
Contents lists available at ScienceDirect

Composite Structures

journal homepage: www.elsevier.com/locate/compstruct

Nonlinear elastodynamics of piezoelectric macro-fiber composites with
interdigitated electrodes for resonant actuation

D. Tan, P. Yavarow, A. Erturk⁎

G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA

A R T I C L E I N F O

Keywords:
Piezoelectricity
Actuation
Nonlinear
Macro-fiber composites

A B S T R A C T

Macro-fiber composite (MFC) piezoelectric materials are used in a variety of applications employing the con-
verse piezoelectric effect, ranging from morphing and bioinspired actuation to vibration control in flexible
structures. Most of the existing literature to date considered linear material behavior for geometrically linear
oscillations. However, in many applications, such as bioinspired locomotion using MFCs, material and geometric
nonlinearities are pronounced and linear models fail to represent and predict the governing dynamics. The
predominant types of nonlinearities manifested in resonant actuation of MFC cantilevers are piezoelectric
softening, geometric hardening, and inertial softening. In the present work, we explore nonlinear actuation of
MFC cantilevers and develop an experimentally validated mathematical framework for modeling and analysis. In
the experimental setting, an in vacuo actuation scenario is considered for a broad range of voltage levels (from
low to moderate values) while eliminating nonlinear fluid damping. Experiments are conducted for an MFC
bimorph cantilever, and model simulations based on the method of harmonic balance are compared with ex-
perimental frequency response curves under resonant actuation. The resulting experimentally validated fra-
mework can be used for simulating the dynamics of MFCs under resonant actuation, as well as parameter
identification and structural optimization for linear to moderately nonlinear regime.

1. Introduction

Utilizing the piezoelectric effect for applications in bending is ty-
pically considered via the 31-mode with uniform electrodes, as is seen
in applications for energy harvesting, sensing, and actuation for the
past three decades [1–8]. Although the piezoelectric constant asso-
ciated with the 33-mode is 50–100% larger than the piezoelectric
constant associated with the 31-mode, the 33-mode has conventionally
been studied for axial deformations through piezoelectric stacks for
high force and low displacement applications [9–12].

Interdigitated electrodes (IDEs) with piezoelectric fibers was first
explored by Bent and Hagood [13–15] for use in active-fiber composite
(AFC) structures, and further studied numerically and experimentally
by others [16–18]. The AFCs utilized piezoelectric fibers with circular
cross sections, which limited the contact between the electrode and the
piezoelectric fibers, resulting in lower electromechanical coupling and
higher dielectric losses. The Macro-Fiber Composite (MFC) technology
was introduced by researchers at the NASA Langley Research Center
[19,20] and utilized fibers with rectangular cross sectional area for
improved electromechanical coupling. Additionally, the MFC tech-
nology offers a significant increase in flexibility as compared to

monolithic piezoelectric materials, which enables its use in bending
applications, as well as improved actuation authority. This led to ap-
plications in bio-inspired locomotion [4,21], morphing and flapping
wing designs [22–25], vibration control [26], and energy harvesting
[27–31].

In terms of modeling efforts applied to MFCs, Williams et al.
[32–34] performed experiments to determine the mechanical properties
of MFCs using modified mixing rules (i.e. rule of mixtures). Derae-
maeker et al. [35] demonstrated mixing rule calculations and compared
results to both experiments and manufacturer data. Shahab and Erturk
[36] combined the linearized mixing rules formulation with the dy-
namics established in Euler–Bernoulli beam theory to develop linear
electroelastodynamic equations for MFC bimorphs for energy har-
vesting and actuation. Nonlinear modeling of piezoelectric materials
have focused on monolithic and brittle piezoelectric materials, such as
seen in the recent paper by Leadenham and Erturk [37] and the works
referenced there.

In the present work, a nonlinear electroelastic model is developed
for an MFC bimorph under dynamic actuation by combining piezo-
electric constitutive equations with nonlinear softening due to ferroe-
lastic hysteresis [37,38], the electroelastic and dielectric properties of
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the representative volume elements (RVEs) within an MFC [35,36], and
the inextensibility condition for a cantilever under nonlinear strain
[39]. A single mode assumption is then applied assuming resonant ac-
tuation, yielding a nonlinear lumped parameter model for the MFC
bimorph. This model is then solved using the harmonic balance method
[40] and validated with in vacuo dynamic actuation experiments.

2. Nonlinear electroelastic equations for an MFC bimorph
cantilever under dynamic actuation

For a piezoelectric material actuated in the 33-mode (via inter-
digitated electrodes), the electric enthalpy density, H, can be expressed
as
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where c E
33 is the elastic modulus at constant electric field, S3 is the strain,

γ is a nonlinear strain coefficient due to ferroelastic softening, e33 is the
piezoelectric stress constant, E3 is the electric field, and ε S

33 is the per-
mittivity at constant strain (these material properties are defined for the
thin structure and therefore reduced from the 3D constitutive equa-
tions). The strain due to bending at any point in a cantilever can be
expressed as = −S zθ s3 , , where θ is the angular displacement, z is the
distance from the neutral axis, and the subscript s, refers to a spatial
derivative with respect to the arclength of the beam. Although the
electric field is non-uniform within the piezoelectric material, the ef-
fective electric field can be approximated by ≈ − = −E v

L
λ

L3
̇

e e
, where v is

the voltage across the interdigitated electrodes, Le is the distance be-
tween the interdigitated electrodes, and λ ̇ is the time derivative of the
flux linkage.

As described by Deraemaeker et al. [35] and Shahab and Erturk
[36] and illustrated in Fig. 1, the rectangular piezoelectric fibers (co-
lored gray in Fig. 1) within an MFC are separated by passive layers of
epoxy (yellow) and then embedded within Kapton film (orange) con-
taining interdigitated copper electrodes (brown) perpendicular to the
piezoelectric fibers, creating an array of repeating representative vo-
lume elements (RVEs). Each RVE is of width be, length Le, and thickness
hp (as depicted on the right side of Fig. 1), and has material properties
defined by the mixing rules formulation [35,36]:
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where ν is the volume fraction of PZT within a RVE (approximately

90%), ε T
33 is the permittivity under constant stress, d33 is the piezo-

electric charge constant, and the subscripts p, m, and e correspond to
the piezoelectric fiber properties, the matrix (epoxy) properties, and the
equivalent properties of the RVE, respectively.

The section of the MFC covered in piezoelectric fibers contains M
number of RVEs in the width direction and Na number of RVEs in the
length direction, making the active width =b Mbact e and the active
length =L N Lact a e. Part of the MFC is clamped in a way that sections of
the piezoelectric fibers remain motionless and thus are not strained, so
we define the clamped active length such that =L NLe, where N is the
number of RVEs in the length direction that are under strain.

The MFC bimorph is constructed by bonding two MFCs back-to-back
(using high shear strength epoxy) and wiring them in parallel, so the
total potential energy associated with the RVEs within an MFC bimorph
can be written as:
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where the overdot refers to a time derivative, H s( ) is the heaviside step
function, and the material properties of the piezoelectric fibers within
the MFC bimorph are

∑

∑

∑ ∑

∑

∑ ∑ ∑ ∑

= ⎡
⎣

⎤
⎦

= ⎡
⎣

⎤
⎦

= ⎡
⎣

⎤
⎦

= +

≈

= ≈

=

+ −

=

+ −

=

+ −

=

=

= = = =

( )

EI b c

B b

e h

e

C ε ε

2

ϑ 2 2

2

2 2

p
m

M

e e
h h h

m

M

e
h h h

p
m

M
b e

L
h h h

m

M

e
b h

L
h

k

m

M

e
A h

L

p
m

M

n

N

e
S b h

L
m

M

n

N

e
S A

L

1
33,

( ) ( )
3

1

( ) ( )
2

1

( ) ( )
2

1
33, 2

1
33,

1 1
33,

1 1
33,

p k k

p k k

e e

e

p k k e p

e

p

e pc

e

a
e p

e

a
e
e

3 3

4 4

33, 2 2

(4)

where hp and hk correspond to the thickness of the piezoelectric layer
and the Kapton layer respectively, and the effective area Ae is in-
troduced to account for the approximation in the electric field.

Additionally, the strain energy in the kapton-copper layers is given
by:
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Fig. 1. MFC bimorph cantilever and a close up of one of its
layers showing active piezoelectric fibers separated by
epoxy and embedded in Kapton film containing inter-
digitated copper electrodes (left) and a representative vo-
lume element (MxN representative volume elements exist
in an MFC layer) and its effective dimensions (right).
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where νc is the volume fraction of copper within the kapton-copper
layer (approximately 24%), and the subscripts c k, and kc refer to the
copper properties, the kapton properties, and the combined kapton-
copper properties, respectively.

The total potential energy for the entire MFC bimorph can therefore
be written as
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where the effective bending stiffness includes all of the RVEs and the
kapton-copper layer in the MFC bimorph, EIeff = +EI EIp kc, and the
kinetic energy can be written as

∫= +T m u u ds1
2
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where ms is the structural mass per length of the MFC bimorph, ux is
displacement along the length direction of the cantilever, and uz is the
transverse displacement of the cantilever.

For an inextensible cantilever, the Lagrangian needs to include a
Lagrange multiplier, Λ, to account for the inextensibility condition
[39,41,42]:
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Applying Hamilton’s principle,
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t

t
NC

1

2
L (9)

where the nonconservative work on the structure includes the input
electrical work necessary to actuate the MFC as well as linear structural
damping,
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where i is the input electrical current to the MFC bimorph, we find
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Using integration by parts, Hamilton’s principle yields 3 equations
of motion with nonlinearities kept to cubic order, i.e. εO( )3 :
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Spatially integrating the equation for ux and utilizing the appro-
priate boundary conditions, the Lagrange multiplier is obtained as:
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which can be substituted into the equation for uz to find
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If the actuation is harmonic about the first natural frequency of the
structure (as a primary resonance excitation), then a single mode as-
sumption can be made, =u s t ϕ s η t( , ) ( ) ( )z , where ϕ s( ) is the mass nor-
malized first bending mode shape of a cantilever,
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This results in the equations of motion in modal coordinates,
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which can be converted back into the measurement coordinates by
= =w w L t ϕ L η t( , ) ( ) ( )meas meas , where Lmeas is the distance from the base

of the cantilever where the velocity is measured experimentally,
yielding the final equations of motion for the MFC bimorph subject to
resonant voltage excitation about the first bending mode which account
for nonlinear strain, the inextensibility condition of a cantilever, and
the nonlinear material softening within PZT-5A:
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Here, ̂ ̂m c, , and ̂k are the equivalent linear mass, damping, and stiffness
terms in the lumped parameter model, ̂γ is the piezoelectric softening
coefficient, ̂α is the geometric hardening coefficient, ̂β is the inertial
softening coefficient, θp is the linear electromechanical coupling coef-
ficient, and θNL is the nonlinear electromechanical coupling coefficient
that is a result of nonlinear strain.

To solve Eq. (17), the method of harmonic balance [40] is used. The
input electrical voltage is assumed to be harmonic of the form

=v V tcos(Ω ) (20)

where V is the voltage amplitude and Ω is the driving frequency. This
results in a mechanical response solution with the same period as the
electrical actuation which can be approximated by a truncated Fourier
series expansion with Q harmonics,
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Substituting the approximate solution into the electromechanical
equation given by Eq. (17) results in the residual function
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Then, using the Galerkin method of mean weighted residuals,
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a system of Q2 algebraic equations for the Fourier coefficients aq and bq
can be generated. Here we choose to include =Q 5 harmonics, resulting
in 10 equations and 10 unknowns. These equations can be solved using
a multivariate Newton–Raphson method. Because the cubic non-
linearities can result in bifurcations near resonance, the Fourier coef-
ficients are first solved using an off-resonance driving frequency Ω, and
then the driving frequency is linearly swept up and down around the
resonant frequency using the previous Fourier coefficients as seed va-
lues for the Newton–Raphson method in order to capture both the high
and low energy solutions of the bifurcation. Once the mechanical re-
sponse of the system is known, the input actuation current is calculated
using Eq. (18).

3. Experimental setup

Two MFCs, model M8507-P1 from Smart Material Corp., were va-
cuum bonded together without a separate substrate to form a bimorph
structure, the dimensions and material properties of which are listed in
Table 1. The sample was placed in an aluminum clamp and then
mounted inside of a vacuum chamber at 0.01 atm as shown in Fig. 2 in
order to minimize the effect of nonlinear fluid drag from the air, and the
velocity of the MFC bimorph was measured near the free end of the
cantilever with a Polytec OFV-505 laser Doppler vibrometer. The MFC
samples in the bimorph were wired in parallel and connected to a Trek
2220 high voltage amplifier. Linear noise bursts were performed to de-
termine the first natural frequency of the structure, which was about
40.5Hz (in short circuit). Up and down sine sweeps were then performed
between 25 and 55Hz at 1Hz/min for voltage amplitudes of 1 V, 5 V,
and then 10V to 100 V in 10V intervals. The velocity response near the
tip of the cantilever and the current drawn from the high voltage am-
plifier were recorded using an NI USB-4431 data acquisition device.

4. Results

4.1. Experimental results

Fig. 3 shows the amplitude and phase of the velocity response at the
tip of the MFC bimorph to actuation near the first natural frequency as

well as the required input current. Note that at a 1 V amplitude ac-
tuation level, the input electrical current was near the noise floor of the
data acquisition device, so the data was plotted with dotted lines in-
stead of a solid line for clarity. The experimental results reveal that the
quadratic piezoelectric softening dominates the nonlinear behavior for
all voltage levels considered. For a passive cantilevered structure ex-
cited around its first bending natural frequency, the cubic geometric
hardening and inertial softening terms are expected to interact to yield
a net hardening effect [43] once the mechanical response is sufficiently
large, but with the introduction of the cubic electromechanical coupling
term, the overall cubic nonlinearity is of a softening nature.

Converting the velocity amplitude frequency response to a plot of
detuning versus response amplitude in meters, a backbone curve was
created by applying a polynomial fit over the points corresponding to
the maximum amplitude at each actuation voltage level. This poly-
nomial is quadratic and of the form = + +σ C a C a C1

2
2 3, where σ is the

detuning and a is the response amplitude. The piezoelectric softening
coefficient ̂γ can be approximated by substituting a small response
amplitude a1 into the polynomial, finding the corresponding detuning
σ1, and solving

̂ =
− −( )

γ
a

1 1 σ
ω

1

n
1

(24)

which results in ̂ =γ 155.32 m
1 . This empirical coefficient associated with

ferroelastic softening was utilized in the theoretical simulations.

4.2. Theoretical results

Using the measured capacitance of the MFC bimorph (listed in
Table 1), the effective area Ae was calculated to be 0.0446mm2. The
coefficients found in Eq. (17) were then calculated using Eqs. (2), (4),
and (19), as well as with the piezoelectric softening coefficient ex-
tracted from the experimental results using Eqs. (24). The nonlinear
equations of motion given by Eqs. (17) were then solved using the
method of harmonic balance for all voltage levels considered in the
experiments. The amplitudes and phases of the velocity response and
input current of the 5-term harmonic balance solution is plotted in
Fig. 4.

The theoretical model shows good agreement with the trends seen
in the experiments performed. All figures show that the second order
piezoelectric softening due to hysteretic effects dominates the behavior
through all electrical excitation levels. As the mechanical response of
the MFC bimorph cantilever increases, the effective cubic hardening
effect expected in a passive structure is absent due to the cubic elec-
tromechanical coupling nonlinearity and high voltage levels con-
sidered, agreeing with the observations from the experimental data.

Table 1
Dimensions and Material Properties of the MFC Bimorph.

Property Symbol Value

Active length Lact 85mm
Clamped active length L 75.5 mm
Clamped overall length Lo 83.5 mm
Active width bact 7mm
Total thickness h 0.61mm
Measured capacitance Cp 3.40 nF
First natural frequency (SC: short circuit) fSC 40.5 Hz

Fig. 2. Clamped MFC bimorph placed inside a vacuum chamber and connected to a high
voltage amplifier for dynamic actuation.
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However, the theoretical results exhibit the jump phenomenon at high
voltage and strain levels that are not present in the experimental re-
sults. Additional nonlinear dissipation terms need to be included in the
nonlinear model in order to limit the jump phenomena at higher vol-
tage excitation levels.

We can linearize the model by setting ̂ ̂α β, , ̂γ , and θNL to zero, and
then compare the velocity response solutions of the linearized theore-
tical model to those of the nonlinear theoretical model as well as the
experimental data at fixed driving frequencies for all voltage levels
considered, as shown in Fig. 5. As expected, the linearized model
overpredicts the mechanical response of the MFC bimorph cantilever at
driving frequencies near the linear natural frequency of the structure
(40.5 Hz), but underpredicts the response at frequencies below the
natural frequency due to the predominant piezoelectric softening,
especially at higher voltage and strain levels. Note that the significant
mismatch at 33 Hz in Fig. 5 is due to the aforementioned jump behavior
in the model. As the input electrical excitation level increases, the
nonlinear model begins to underpredict the velocity response and the

input current (see Fig. 6), indicating a need for higher order material
nonlinearities which would introduce further nonlinear electro-
mechanical coupling terms.

Due to the close spacing of the interdigitated electrodes in the MFCs
( ≈L 500 μme ), the electric field in the piezoelectric material is ap-
proximately 200 kV/m at the highest actuation level considered in this
paper. Li et al. [44] show that the piezoelectric coefficient d33 and the
permittivity ε33 in soft PZT exhibit significant nonlinear behavior for
electric fields greater than 25 kV/m, confirming the need for additional
material nonlinearities.

5. Conclusions

In this work, a nonlinear electroelastic model was developed and
experimentally validated for resonant actuation of an MFC bimorph for
the first bending mode under low to moderately nonlinear actuation
levels. The electroelastic properties of the MFC were calculated by
combining a rule of mixtures formulation for the material properties of
the representative volume element and applying Hamilton’s principle

Fig. 3. Measured tip velocity and input current amplitude
and phase curves of the MFC bimorph for resonant actua-
tion with input voltage amplitudes of 1 V, 5 V, and then
10 V to 100 V in 10 V increments using a downward fre-
quency sweep.

Fig. 4. Theoretical tip velocity and input current ampli-
tude and phase curves of the MFC bimorph for resonant
actuation with input voltage amplitudes of 1 V, 5 V, and
then 10 V to 100 V in 10 V increments using a downward
frequency sweep.
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on the piezoelectric constitutive equation considering nonlinear strain
(with inextensibility condition) and ferroelastic softening effects. The
two frequency responses of interests in resonance actuation are the
vibration response and the current drawn (which can be used to
quantify the actuation power consumption). The analytical model was
solved using the method of harmonic balance with applied voltage
amplitudes of 1–100 V and compared to experimental results. For low
to moderate electrical excitation levels, the model presented accurately
predicts the overall behavior of the bimorph, and it can be used for
analysis and design of MFC bimorphs for applications involving re-
sonant actuation with electric field levels similar to those considered in
this work. However, as the excitation level further increases, the model
gradually underpredicts the experimental results. This indicates that
further work is necessary to include additional material nonlinearities
for moderate to high voltage levels which introduce nonlinear dielectric
and electromechanical effects. The resonant actuation experiments in
this paper were conducted in a vacuum chamber, therefore linear
structural damping was suffcient. Nonlinear dissipative effects (e.g.
fluid drag) can easily be introduced to the model as needed.
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