamped (i.e. ζ = 0), and for an undamped structure 
(ζr = 0), we obtain the typical locally resonant bandgap as 
discussed in [50], given by the frequency range

ωt < ω < ωt

√
1 + µ. (17)

In the case of open-circuit (i.e. h(s) = 0) and undamped reso-
nators, it can be shown that the bandgap appears in the fre-
quency range

ωt

√
1 + γ < ω < ωt

√
1 + µ+ γ. (18)

Thus, the bandgap is shifted to a higher frequency range at 
open circuit. Generally speaking, since the coupling term γ is 

Figure 1. Schematic of the mechanical locally resonant energy 
harvesting metastructure. Small cantilever beams with tip masses 
act as mechanical resonators attached to the primary beam structure, 
and piezoelectric elements with a resistive load are bonded to the 
mechanical resonators to serve as energy harvesters.
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relatively small for real systems, we expect the locally resonant 
bandgap to be only slightly shifted at open circuit. Depending 
on the type of shunt circuit used, various types of behavior can 
be observed. In typical energy harvesting applications, either 
purely resistive shunts or resistive-inductive shunts are used.

We can obtain the voltage output of the shunt circuit 
attached to the resonator at location Pj  as

V(Pj, s) =
ϑj

Cp,j

s
s + h(s)

s2W(P, s)

s2 + 2ζωts + ω2
t

(
1 + γs

s+h(s)

) (19)

where W(P, s) is the Laplace transform of the displacement 
w(P, t). The associated complex power can be calculated by 
substituting s = iω for the excitation frequency ω, yielding 
(after some manipulation)

S(Pj, iω) = |V(Pj, iω)|2Y∗
j (iω) (20)

=
µγω6ω2

t h∗(iω)|W(Pj, iω)|2m(Pj)∆Dj

|(iω + h(iω))(ω2 − i2ζωtω − ω2
t )− iωω2

t γ|2
 (21)

where ( )∗ indicates the complex conjugate. Assuming 
 infinitely many resonators, the total complex power is calcu-
lated with the integral

Stot(iω) =
S∑

j=1

S(Pj, iω) ≈
∫

D
dS (22)

=
µγω6ω2

t h∗(iω)
∫

D m(P)|W(P, iω)|2dD
|(iω + h(iω))(ω2 − i2ζωtω − ω2

t )− iωω2
t γ|2

. (23)

Note that the integral in equation (23) is related to the kinetic 
energy of the primary beam structure, and an additional factor 
of ω gives the time rate of change of the kinetic energy. More 
explicitly,

|Ṫstr(iω)| =
1
2
ω

∫

D
m(P)ω2|W(P, iω)|2dD (24)

where Tstr is the kinetic energy of the primary structure. Thus, 
the total complex power can be written as

Stot(iω) =
2µγω3ω2

t h∗(iω)|Ṫstr(iω)|
|(iω + h(iω))(ω2 − i2ζωtω − ω2

t )− iωω2
t γ|2

.

 (25)
We can also calculate the total complex power easily from 
the modal weightings Hr(s) by recognizing that the integral in 
equation (23) can be reduced as

∫

D
m(P)|W(P, iω)|2dD

=

∫

D
m(P)

N∑
r=1

Hr(iω)φr(P)
N∑

k=1

H∗
k (iω)φk(P)dD =

N∑
r=1

|Hr(iω)|2

 (26)
where the orthogonality condition of the mode shapes φr in 
equation (5) has been used. Thus, the total complex power can 
also be written as

Stot(iω) =
µγω6ω2

t h∗(iω)
∑N

r=1 |Hr(iω)|2

|(iω + h(iω))(ω2 − i2ζωtω − ω2
t )− iωω2

t γ|2
.

 (27)

The simplest type of shunt circuit to quantify energy 
 harvesting  performance is a resistor placed across the two 
electrodes (for AC input - AC output), yielding a normalized 
admittance h(iω) = 1/τ , where τ = RpCp,j is the time con-
stant associated with the parallel resistance Rp. To visualize 
the effect of various load resistances (i.e. values of τ), we con-
sider the structural response and power output for a cantilever 
beam under base excitation of amplitude wb at the excitation 
frequency ω, and plot the tip transmissibility and power output 
as heatmaps versus τ and ω. Additionally, at each excitation 
frequency, the optimal value τopt that maximizes the real part 
of the power output P(iω) = Re {Stot(iω)} can be obtained, 
and the resulting optimal real power can be plotted as a func-
tion of excitation frequency only. The tip displacement at this 
optimal loading can also be checked to ensure that the bandgap 
is still present, even at optimal loading. These plots are shown 
in figures 2–5 for the mechanical metastructure with energy 
harvesting resonators.

It is clear from figures 2 and 3 that large, relatively broad-
band power output occurs near the resonant frequency of the 
resonators, just before the locally resonant bandgap. Note that 
the sudden peaks in both the displacement and power at optimal 
loading are due to the discrete step size of both frequency and 
resistance, as the response is extremely sensitive to frequency 
and resistance in the cluster of modes that appear just before 
the locally resonant bandgap. In practice, this frequency 
neighborhood is significantly impacted by both damping and 
any parameter variations in the system (e.g. slight variations 
in resonator natural frequency or placement). Large, but nar-
rower-band power output is observed near the resonances of 
the system. Furthermore, from figures 4 and 5, it is clear that 
the locally resonant bandgap is largely unchanged by the pres-
ence of the harvesting circuitry. The shift from short circuit 
(small τ) to open circuit (large τ) can be seen as the shift in the 
frequency range of the locally resonant bandgap. Additionally, 
the resonant frequencies that appear before the bandgap are 
strongly attenuated by the harvesting circuit, corresponding to 
the relatively large power output near the resonant frequency 
of the resonators. Thus, the use of energy harvesting circuitry 
integrated with the resonators in a mechanical metastructure 
can help attenuate the resonances before the locally resonant 
bandgap while providing useful power for sensing and other 
applications. Furthermore, the strong attenuation inside the 
locally resonant bandgap is unchanged, suggesting that such 
locally resonant metastructures could be designed with inte-
grated energy harvesters to further improve their multifunc-
tionality. The power output from the energy harvesters could 
be used for low-power sensing, as an example. Additionally, 
the energy harvesters themselves can act as distributed sen-
sors, as their voltages relate directly to the primary structure’s 
motion.

For relatively small coupling (e.g. figure 5), it is clear that 
the extreme vibration attenuation properties of the locally 
resonant bandgap are insensitive to the optimal loading con-
ditions of the energy harvesters. However, it can be expected 
that for larger coupling γ, the locally resonant bandgap will 
be more dramatically affected at optimal loading. To study 
this, the displacement at optimal loading is shown versus 
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excitation frequency ω and electromechanical coupling γ 
as a heatmap in figure  6. For large electromechanical cou-
pling γ, the displacement at optimal loading bridges between 
the short and open circuit locally resonant bandgaps, which 

become more separated for large γ (see equations  (17) and 
(18)). Although the vibration attenuation properties inside 
the bandgap are slightly reduced, the bandwidth of vibra-
tion attenuation is greatly increased. This follows from the 

Figure 2. Real power output for the mechanical metastructure versus time constant τ and normalized excitation frequency ω/ω1 for a 
cantilever beam excited by base motion, with µ = 1, γ = 0.1, ωt = 50ω1, ζ = 0.01, ζr = 0.01. Dashed line shows the optimal loading at 
each excitation frequency.

Figure 3. Optimal real power output for the mechanical metastructure with resistive shunting versus normalized excitation frequency ω/ω1 
for a cantilever beam excited by base motion, with µ = 1, γ = 0.1, ωt = 50ω1, ζ = 0.01, ζr = 0.01.

Figure 4. Beam tip response for the mechanical metastructure versus time constant τ and normalized excitation frequency ω/ω1 for a 
cantilever beam excited by base motion, with µ = 1, γ = 0.1, ωt = 50ω1, ζ = 0.01, ζr = 0.01. Dashed line shows the optimal loading at 
each excitation frequency.

J. Phys. D: Appl. Phys. 51 (2018) 215103
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intuition that higher electromechanical coupling results in 
higher effective damping at optimal loading, yielding a trade 
off between bandwidth and amplitude similar to that of a 
damped vibration absorber. Clearly it would almost always 
be desirable to have higher electromechanical coupling in 
the energy harvesters, but this is limited by the piezoelectric 
materials readily available.

Electromechanical locally resonant metastructure 
with energy harvesters

Consider a piezoelectric bimorph beam with j = 1 . . . S  seg-
mented electrodes placed between left and right positions 
x = xL

j  and x = xR
j  as considered in [49] with governing 

equations

EI
∂4w
∂x4 + m

∂2w
∂t2

−ϑ

S∑
j=1

vj(t)
∂2

∂x2

[
H(x − xL

j )− H(x − xR
j )
]
= f (x, t)

 

(28) Cp,jv̇j(t) + Yj [vj(t)] + ϑ

∫ xR
j

xL
j

∂3w
∂x2∂t

dx = 0 (29)

Figure 5. Beam tip response for the mechanical metastructure at optimal power output versus normalized excitation frequency ω/ω1 for a 
cantilever beam excited by base motion, with µ = 1, γ = 0.1, ωt = 50ω1, ζ = 0.01, ζr = 0.01.

Figure 6. Displacement at optimal loading versus normalized excitation frequency ω/ω1 and dimensionless coupling γ for µ = 1, 
ωt = 50ω1, ζ = 0.01, ζr = 0.01. The dashed lines show the edge frequencies of the short-circuit and open circuit locally resonant bandgaps 
(equations (17) and (18)). For large γ values, the optimal resistive loading merges the two distinct bandgaps at open and short circuit.

Figure 7. Schematic of the electromechanical locally resonant energy 
harvesting metastructure. The primary structure is a piezoelectric 
bimorph with segmented electrodes. Inductors shunted to each pair 
of electrodes serve as electromechanical resonators, and resistors are 
placed in parallel to provide energy harvesting capability.

J. Phys. D: Appl. Phys. 51 (2018) 215103
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where w(x, t) is the transverse displacement of the beam, vj(t) 
is the voltage across the jth pair of electrodes, Yj  is a linear 
integro-differential operator corresponding to the admit-
tance of the jth shunt circuit, H(x) is the Heaviside function, 
and f (x, t) is the external forcing. No damping effects are 
included, with the understanding that modal damping can be 
introduced later. The effective properties of the bimorph are

EI =
2b
3

(
cs

h3
s

8
+ c̄E

11

[(
hp +

hs

2

)3

− h3
s

8

])
 (30)

m = b(ρshs + 2ρphp) (31)

ϑ =
ē31be

2hp

[(
hp +

hs

2

)2

− h2
s

4

]
 (32)

Cp,j =
ε̄S

33be∆xj

2hp
. (33)

The parameters cs, ρs, and hs are the central substrate layer’s 
elastic modulus, mass density, and thickness, respectively, 
while b is the width of the beam. The piezoelectric layers have 
mass density ρp, thickness hp, width b, elastic modulus at con-
stant electric field c̄E

11, effective piezoelectric stress constant 

ē31, and permittivity component at constant stress ε̄S
33, where 

the overbars indicate effective properties for 1D thin layers 
reduced from the full 3D constitutive equations, defined as

c̄E
11 =

1
sE

11
, ē31 =

d31

sE
11

, ε̄S
33 = εT

33 −
d2

31

sE
11

 (34)

where sE
11 is the elastic compliance at constant electric field, d31 

is the piezoelectric strain constant, and εT
33 is the permittivity 

component at constant strain. Note that the effective piezo-
electric capacitance Cp,j and admittance Yj  are now properties 
associated with the segmented electrodes on the piezoelectric 
bimorph, rather than properties associated with the individual 
mechanical resonators as in the previously considered case. 
Energy harvesting is achieved through the shunts attached to 
the electrodes on the structure itself, rather than the shunts 
on the separate mechanical resonators. This system is shown 
schematically in figure 7.

Because the mathematical development (other than the 
 harvesting part) is similar to [49], only the most relevant 
results will be reviewed here. By assuming a modal expansion 
of the same form of equation (4), and using the approximation

S∑
j=1

EI
∆φ′

r,j

∆xj

∆φ′
k,j

∆xj
∆xj ≈

∫ L

0
EI

d2φr

dx2

d2φk

dx2 dx = ω2
r δrk (35)

Figure 8. Real power output for the electromechanical metastructure versus time constant τ and normalized excitation frequency ω/ω1 for 
a cantilever beam excited by base motion, with α = 0.44, ωt = 50ω1, ζr = 0.01. Dashed line shows the optimal loading at each excitation 
frequency.

Figure 9. Optimal real power output for the electromechanical metastructure versus normalized excitation frequency ω/ω1 for a cantilever 
beam excited by base motion, with α = 0.44, ωt = 50ω1, ζr = 0.01.
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where

∆φ′
r,j =

(
dφr

dx

)xR
j

xL
j

=
dφr

dx
(xR

j )−
dφr

dx
(xL

j ) (36)

it can be shown that the response of the rth mode shape is

Hr(s) =
Qr(s)

s2 + 2ζrωrs + ω2
r

(
1 + αs

s+h(s)

) (37)

where h(s) = Yj(s)/Cp,j is the normalized admittance of the 
shunt circuits attached to the structure, ζr  is the rth modal 
damping factor, and α is a dimensionless electromechanical 
coupling term, analogous to γ as discussed earlier.

As before, we can obtain the total power through the shunt 
circuitry by summing the power through each separate shunt 
circuit, which becomes an integral across the beam in the limit 
of infinitely many resonators. It can be shown that the total 
power is then

Stot(iω) =
αω2h∗(iω)
|iω + h(iω)|2

∫ L

0
EI

∣∣∣∣
d2

dx2 W(x, iω)
∣∣∣∣
2

dx (38)

where W(x, iω) is the beam deflection amplitude at a position x 
and frequency ω. It is evident that the integral in equation (38) 
is related to the strain energy, i.e.

|V̇b(iω)| =
1
2
ω

∫ L

0
EI

∣∣∣∣
d2

dx2 W(x, iω)
∣∣∣∣
2

dx (39)

where Vb is the strain energy due to bending in the beam. Thus, 
the total power produced by the electromechanical structure is

Stot(iω) = 2
αωh∗(iω)

|iω + h(iω)|2
|V̇b(iω)|. (40)

As with the mechanical metastructure, the total power can be 
calculated easily from the modal weightings by recognizing 
that
∫ L

0
EI

∣∣∣∣
d2

dx2 W(x, iω)
∣∣∣∣
2

dx

=

∫ L

0
EI

N∑
r=1

Hr(iω)
d2φr

dx2

N∑
k=1

H∗
k (iω)

d2φk

dx2 dx =
N∑

r=1

ω2
r |Hr(iω)|2.

 (41)
Note that, while the electromechanical metastructure 

power output is proportional to the electromechanical cou-
pling α, the mechanical metastructure power output is propor-
tional to the added mass ratio μ. The dimensionless coupling 
α depends on the material properties and geometry of the 
bimorph and cannot be easily increased, whereas the mass 
ratio μ can be artificially increased simply by adding mass to 

Figure 10. Beam tip response for the electromechanical metastructure versus time constant τ and normalized excitation frequency ω/ω1 
for a cantilever beam excited by base motion, with α = 0.44, ωt = 50ω1, ζr = 0.01. Dashed line shows the optimal loading at each excitation 
frequency.

Figure 11. Beam tip response for the electromechanical metastructure at optimal power output versus normalized excitation frequency ω/ω1 
for a cantilever beam excited by base motion, with α = 0.44, ωt = 50ω1, ζr = 0.01.
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the resonators or reducing the mass of the primary structure, 
within the design constraints of the system.

Since we consider structures that display both locally 
resonant behavior and energy harvesting capabilities, a nat-
ural choice for the normalized admittance h(s) is that of an 
inductor placed in parallel with a resistor, or

h(s) =
ω2

t

s
+

1
τ

 (42)

where ωt  is the resonant frequency of the shunt circuit, and 
τ = RpCp,j is the time constant associated with the parallel 
resistance Rp. For Rp → 0, we would expect to obtain short-
circuit behavior, while Rp → ∞ should yield the typical 
locally resonant bandgap, which can be shown to exist in the 
frequency range

ωt√
1 + α

< ω < ωt. (43)

As with the mechanical locally resonant metastructure, 
we consider the structural response and power output for a 
canti lever beam under base excitation of amplitude wb at the 
 excitation frequency ω, and plot the tip transmissibility and 
power output as heatmaps versus τ and ω. Additionally, at 
each excitation frequency, the optimal value τopt that maxi-
mizes the real part of the power output P(iω) = Re {Stot(iω)} 
can be obtained, and the resulting optimal real power can 
be plotted as a function of excitation frequency only. These 
plots are shown in figures  8–11 for the electromechanical 
metastructure. For all of the numerical studies shown here, an 
electromechanical coupling term α = 0.44 was used, which is 
representative of a piezoelectric bimorph made with a single 
crystal piezoelectric material [49].

As discussed previously, the sudden peaks in optimal 
power and displacement at optimal loading are due to dis-
cretization error near the cluster of modes just before the 
locally resonant bandgap. As with the mechanical metastruc-
ture, it is clear that nontrivial power output can be obtained 
while maintaining the vibration attenuation properties of the 
locally resonant bandgap. The optimal power output for the 
electromechanical metastructure displays more broadband 
behavior (but less power) than the mechanical metastructure, 
likely due to the narrow-band nature of mechanical reso-
nator type energy harvesters. Although the maximum power 
output for the electromechanical metastructure is lower than 
the mechanical metastructure for these parameter values, the 
power output is highly sensitive to both the coupling terms 
γ and α and the added mass ratio μ. Note also that the elec-
tromechanical metastructure requires minimal alteration to 
be adapted for energy harvesting, since the shunt circuitry is 
already present, whereas the mechanical metastructure needs 
significant modification. This also means the electromechan-
ical system will be much simpler to adapt to different energy 
harvesting environments and frequency ranges, with the 
caveat that extremely low frequencies are difficult to reach 
due to inductance limitations. Finally, the electromechanical 
locally resonant metastructure does not require the significant 
mass addition of the mechanical locally resonant bandgap, 
although more thorough efficiency analysis is required to 

explore how the power output and displacement at optimal 
loading vary with the total mass of the structure.

Conclusions

The research fields of vibration-based energy harvesting and 
locally resonant metamaterials have received growing interest 
lately. The goal in energy harvesting is to generate low-power 
electricity to use in wireless electronic devices, such as the 
sensor networks used in structural health monitoring applica-
tions. Locally resonant metastructures, which are structures 
that comprise locally resonant metamaterial components, 
enable bandgap formation at wavelengths much longer than 
the lattice size, for critical applications such as low-frequency 
vibration attenuation in flexible structures. This work cou-
ples the domains of energy harvesting and locally resonant 
metamaterials to form multifunctional structures that exhibit 
both low-power electricity generation and vibration attenua-
tion capabilities. A fully coupled electromechanical modeling 
framework is established for two representative multifunc-
tional systems, and their modal analysis is presented. We 
simulated vibration and electrical power frequency response 
maps for varying electrical load resistance, demonstrating 
that even at optimal loading, the locally resonant bandgap can 
be maintained. The resulting framework can be used to ana-
lyze and optimize this new class of multifunctional energy- 
harvesting locally resonant metastructures. Further challenges 
lie in designing fully integrated locally resonant metastruc-
tures with more complex energy harvesting circuitry with 
minimal reductions in performance.
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