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Random vibration energy harvesting
on thin plates using multiple
piezopatches
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Abstract
Vibrational energy harvesting using piezoelectric cantilever beams has received significant attention over the past decade.
When compared to piezoelectric cantilever-based harvesters, piezopatch energy harvesters integrated on plate-like thin
structures can be a more efficient and compact option to supply electrical power for wireless structural health and con-
dition monitoring systems. In this article, electroelastic modeling, analytical and numerical solutions, and experimental
validations of piezopatch-based energy harvesting from stationary random vibrations of thin plates are presented.
Electroelastic models for the series and parallel connected multiple piezopatches are given based on a distributed-
parameter modeling approach for a thin host plate excited by a transverse point force. The analytical and numerical solu-
tions for the mean power output and the mean-square shunted vibration response are then derived. The experimental
measurements are carried out by employing a fully clamped thin plate with three piezopatches connected in series. It is
shown that the analytical and numerical model predictions for the mean power output and the mean-square velocity
response are in very good agreement with the experimental measurements. The electroelastic modeling framework and
solution methods presented in this work can be used for design, performance analysis, and optimization of piezoelectric
energy harvesting from stationary random vibration of thin plates.
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Introduction

Research in vibrational energy harvesting has received
growing attention over the past decade (Anton and
Sodano, 2007; Beeby et al., 2006; Cook-Chennault
et al., 2008). The ultimate goal of this research area is
to enable self-powered electronic devices and eliminate
the need of battery replacement and disposal (Anton
and Sodano, 2007; Beeby et al., 2006). In the existing
literature, a wide variety of vibrational energy harvest-
ing systems has been developed using fundamental
transduction principles (e.g. electrostatics (Lee et al.,
2009), electromagnetism (Beeby et al., 2007; Elliott and
Zilletti, 2014), piezoelectricity (Erturk and Inman,
2011)), and alternative conversion techniques (e.g. mag-
netostriction (Wang and Yuan, 2008) and use of ionic
polymers (Tiwari and Kim, 2013). Among these con-
version alternatives, piezoelectric energy harvesting has
received most of the attention because of its wide range
of applicability, relatively mature fabrication methods
at different geometric scales, and high power density
(Cook-Chennault et al., 2008).

Cantilevered beam-based piezoelectric harvesters
(e.g. unimorphs and bimorphs) have been arguably the
most commonly considered forms of piezoelectric
energy harvesters. Electromechanically coupled analyti-
cal (Erturk and Inman, 2008), semi-analytical (Erturk,
2012), and finite element (Elvin and Elvin, 2009; Yang
and Tang, 2009) models have been developed, and
experimental investigations have been reported for har-
monic (Erturk and Inman, 2009) and random (Zhao
and Erturk, 2013a) base excitations. It is well-known
that the power generation performance of a linear reso-
nant harvester beam depends on how well the
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dominant ambient frequency matches with its funda-
mental resonance frequency due to the narrow band-
width around the fundamental resonance frequency
(Tang et al., 2010). Therefore, performance enhance-
ment of cantilevered beam harvesters has been widely
studied with different design configurations for broad-
band base excitations (Erturk et al., 2009; Ferrari et al.,
2008; Friswell and Adhikari, 2010; Huan et al., 2008;
Huang and Lin, 2012; Lien and Shu, 2012).

In many real-life applications, ambient mechanical
energy is distributed over a broad frequency spectrum
and it often exhibits stochastic characteristics.
However, as opposed to the large amount of research
on harmonic excitation (Tang et al., 2010), limited
research has been conducted for non-harmonic or
random excitations of resonant harvesters. Random
vibration energy harvesting has been studied with
lumped-parameter (Adhikari et al., 2009; Barton et al.,
2010; Blystad et al., 2010; Ferrari et al., 2009; Scruggs,
2009; Tvedt et al., 2010) and distributed-parameter
(Zhao and Erturk, 2013a) modeling, while nonlinear
structures with higher complexities, such as Duffing
oscillators, have been modeled and analyzed by others
(Daqaq, 2010, 2011; Kumar et al., 2014; Litak et al.,
2010; Ramlan et al., 2010; Zhao and Erturk, 2013b) in
parallel.

Piezopatch-based energy harvesting is a compact
and practical method especially for light-weight, thin,
and two-dimensional structures since harvester patches
can be implemented without modifying the host struc-
ture’s dynamics. Recently, an analytical model of a sin-
gle patch-based energy harvester was presented for
vibrations of thin plates by Aridogan et al. (2014a).
Electromechanical finite element model of piezoelectric
energy harvester plates was presented by De Marqui
et al. (2009) and extended for electroaeroelastic prob-
lems (De Marqui and Erturk, 2012; De Marqui et al.,
2011). Topology optimizations using finite element
models were carried out by Rupp et al. (2009) and Lee
and Youn (2011) in order to increase the efficiency of
the piezoelectric layers attached on plate-like structures.

It is worth mentioning that prior to, and in parallel
with, energy harvesting research on plate-like struc-
tures, some groups have focused on passive damping of
plate vibrations using piezoelectric shunt damping
(Moheimani, 2003). Piezoelectric shunt damping of
plate-like structures was studied for vibration suppres-
sion (Behrens et al., 2003; Kim and Jung, 2006; Kim
and Kwak, 2004; Koshigoe and Murdock, 1993;
Moheimani, 2003; Moheimani and Behrens, 2004;
Niederberger et al., 2004; Saravanos, 1999) and
structure-borne noise attenuation (Casadei et al., 2010;
Kim and Jung, 2006; Kim and Kim, 2004). As a rela-
tively recent trend, hybrid mechanisms employing
piezoelectric energy harvesting and shunt damping
together were considered to develop self-powered vibra-
tion control systems (Lallart et al., 2009; Makihara

et al., 2012; Takeuchi et al., 2012). More recently, a
piezoelectric corrugated device for concurrent vibration
suppression and energy harvesting was modeled, manu-
factured, and tested by Harne (2012). The corrugated
device includes a distributed piezoelectric spring layer
below a top plate and can be attached on a plate-like
host structure (Harne and Fuller, 2012). Performance
of the corrugated device for vibration suppression and
energy harvesting was investigated by attaching it on a
simply supported plate (Harne, 2012) and on a struc-
tural panel of a typical bus (Harne, 2013) under the
effect of harmonic vibrations.

In this article, piezopatch-based energy harvesting
from random vibrations of thin plates is presented with
electroelastic modeling, frequency-domain and time-
domain solutions, as well as experimental investiga-
tions. In the following, electroelastic models for the
series and parallel connection cases of piezopatches are
given based on a distributed-parameter modeling
approach, which are then employed in deterministic
and band-limited random vibrations of a thin host
plate. For stationary random vibrations, the frequency-
domain analytical solutions of the mean power output
and mean-square vibration response are expressed
based on electroelastic frequency response functions
(FRFs) and the power spectral density (PSD) of the
force input. Time-based numerical solutions are
obtained in the first-order representation in a determi-
nistic fashion by considering the Fourier series expan-
sion of the force input. Finally, experimental case
studies are presented to validate the frequency-domain
and time-domain solutions for a wide range of resistive
loads.

Distributed-parameter electroelastic
model

Electromechanically coupled mechanical equation of
host plate vibrations

Figure 1(a) and (b), respectively, illustrates the series
and parallel connection configurations of piezopatch
energy harvesters structurally integrated on a thin host
plate, which is excited by a transverse point force f (t)
at position (x0, y0) and time t. Piezopatch energy har-
vesters are in the form of transversely isotropic thin
piezoceramic sheets with two opposite corners located
at (xk, 1, yk, 1) and (xk, 2, yk, 2) for k = 1, 2, . . . ,K, where
K is the number of the piezopatch harvesters. The bot-
tom and top surfaces of the piezopatch harvesters are
assumed to be covered by highly conductive and negli-
gibly thin electrode layers. A load resistance Rl is con-
sidered as an electrical load connected to the resultant
terminals of the series and parallel configurations. It is
assumed that the force excitation is persistent, thus the
voltage output, v(t), across the load resistance can be
continuously extracted.
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The forced linear vibration of a thin plate accounting
for the electromechanical coupling due to thin piezo-
patch energy harvesters is governed by (Aridogan et al.,
2014a)

D
∂4w(x, y, t)

∂x4
+ 2

∂4w(x, y, t)

∂x2∂y2
+
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� �
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�
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k = 1
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(
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dx
� dd(x� xk, 2)

dx

� �

H(y� yk, 1)� H(y� yk, 2)½ �:

+
dd(y� yk, 1)

dy
� dd(y� yk, 2)
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� �

H(x� xk, 1)� H(x� xk, 2)½ �
)
= f (t)d(x� x0)d(y� y0)

ð1Þ

where w(x, y, t) is the transverse displacement of the ref-
erence (neutral) surface at an arbitrary position (x, y) of
the plate and at time t. The voltage across the electro-
des (i.e. individual voltage output) of the kth piezo-
patch is denoted by vk(t). The thickness of the plate (h)
is assumed to be uniform and much smaller than the
length a and the width b of the plate to justify the
assumptions of Kirchhoff’s thin plate theory. The flex-
ural rigidity of the plate is given by
D= Yh3=(12� 12y2), where Y is the Young’s modulus
and y is the Poisson’s ratio under short-circuit condi-
tions. The mass per unit area of the plate and the vis-
cous damping coefficient are denoted by m and c,
respectively. H(x) and H(y) are the Heaviside functions,
and d(x) and d(y) are the Dirac delta functions along
the x- and y-axes, respectively. Assuming that the total

volume of the piezopatches is much smaller than that
of the host plate, added mass and bending stiffness con-
tributions of the patches are neglected. However, the
electromechanical coupling between the piezopatch
energy harvesters and the thin plate is taken into
account in equation (1) due to the converse piezoelec-
tric effect. The electromechanical coupling term uk for
the kth piezopatch is uk =(�e31)k(hpc)ktk , where (�e31)k is
the effective plane-stress piezoelectric constant, (hpc)k is
the reference distance between the neutral surface of
the plate and the center of the piezopatch along the
z-axis, and tk is the polarity constant used for the for-
ward and reverse connections of the electrodes in wir-
ing (i.e. tk equals to either +1 for the forward manner
or 21 for the reverse manner connection of electrode
layers).

Coupled electrical circuit equations for series and
parallel connections

Figure 2 shows electrical circuit representations for
the series and parallel connection configurations of
the piezopatch harvesters. In the electrical circuit
analysis, the piezopatch harvesters are modeled as
dependent current sources in parallel with their inter-
nal capacitances.

For the series connection configuration presented in
Figure 2(a), the voltage output v(t) across the resistive
load is the sum of the individual voltage outputs vk(t)
of the piezopatch harvesters connected in series, that is,
v(t)=

PK
k = 1 vk(t). Applying Kirchhoff’s circuit laws,

the governing electrical circuit equation for the kth
piezopatch can be written as (Aridogan et al., 2014b)

(Cp)k
dvk(t)

dt
+
XK

k = 1

vk(t)

Rl
= ik(t) k = 1, 2, . . . ,K ð2Þ

Figure 1. Schematics of piezopatch energy harvesters on a thin
plate: (a) series and (b) parallel connection configurations.

Figure 2. Electrical circuits of piezopatch harvesters
connected to a resistive load: (a) series and (b) parallel
connection configurations (current sources depend on the
voltage output due to backward coupling).
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where ik(t) and (Cp)k are the dependent current output
of the kth piezopatch and its internal capacitance,
respectively, which are given by

ik(t)= � uk

ðyk, 2

yk, 1

ðxk, 2

xk, 1

∂3w(x, y, t)

∂x2∂t
+

∂3w(x, y, t)

∂y2∂t

� �
dxdy

8><
>:

9>=
>;

(Cp)k =(�eS33)k
(lp)k(wp)k
(hp)k

ð3Þ

where (lp)k , (wp)k , and (hp)k are the length, width, and
thickness of the kth piezopatch, respectively, and (�eS33)k
is the permittivity of the kth patch at constant strain in
plane-stress conditions. Note that the number of gov-
erning circuit equations is equal to the number of piezo-
patches connected in series.

For the case of parallel connection illustrated in
Figure 2(b), the individual voltage output of each kth
piezopatch is equal to the voltage across the resistive
load, that is, v(t)= vk(t). Thus, the electrical dynamics
of the parallel configuration is governed by only one
circuit equation given as follows (Aridogan et al.,
2014b)

dv(t)

dt

XK

k = 1

(Cp)k +
v(t)

Rl
=
XK

k = 1

ik(t) ð4Þ

where (Cp)k and ik(t) are given by equation (3).
Therefore, equations (1) and (2) govern the coupled
electroelastic dynamics of harvesters connected in
series, while equations (1) and (4) describe the govern-
ing dynamics for parallel connection.

Governing electroelastic equations in modal
coordinates

The vibration response (in terms of displacement) of a
thin plate can be represented as a convergent series of
the mass-normalized and orthogonal mode shapes,
fmn(x, y), and generalized modal coordinates, hmn(t),
such that

w(x, y, t)=
X‘

n= 1

X‘

m= 1

fmn(x, y)hmn(t) ð5Þ

By following the standard modal analysis procedure,
electromechanically coupled second-order differential
equation for the generalized modal coordinate hmn(t) of
the mnth vibration mode can be obtained as

d2hmn

dt2
+ 2zmnvmn

dhmn

dt
+v2

mnhmn(t)

�
XK

k = 1

(~umn)kvk(t)= fmn(t)

ð6Þ

where vmn is the undamped natural frequency, zmn is
the modal damping ratio, and fmn(t) is the modal forcing
term given by fmn(t)= f (t)fmn(x0, y0). The electrome-
chanical coupling term ~uk

mn for the kth uniform piezo-
patch in modal coordinates can be obtained as

~uk
mn = uk
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∂fmn(x, y)
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����
xk, 2

xk, 1

dy+

ðxk, 2
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∂y

����
yk, 2

yk, 1

dx

2
64

3
75 ð7Þ

By substituting equations (5) and (7) into equation
(3), the current output is expressed in modal coordi-
nates as

ik(t)= �
X‘

n= 1

X‘

m= 1

dhmn(t)

dt
~uk

mn ð8Þ

and the electrical circuit equation for the series connec-
tion can be written in modal coordinates as

(Cp)k
dvk(t)

dt
+

v(t)

Rl

+
X‘

n= 1

X‘

m= 1

dhmn(t)

dt
~uk

mn = 0 k = 1, 2, . . . ,K

ð9Þ

whereas the circuit equation of the parallel connection
is

dv(t)

dt

XK

k = 1

(Cp)k +
v(t)

Rl
+
XK

k = 1

X‘

n= 1

X‘

m= 1

dhmn(t)

dt
~uk

mn = 0

ð10Þ

in modal coordinates. Therefore, the electroelastic
model for the series connection case in modal coordi-
nates is due to equations (6) and (9), while equations
(6) and (10) represent electroelastic model for the paral-
lel connection case.

Harmonic excitation and electroelastic frequency
response for the series connection case

If the transverse force excitation on the host plate is
assumed to be harmonic of the form f (t)=F0ejvt

(where F0 is the force amplitude and v is the excitation
frequency), the linear system assumption implies that
the mechanical and electrical responses can be repre-
sented as harmonic functions: hmn(t)=Hs

mnejvt and
vk(t)=Vkejvt, where Hs

mn and Vk are complex valued
amplitudes and superscript s denotes the series connec-
tion of harvester patches. Substitution of these harmo-
nic functions into equation (6) enables the extraction of
Hs

mn as

Hs
mn =

F0fmn(x0, y0)+ uT
mnV

v2
mn � v2 +j2zmnvmnv

ð11Þ

Aridogan et al. 2747

 at GEORGIA TECH LIBRARY on November 25, 2016jim.sagepub.comDownloaded from 

http://jim.sagepub.com/


where the individual voltage vector V (with the dimen-
sions of K 3 1) includes the voltage across each piezo-
patch harvester as V= ½V1 V2 . . . VK �

T

, and the
electromechanical coupling vector umn (with the dimen-
sions of K 3 1) is umn = ½ ~u1

mn
~u2

mn . . . ~uK
mn
�
T

, where
superscript T stands for the transpose. The individual
voltage vector V can be then calculated by
V=F0Q

�1P, where Q is a square matrix with the
dimensions of K 3 K and P is a column vector with the
dimensions of K 3 1

Q=
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The steady-state voltage output v(t) across the load
resistance can be calculated as

v(t)=
XK

k = 1

Vkejvt = uTF0Q
�1Pejvt ð14Þ

where u is a unit vector with the dimensions of K 3 1.
After that, substitution of equation (14) into equations
(5) and (11) yields the steady-state transverse vibration
response (in terms of displacement) as

w(x, y, t)=
X‘

n= 1

X‘

m= 1

fmn(x, y)

F0fmn(x0, y0)+ uT
mnF0Q

�1P

v2
mn � v2 +j2zmnvmnv

ejvt

ð15Þ

Having the steady-state response of voltage output,
the voltage FRF as(v) between the voltage output and
force input can be extracted as

as(v)=
v(t)

F0ejvt
= uTQ�1P ð16Þ

and the displacement FRF bs(x, y,v) between the dis-
placement of the plate and force input is given by

bs(x, y,v)=
w(x, y, t)

F0ejvt

=
X‘

n= 1

X‘

m= 1

fmn(x, y)
fmn(x0, y0)+ uT

mnQ
�1P

v2
mn � v2 +j2zmnvmnv

ð17Þ

for the position (x, y) on the plate.

Harmonic excitation and electroelastic frequency
response for the parallel connection case

Similar to the series connection case, when the trans-
verse point force acting on the surface of the plate is

harmonic of the form f (t)=F0ejvt, the mechanical and
electrical responses can be assumed to be harmonic at
the same frequency. Note that, for the parallel connec-
tion, the individual voltage output of each kth piezo-
patch harvester is equal to the voltage output v(t)
across the resistor. Substitution of harmonic functions
into equation (6) enables extraction of Hp

mn as

Hp
mn =

F0fmn(x0, y0)+V
PK

k = 1

~uk
mn

v2
mn � v2 +j2zmnvmnv

ð18Þ

and employing equation (18) in equation (10) yields the
complex voltage amplitude V across the resistive load
as

V =

�
PK

k = 1

P‘
n= 1

P‘
m= 1

jv~uk
mnF0fmn(x0, y0)

v2
mn � v2 +j2zmnvmnv

jv
PK

k = 1

(Cp)k +
1
Rl
+

PK
k = 1

P‘
n= 1

P‘
m= 1

jv~uk
mn

PK
k = 1

~uk
mn

v2
mn � v2 +j2zmnvmnv

ð19Þ

Then the steady-state vibration response of the plate
at any position (x, y) and time t is

w(x, y, t)=
X‘

n= 1

X‘

m= 1

fmn(x, y)

F0fmn(x0, y0)+V
PK

k = 1

~uk
mn

v2
mn � v2 +j2zmnvmnv

ejvt

ð20Þ

Therefore, the closed-form expression for the voltage
FRF ap(v) for the parallel connection case is
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ap(v)=
v(t)
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PK
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and the expression for the displacement FRF bp(x, y,v)
is

bp(x, y,v)=
w(x, y, t)

F0ejvt

=
X‘

n= 1

X‘

m= 1

fmn(x, y)

fmn(x0, y0)+ap(v)
PK

k = 1

~uk
mn

v2
mn � v2 +j2zmnvmnv

ð22Þ

Having covered the electroelastic model develop-
ment and steady-state solutions to harmonic excitation,
next we explore stationary random excitation of the
plate.

Broadband and band-limited random
excitations: analytical and numerical
solutions

Frequency-domain analytical solution

Broadband random vibrations. If the stationary transverse
point-force excitation f(t) is assumed to be ideal
Gaussian white noise excitation having a constant PSD
value of S0 over the entire frequency domain (to repre-
sent broadband excitation), the multi-mode solution
for the mean power output (i.e. the expected value of
the power output) across the resistive load Ri is given
by

E P(t)½ �=
ð‘
�‘

S0

Rl
a(v)j j2dv ð23Þ

which is based on P(t)= v2(t)=Ri, and a(v) is the uni-
fied representation of the voltage FRF for the series
and parallel connection cases and includes all vibration
modes of the host plate in the broad frequency spec-
trum (within the limits of the modeling assumptions).
Closed-form voltage FRFs are given by equations (16)
and (21) for the series and parallel connection config-
urations, respectively. One can substitute the corre-
sponding voltage FRF into equation (23) and compute
the mean power output by carrying out integration
over the broad frequency range.

Likewise, for the same ideal Gaussian white noise
excitation, the multi-mode analytical solution for the
mean-square vibration response at an arbitrary posi-
tion (x, y) and time t is

E w2(x, y, t)
� �

=

ð‘
�‘

S0 b(x, y,v)j j2dv ð24Þ

where b(v) is the unified representation of the displace-
ment FRF for the series and the parallel connection
cases and provided by equations (17) and (22), respec-
tively. Note that here (and in the following) the mean-
square velocity response can be easily obtained by
modifying the FRF (equations (17) or (22)) used in the
integrand of equation (24) to give the velocity instead
of displacement (Zhao and Erturk, 2013a).

Band-limited random vibrations. For the case of band-
limited stationary random excitation over a frequency
range ½0, �v� (with the PSD of Sf (v) covering the fre-
quency range ½��v, �v�), the mean power output can be
computed by performing the integration

E P(t)½ �=
ð�v
��v

Sf (v)

Rl

a(v)j j2dv ð25Þ

and the mean-square vibration response is

E w2(x, y, t)
� �

=

ð�v
��v

Sf (v) b(x � y,v)j j2dv ð26Þ

Here, one should ensure to include all vibration
modes appearing in the frequency range dictated by the
force PSD when calculating the voltage and displace-
ment FRFs, a(v) and b(v).

Fourier series–based time-domain numerical solution

If the time history of a stationary random force excita-
tion over a time period T is described in a deterministic
fashion using its Fourier series representation

f (t) ffi p0 +
XS

r = 1

pr cos
2prt

T

� �
+ qr sin

2prt

T

� �� �
ð27Þ

where S is the number of terms, p0 is the mean value,
while pr and qr are the Fourier coefficients (Zhao and
Erturk, 2013a). The time history of the modal time
response hmn(t) for the mnth vibration mode over a time
period T can be obtained by solving electroelastic dif-
ferential equations in modal coordinates in the first-
order form. The time histories of the voltage output
and vibration response can be calculated over the same
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time period T. Specifically, we consider random force
excitation with zero mean value, that is, p0 = 0 in equa-
tion (27). To this end, in the following, first-order repre-
sentations of the electroelastic ordinary differential
equations are presented for the series and parallel con-
nection cases, and the expressions for the mean power
output and mean-square vibration response are given.

First-order electroelastic equations for series
connection. Electroelastic variables for the mnth vibra-
tion mode can be obtained using equations (6) and (9)
in the same vein as Erturk and Inman (2011)

u(1)
mn =hmn(t) u(2)

mn = _hmn(t) u(k + 2) = vk(t)

where k =1, 2, . . . ,K
ð28Þ

Here, u(1)mn is the modal displacement, u(2)
mn is the modal

velocity, and u(k + 2) is the individual voltage output of
the kth piezopatch. By introducing the foregoing vari-
ables into the electroelastic model given by equations
(6) and (9), 2MN + K number of first-order differen-
tial equations are obtained as follows
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where fmn(t) is the transverse random point-force excita-
tion in modal coordinates. Zero initial conditions will
be assumed in the simulations of this article.

Solving equations (29) using an ordinary differential
equation (ODE) solver (e.g. explicit Runge–Kutta
method), the time histories of electroelastic states (i.e.
modal time responses and voltage output) can be
obtained. After that, the vibration response (in terms
of velocity) can be approximated as a finite series of
the eigenfunctions and modal time responses as

_w(x, y, t) ffi
XN

n= 1

XM
m= 1

fmn _hmn

=f11 _h11 +f21 _h21 +f12 _h12 + � � � +fMN _hMN

ð30Þ

by truncating the computation of the modal time
responses at M number of modes along the x-axis and
N number of modes along the y-axis. Once again, the
number of modes to take depends on the frequency
spectrum of the force signal. The mean-square velocity
response can then be computed using

E _w2(x, y, t)
� �

=
1

T

ðT
0

_w2(x, y, t)dt =s2
_w ð31Þ

where s _w is the standard deviation (root mean square)
of the velocity of the plate at positions x and y. The vol-
tage output across the resistive load is

v(t)=
XK

k = 1

vk =
XK

k = 1

uk + 2 ð32Þ

and the mean power output can be obtained using

E P(t)½ �= 1

T

ðT
0

v2(t)

Rl
dt=

s2
v

Rl
ð33Þ
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where sv is the standard deviation (root mean square)
of the voltage output across the resistor.

First-order electroelastic equations for parallel
connection. Similarly, the electroelastic variables for the
parallel connection can be extracted from equations (6)
and (10) for the mnth vibration mode as

u(1)
mn =hmn(t) u(2)

mn = _hmn(t) u(3) = v(t) ð34Þ

where u(1)mn is the modal displacement coordinate, u(2)mn is
the modal velocity coordinate, and u(3) is the voltage
output across the resistive load. By introducing the
electroelastic state variables into the governing electroe-
lastic equations given by equations (6) and (10),
2MN + 1 number of first-order differential equations
are obtained for the electroelastic states as
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Therefore, by numerically solving these electroelastic
equations using the time history of the random force
excitation over a time period T, the voltage output
across the resistive load, v(t)= u(3), is obtained. The
mean-square vibration response and the mean power
can be calculated as in the series configuration case
given by equations (31) and (33).

Experimental validations

Experimental setup and piezopatch energy
harvesters

The experimental setup used for frequency and time
measurements is presented in Figure 3. A fully clamped
aluminum plate is used as the host plate. Three elec-
troded piezoceramic patches (T105-A4E-602 by Piezo
Systems, Inc.) are employed as piezopatch energy har-
vesters by attaching them on the plate. The geometric

and material properties of the aluminum plate and the
piezopatches are given in Table 1. The three piezopatch
harvesters (labeled as PEH-1, PEH-2, and PEH-3) hav-
ing identical polarities are perfectly bonded on the sur-
face of the plate as shown in Figures 3 and 4. The
bottom (negative) and top (positive) surfaces of the
piezopatch harvesters are covered by thin vacuum sput-
tered nickel electrodes of negligible thickness (by the
manufacturer) and the bonding areas on the aluminum
plate are electrically insulated with 3M Scotch 1601
spray.

Series connection of the three piezopatch harvesters
is employed throughout the experiments by connecting
the bottom and top electrodes sequentially. The electri-
cal load (i.e. simply a resistor) is then connected to the
resultant terminals as illustrated in Figure 4. A modal
shaker is used to excite the plate. The attachment point
of the shaker’s stinger rod can be seen in both Figures 3

Figure 3. Experimental setup: (a) clamping frame, (b) aluminum
plate, (c) PEH-I, (d) PEH-II, (e) PEH-III, (f) modal shaker, (g) signal
generator, (h) signal analyzer, and (i) laser vibrometer.
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and 4. The applied force is monitored by placing a force
transducer (PCB 208C01) between the shaker’s arma-
ture and the plate surface. A laser Doppler vibrometer
(LDV—Polytec PDV 100) is used to measure the trans-
verse velocity of the plate at the target point shown in
Figure 4. The signals obtained from the force transdu-
cer, the laser vibrometer, and the voltage across the
resistive load are sent to the data acquisition system for
time-domain and frequency response analyses.

Experimental and analytical electroelastic FRFs

Before carrying out random vibration experiments,
sine-sweep tests are conducted and experimental FRFs
are compared with analytical predictions to demon-
strate the accuracy of the electroelastic model in fre-
quency domain with a focus on the first seven vibration
modes. Using the experimental setup shown in Figure
3, the velocity FRF (i.e. velocity response per force
input) and the voltage FRF (i.e. voltage output per
force input) are obtained from the signal analyzer by
exciting the plate with a modal shaker (as in Figures 3
and 4). Figure 5 presents the experimental and analyti-
cal velocity FRFs for a resistive load of 1 MO (close

to open-circuit conditions). It can be seen from this fig-
ure that the analytical velocity FRF accurately predicts
the experimental velocity FRF measurement near reso-
nance and anti-resonance frequencies up to 250 Hz.
Note that the modal damping ratios used for the analy-
tical predictions are identified from the experimental
velocity FRF using the half-power point method. The
experimental measurements and analytical predictions
of the voltage FRF are given for a resistive load of
1 MO in Figure 6. The analytical voltage FRF is in
very good agreement with the experimental data. It is
important to note that at higher modes, there is minor
amplitude-wise and frequency-wise mismatch between
the analytical predictions and experimental data points,
which may be related to the bonding and positioning
imperfections of piezopatch harvesters, clamping
imperfections of the plate, and unmodeled effects.
Overall, the analytical and experiment results agree rea-
sonably well for both the velocity and the voltage
FRFs. Therefore, it can be concluded that the electroe-
lastic model developed in this work can be used to pre-
dict the vibration and velocity responses with good
accuracy in the bandwidth up to 250 Hz.

Experimental random excitation

Random vibration experiments are carried out by excit-
ing the plate with a random force through the modal
shaker using the configuration shown in Figures 3 and
4. In the experiments, the force input, the voltage
across the resistor, and the transverse velocity of the

Table 1. Geometric, material, and electroelastic properties.

Property Aluminum Piezoceramic
patch

Length (mm) 580 72.4
Width (mm) 540 72.4
Thickness (mm) 1.9 0.267
Young’s modulus (GPa) 65.1 66
Mass density (kg/m3) 2575 7800
Piezoelectric constant d31 (pm/V) – –190
Permittivity constant �eS

33 (nF/m) – 10.38

Figure 4. Series connection configuration of piezopatch energy
harvesters attached on the thin aluminum plate and the
locations of LDV target and shaker attachment point.

Figure 5. Comparison of the experimental and analytical
velocity FRFs for a resistive load of 1 MO.

Figure 6. Comparison of the experimental and analytical
voltage FRFs for a resistive load of 1 MO.
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plate are measured and recorded by using the signal
analyzer. The excitation signal driving the modal sha-
ker is a band-limited noise produced by the signal gen-
erator. Figure 7 presents a sample time history of the
force input and its PSD. The sampling frequency is set
to 12.8 kHz; therefore, the PSD is presented until
6400 Hz. It can be seen that the PSD of the excitation
signal is reasonably flat up to 250 Hz, which covers the
range used in frequency response validation in the pre-
vious section. The standard deviation of the force input
in Figure 7(a) is computed to be 0.473 N from time his-
tory and the average value of flat portion of PSD is
read from Figure 7(b) as approximately
S0 = 5 3 1024 N2/Hz. Note that Figure 7(a) is not
an ideal band-limited signal (as clear from its PSD) due
to experimental imperfections, yet it is a reasonable
approximation for model validation purpose.

Resistor sweep experiments are then performed for 14
resistive loads ranging from 500 O (close to short-circuit
conditions) to 1 MO (close to open-circuit conditions).
For each resistive load, the experimental measurement is
repeated five times and each measurement is taken for 3 s.
Therefore, 70 different time series with total time duration
of 210 s (in each case) are recorded and their PSD profiles
are obtained. For each measurement of each resistor test,
Figure 8 presents the standard deviations of time signals

and average PSD levels. This comparison suggests that
the excitation signal provided by the modal shaker can
indeed be approximated as a stationary-ergodic process in
agreement with the modeling assumptions.

Mean power output and mean-square velocity
response

The experimental measurements for the mean power
output and mean-square velocity responses are pre-
sented along with the analytical and numerical predic-
tions in Figure 9. It can be observed that the numerical
and analytical predictions agree well with the experi-
mental data points for a wide range of resistive loads.
For the frequency-domain solution process, the mean
power and mean-square velocity responses are calcu-
lated using equations (25) and (26). The frequency-
dependent PSD is obtained from the first experimental
measurement (i.e. the first measurement of a resistive
load of 1 MO). The upper frequency limit (�v) of the
frequency-domain integration is set to 250 Hz due to
Figure 7(b). In order to obtain numerical predictions of
the mean power output and the mean-square vibration
responses, an explicit fourth-order Runge–Kutta algo-
rithm is used to solve the first-order electroelastic

Figure 7. (a) A sample time history of the measured random
point force and (b) its PSD.

Figure 8. Comparison of resistor sweep tests in terms of (a)
standard deviations and (b) PSD values.
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equations under Fourier series–based excitation. Time-
domain simulations are performed with the individual
time histories of force inputs for all 70 experimental mea-
surements (five tests for each one of the 14 resistors)
using the first-order differential equations given by equa-
tion (29). As can be seen in Figure 9, five different data
points at each resistor are presented for the experimental
measurements and time-domain predictions. Figure 10
presents the average of these five separate values at each
resistor with error bars, indicating the deviations of five
repeated measurements. It can be seen that the measure-
ment deviations of mean power output are wider around
the optimum resistive loads, where more power output is
extracted compared to the neighborhoods of short- and
open-circuit conditions. It can also be observed from
Figure 10(b) that there are amplitude-wise differences
between the model predictions and experimental results
for the vibration response. This mismatch might be due
to the sensitivity of the velocity measurement to the
orientation of the laser vibrometer and mounting of the
shaker armature. Part of the error in Figures 9 and 10
can be attributed to non-ideal nature of band-limited
random excitation in the experiments (i.e. Figure 7 is not
an ideal band-limited excitation but is more in the form

of a first-order low-pass filtered white noise). Overall, the
model predictions are in very good agreement with the
electromechanical system response.

Conclusion

A structurally integrated piezopatch harvester is a prac-
tical alternative to piezoelectric resonant cantilever
beam arrangements especially for light-weight, thin, and
two-dimensional structures. Furthermore, multiple
piezopatch harvesters connected in series and/or parallel
can enhance both the electrical power output and the
frequency bandwidth. In this article, electroelastic mod-
eling and experimental investigations of multiple
piezopatch-based energy harvesting from broadband
and band-limited random vibrations of a thin plate are
studied. Electroelastic models for the series and parallel
connection configurations of piezopatches are obtained
and closed-form expressions for the electroelastic FRFs
are presented. For stationary random vibration of the
host plate, frequency-domain and time-domain solu-
tions are obtained for the mean power output and
mean-square vibration response. The frequency-domain
analytical solution is expressed in terms of electroelastic

Figure 9. Comparison of the experimental measurements with
frequency-domain and time-domain simulations for a set of
resistive loads: (a) mean power output and (b) mean-square
velocity response.

Figure 10. Comparison of the average experimental
measurements with frequency-domain and average time-domain
simulations for a set of resistive loads: (a) mean power output
and (b) mean-square velocity response.
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FRFs and PSD of random force excitation, while the
time-domain numerical solutions of mean power output
and mean-square vibration response are given by repre-
senting electroelastic model in the first-order form and
the excitation in a deterministic Fourier series represen-
tation. Therefore, if the PSD of random force excitation
is known, the frequency-domain solution can be used to
predict the expected values of the structural and electri-
cal responses. Alternatively, one can also find the
expected values of the responses using time-domain
numerical solutions for a given time history. It is impor-
tant to take sufficient number of structural modes in the
distributed-parameter solution based on the frequency
bandwidth of random excitation. The experiments for
random vibration energy harvesting are performed with
the experimental setup having triple piezopatch harvest-
ers connected in series. After verifying the stationary
nature of the experimental excitation, it is shown that
the analytical and numerical predictions of random
structural and electrical responses agree well with the
experimental measurements for a wide range of resistive
load values. The electroelastic modeling approach and
the formulation for the stochastic power output pre-
sented by this article can be used for optimal positioning
of the harvester patches on thin plate structures for
energy harvesting from stationary random vibration.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with
respect to the research, authorship, and/or publication of this

article.

Funding

The author(s) disclosed receipt of the following financial sup-
port for the research, authorship, and/or publication of this
article: This study was supported by the Kocx University
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