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We demonstrate self-bending of elastic waves along convex trajectories by means of geometric and

phased arrays. Potential applications include ultrasonic imaging and manipulation, wave focusing,

and wireless power transfer around obstacles. The basic concept is illustrated through a geometric

array, which is designed to implement a phase delay profile among the array elements that leads to

self-bending along a specified circular trajectory. Experimental validation is conducted for the low-

est asymmetric Lamb wave mode in a thin plate over a range of frequencies to investigate the band-

width of the approach. Experiments also illustrate the functionality of the array as a transmitter to

deliver elastic wave energy to a receiver/harvester located behind a large obstacle for electrical

power extraction. It is shown that the trajectory is not distorted by the presence of the obstacle and

circumventing is achieved. A linear phased array counterpart of the geometric array is then con-

structed to illustrate the concept by imposing proper time delays to the array elements, which allows

the generation of different trajectories using the same line source. This capability is demonstrated by

tailoring the path diameter in the phased array setting, which offers the flexibility and versatility to

induce a variety of convex trajectories for self-bending elastic waves. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4981251]

Elastic/acoustic wave manipulation and guiding are of

interest for several emerging fields and applications includ-

ing structural health monitoring,1 ultrasonic imaging,2,3

cloaking,4–7 contactless powering of wireless electronic

components,8–11 acoustic activation of drug delivery,12,13

and acoustic manipulation.14 Wireless elastic/acoustic power

transfer8–11 from a source to a remote receiver with mini-

mum losses is critical to several of these applications. A

plausible scenario is the powering of a sensor node that is

otherwise beyond reach due to an obstacle between the trans-

mitter and receiver. In other applications, it might be desired

to minimize the intensity of propagating waves in certain

structural regions. For instance, critical mechanical or elec-

tromechanical components that are sensitive and vulnerable

to vibrations can benefit from curvilinear manipulation and

circumventing of elastic waves through convex trajectories.

Numerous other examples in the aforementioned research

areas could exploit a convenient methodology for manipulat-

ing and guiding elastic waves along curved paths. Recent lit-

erature of elastic wave propagation reveals that most of the

existing efforts on wave field guiding, manipulation, and

cloaking explored metamaterials/metasurfaces and phononic

crystals through complex structural configurations.4–7,15–18

Zhang et al.19 recently demonstrated the generation of

acoustic bottle beams through self-bending wave packets in

two and three dimensional domains. The authors considered

both a single and a collection of line arrays to guide the prop-

agation of acoustic waves along trajectories described by

B�ezier curves. Their results demonstrate the robustness of

propagation along the prescribed paths and the generation of

a low pressure region within the region enclosed by such

paths. The objective of our current work is to numerically

and experimentally extend the approach in Ref. 19 to elastic

waves propagating in plate-like structures along arbitrary

convex trajectories. To this end, first a geometric array is

constructed to follow a specified circular path. After experi-

mental validation of numerical simulations, the geometric

array is used for transferring elastic wave energy to an elec-

trically loaded receiver behind a large obstacle. The phased

array counterpart of the geometric array is also constructed

and experimentally validated, along with additional case

studies illustrating the tailoring of the curved circular path

by changing its prescribed diameter.

The geometric array is designed by applying a ray trac-

ing approach, which defines the distance of the source from

each point on the desired trajectory. By applying simple geo-

metric considerations, each source point is located at the

intersection of two perpendicular lines to the tangents to two

successive points on the assigned trajectory. The approach

implements a proper phase relation among the element

arrays that leads to constructive interference along the

desired path. The same phase relations can be obtained on a

linear array by imposing proper delays among the source ele-

ments, which is defined by back-propagating the excitation

of each array element to its geometric counterpart. The spac-

ing of the array elements is defined by the maximum number

of sources that one chooses to employ and by the array aper-

ture, which here is defined empirically to be sufficiently

large to enclose the desired path. Figure 1 illustrates the
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formation of a circular path of a certain diameter (100 mm)

by means of a geometric array (Fig. 1(a)) and by employing

a linear phased array (Fig. 1(b)). The resulting wave intensity

along the centerline of the circular path (x¼ 0) is shown in

Fig. 1(c). The grey lines in Fig. 1(a) show the rays corre-

sponding to the tangents to the trajectory, which are here

plotted for the upper half (semi-circle) of the intended trajec-

tory. This forms the upper half of the geometric array, which

can be used to generate the lower half through symmetry.

The amplitude and phase distributions of the line array sour-

ces, resulting from the geometric array designed based on a

Green’s function formalism20,21 for back propagation, are

shown in Fig. 1(d). The Green’s function formalism is based

on harmonic wave motion evolving in space according to the

simplified form 1
ffiffi

r
p ejkr, which includes cylindrical spreading

losses, and where r denotes the distance from each point of

the linear array to its geometrical counterpart, while k is the

wavenumber of the considered wave mode, which here is the

fundamental asymmetric Lamb wave mode (A0). For practi-

cal purposes, the array is discretized in a finite number of

sources, which are spaced based on wavelength consider-

ations as discussed later in this paper. It is important to note

that the circular trajectory will not fully close for the number

of discrete sources shown in Figs. 1(a) and 1(b), which can

readily be observed from the rays in Fig. 1(a) by drawing a

tangent from the outermost source to the intended circular

path.

The experimental setup employed for visualization of

self-bending elastic waves and for demonstrating wireless

power transfer by circumventing a large obstacle is shown in

Fig. 2. The geometric array (Fig. 2(b)) consists of 40 piezo-

electric transducers (5 mm� 0.4 mm from STEMiNC Corp.)

bonded to a 0.81-mm-thick rectangular aluminum plate that

is large enough to distinguish the incident waves and bound-

ary reflections. The phased array (Fig. 2(c)) setup consists of

a linear array of the same type. The spacing between the

transducers is of d¼ 6 mm, which is chosen based on the

wavelengths corresponding to the frequency range relevant to

A0 mode propagation in the considered plate (30–100 kHz).

In Fig. 2(d), the experimentally measured wave amplitude at

the centerline of the circular path (x¼ 0) is plotted for differ-

ent transducer spacing values (normalized by wavelength)

and it is observed that the performance degrades when the

transducer spacing exceeds the wavelength (cf. Fig. 1(c)). As

the excitation frequency is increased from 30 kHz to 100 kHz

(frequencies of interest in this work), the wavelength changes

from 16.2 mm to 8.7 mm, and thus, the transducer spacing of

d¼ 6 mm ensures that the dimensionless ratio d/k changes

from 0.4 to 0.7. Therefore, the aforementioned transducer

spacing leads to a spatial wave intensity distribution that is

similar to Fig. 1(c) and is effective at forming a clearly

defined circular path.

The piezoelectric transducer array is excited by 4 cycles

of sinusoidal burst at desired frequencies using a function

generator (Agilent 33220A) and a high-voltage amplifier

(Trek Model PZD350). The piezoelectric transducers in the

geometric array are excited in phase with the same ampli-

tude. A Polytec PSV-400 scanning laser Doppler vibrometer

(LDV) is employed in order to measure the resulting wave

field by recording the out-of-plane velocity of the plate

FIG. 1. (a) Geometric array and (b) lin-

ear phased array configurations to form

the same circular trajectory (of 100 mm

diameter) using a discrete array of 40

point sources; (c) the resulting normal-

ized wave amplitude at the centerline

(x¼ 0) of the circular path; and (d)

amplitude and phase distributions for a

phased array (b) made from a line array

of 40 point sources to form a circular

trajectory of 100 mm diameter.
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(scanning is performed on the opposite flat face which is the

back of the view in Fig. 2(a)) over a grid of points covering

the geometric/phased array domain. With proper triggering

of the LDV measurements, the wave field was reconstructed.

The RMS (root-mean-square) values are obtained by inte-

grating the measured response over time.

First, wave field simulations and experiments are con-

ducted in the absence of the large obstacle shown in Fig. 2(a).

Figure 3 shows the comparison of numerical simulations

with experimental results for RMS wave field at frequencies

selected over a broad range (30, 50, and 100 kHz). The geo-

metric array in the experimental setup (Fig. 2(b)) is designed

to form a circular trajectory with a diameter of 100 mm. The

numerical results are obtained by computing the RMS of the

wave field resulting from the superposition of point excitation

at the locations of the array elements. Propagation from the

source is described by the same Green’s function formalism

discussed above and based on wavenumber estimations for

the plate and wave mode under consideration. The compari-

son of numerical and experimental RMS wave fields (out of

plane velocity) shown in Fig. 3 reveals excellent agreement

at all the considered frequencies.

In addition to validating the numerical simulations of

the geometric array, the results in Fig. 3 unveil the broad-
band nature of the concept, i.e., roughly the same path can

be achieved over a range of frequencies rather than at a fixed

frequency (recall that this is strongly related to the transducer

spacing in view of Fig. 2(d)—for 30, 50, and 100 kHz, d/k
¼ 0.4, 0.5, and 0.7). It can also be noted that the circular path

fails to close at the point diametrically opposite to the source

location, which is consistent with the fact that a limited aper-

ture for the array is considered based on practical consider-

ations. Closing the circle would require the array to be

constructed by considering tangents to the entire trajectory,

which would lead to an array that physically fully encloses

the prescribed path. This would defeat the primary purpose

of the array and would lead to excessive practical complex-

ity. Thus, the study explores the ability of the limited aper-

ture array to still outline the desired path, which is confirmed

by the results in Fig. 3.

Having validated the geometric array experimentally,

next we explore the circumventing of a large cylindrical

obstacle (shown in Fig. 2(a)) along with a case study of elas-

tic power transfer to an energy-harvesting receiver behind

this obstacle. The diameter of the obstacle is 95 mm, which

is very close to the diameter of the intended path (100 mm).

Furthermore, the thickness (i.e., out of plane height) of the

obstacle is 12.7 mm, leading to an area of large impedance

mismatch relative to the surrounding plate. An example

RMS wave field is shown in Fig. 4(a) for 50 kHz excitation,

remarkably confirming that the existence of this large obsta-

cle does not distort the desired wave trajectory. The instanta-

neous wave field shown in Fig. 4(b) is useful in order to

design the energy-harvesting receiver (which would repre-

sent the receiver near an inaccessible wireless sensor node in

practice). A continuous harvester patch domain can be pat-

terned by wave number transformation and out-of-phase por-

tions can be wired accordingly as done by Carrara et al.22

Instead, for simplicity, three maximum intensity in-phase

portions (shown with a close-up in Fig. 4(c)) are exploited

with three half-wavelength piezoelectric patches combined

in parallel to form the receiver/harvester.

FIG. 2. (a) Experimental setup showing the specific configuration for wire-

less power transfer/harvesting by circumventing a cylindrical obstacle using

a geometric array (the scanning LDV measures out-of-plane velocity field of

the opposite face of the aluminum plate); close-up views of (b) geometric

array and (c) linear phased array made from 40 piezoelectric patches; and

(d) effect of transducer spacing on the performance of wave circumventing

with a focus on the centerline of the circular trajectory, i.e., x¼ 0 (transducer

spacing d is normalized by wavelength k).

FIG. 3. Geometric array results showing the numerically simulated and

experimentally measured RMS wave fields at different frequencies: (a)

30 kHz, (b) 50 kHz, and (c) 100 kHz.
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Energy harvesting experiments are then performed

through resistor sweep tests by shunting the bottom and top

electrodes of the piezoelectric harvesters (three patches

combined in parallel) to a range of electrical loads covering

the optimal conditions. Both resistive (R) and resistive-

inductive (RL) loading conditions are explored. The average

power outputs of the harvesters were calculated from the volt-

age measurements across the resistor with an oscilloscope

(Tektronix TDS3054). Voltage waveforms in response to

incident wave packets are displayed in Fig. 4(d) for optimal

resistive and resistive-inductive loading. The average power

output across the electrical load was calculated from the

RMS of the voltage waveforms, yielding Figs. 4(e) and 4(f)

with changing load resistance, respectively, for resistive and

resistive-inductive loading. While the maximum power is

obtained for 425 X under purely resistive loading (which

agrees with the optimal load resistance estimate by 1/xCp,

where x is the excitation frequency and Cp is the piezoelec-

tric capacitance), three times larger maximum power output

is obtained for resistive-inductive loading using 1300 X and

1 mH, as a result of complex conjugate impedance matching.

It is worth mentioning that the intensity of the transferred

micro-power can be enhanced dramatically by using a source

array designed to give a proper B�ezier curve19 that fully

closes at the receiver/harvester location. However, the current

case study merely intends to demonstrate the possibility of

elastic wave power transfer behind a large obstacle, which

can find applications for sensors and other wireless low-

power components functioning in areas beyond reach due to

other objects.

As a final case study, first we explore the formation of

the same circular trajectory and then the tailoring of its diam-

eter using the linear phased array shown in Fig. 2(c). Since

simultaneous excitation of 40 transducers in experiments

would require 20 source channels (for a path that is symmet-

ric about y-axis in Fig. 1), as an alternative, the wave field

created by each transducer is scanned and recorded (4-cycle

burst excitation at 50 kHz) for superposition by adjusting the

amplitude and relative phase. For instance, the amplitude and

phase combination previously given by Fig. 1(d) yields the

100 mm diameter circular trajectory, as displayed in Fig. 5(a),

which agrees well with the geometric array counterpart

shown in Fig. 3(b). Next, the amplitude and phase distribu-

tions are obtained from the theory to create 75 and 50 mm

diameter circular trajectories, which are obtained as shown in

Figs. 5(b) and 5(c), respectively. Clearly, the linear phased

array is dramatically more versatile to give various convex

trajectories for proper amplitude and phase distributions.

In conclusion, this study has extended a recent acoustic

framework19 on self-bending beams to elastic structures.

Specifically, we explored self-bending elastic waves guided

along convex trajectories by means of geometric and linear

phased arrays, which can find numerous applications related

to wave manipulation and wireless power transfer by circum-

venting objects. The basic concept was illustrated for the

lowest asymmetric Lamb wave mode using a geometric

FIG. 4. Obstacle circumventing and energy harvesting results: (a) RMS

wave field (for excitation at 50 kHz) confirming that the designed trajectory

is not distorted by the presence of a large obstacle; (b) instantaneous wave

field formed behind the obstacle and (c) close-up of the harvester region

with a simple design (using three in-phase piezoelectric patches combined in

parallel); (d) voltage waveforms of the receiver/harvester under optimal

resistive and resistive-inductive loading (in response to a 4-cycle burst exci-

tation at 50 kHz); (e) and (f) average power outputs under resistive and

resistive-inductive loading cases vs. load resistance.

FIG. 5. Phased array results by superimposing the experimental wave fields

generated by individual transducers with a proper amplitude and phase com-

bination in order to form convex paths of different diameters: (a) 100 mm;

(b) 75 mm; and (c) 50 mm.
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array. Circumventing of a large obstacle was demonstrated

along with a case study on wireless power transfer to a

receiver/harvester behind the obstacle. A phased array was

employed for tailoring the diameter of the designed trajec-

tory by altering the amplitude and phase distribution of the

array, offering significant versatility in generating various

forms of self-bending elastic waves.
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