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Elastic/acoustic metamaterials made from locally resonant arrays can exhibit bandgaps at

wavelengths much longer than the lattice size for various applications spanning from low-frequency

vibration/sound attenuation to wave guiding and filtering in mechanical and electromechanical devi-

ces. For an effective use of such locally resonant metamaterial concepts in finite structures, it is

required to bridge the gap between the lattice dispersion characteristics and modal behavior of the

host structure with its resonators. To this end, we develop a novel argument for bandgap formation in

finite-length elastic metamaterial beams, relying on the modal analysis and the assumption of infi-

nitely many resonators. We show that the dual problem to wave propagation through an infinite peri-

odic beam is the modal analysis of a finite beam with an infinite number of resonators. A simple

formula that depends only on the resonator natural frequency and total mass ratio is derived for plac-

ing the bandgap in a desired frequency range, yielding an analytical insight and a rule of thumb for

design purposes. A method for understanding the importance of a resonator location and mass is dis-

cussed in the context of a Riemann sum approximation of an integral, and a method for determining

the optimal number of resonators for a given set of boundary conditions and target frequency is intro-

duced. The simulations of the theoretical framework are validated by experiments for bending vibra-

tions of a locally resonant cantilever beam. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4963648]

I. INTRODUCTION

It is a well understood phenomenon that metamaterials

made from locally resonating1 periodic structures (unlike

phononic crystals2 based on Bragg scattering) can exhibit

bandgaps at wavelengths much longer than the lattice size to

enable low-frequency vibration attenuation, wave guiding,

and filtering, among other applications.3 These elastic/acous-
tic metamaterials demonstrate broadband vibration damping

characteristics; for example, beams bearing a sufficient num-

ber of tuned mass absorbers will form a bandgap.4–6

Liu et al.1 first demonstrated locally resonant acoustic

metamaterials that display bandgaps at lattice scales two

orders of magnitude smaller than the wavelength, opening a

new avenue in acoustic metamaterials research. Ho et al.7

explored a broadband attenuation in a locally resonant sonic

crystal, using a rigid plastic frame with metal spheres

embedded in a silicone rubber. Jensen8 examined bandgaps

in both 1D and 2D mass spring systems, considering the

effects of damping and boundaries on the bandgap. Huang

et al.9 discussed the “negative effective mass density” effect

that occurs in acoustic metamaterials, using both discrete

and microstructure continuum models. Yu et al.5 investi-

gated a flexural bandgap in an Euler-Bernoulli beam using

two degree-of-freedom (DOF) vibration absorbers. They

used a transfer matrix approach to determine the expected

bandgap and validated their model using both finite-element

modeling and experiment. Sun et al.4 performed a compre-

hensive study of an acoustic metamaterial theory, developing

the wave theory for infinite periodic locally resonant beams

and performing numerical studies for finite locally resonant

beams. They found that, for high frequency excitation,

boundary conditions or mode shapes are not important for

the absorber behavior, but that lower frequency designs

require consideration of the mode shapes of the structure.

Since these studies for finite structures were purely numeri-

cal, it is difficult to gain insight into a specific design crite-

rion. Xiao et al.6 also examined flexural waves in beams

with vibration absorbers, developing a set of analytical equa-

tions to locate the band edge frequencies, validating their

approach with experiment and finite-element modeling.

Pennec et al.10 investigated a thin plate with periodic cylin-

drical stubs, showing that the band structure depends on the

thickness of the plate and the height of the stubs. Oudich

et al.11 demonstrated a low frequency, local resonance-based

bandgap on a thin plate using deposited stubs. They studied

their system using the finite element method (FEM) and a

unit cell based analysis. Employing the same local resonance

principle, Oudich et al.12 modeled a waveguide that can

guide a single mode in a plate. Assouar et al.13 tested a

plate-type locally resonant metamaterial using silicone

rubber-tungsten composite stubs. Achaoui et al.14 examined

the local resonance bandgap and demonstrated that it was

resilient to random arrangements, whereas the Bragg
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bandgap was not. Moving towards a more adaptable meta-

material, Wang et al.15 demonstrated a tunable locally reso-

nant acoustic metamaterial using buckled elements, allowing

the bandgap to be tuned by varying the applied load. Peng

and Pai16 analyzed an acoustic metamaterial plate, present-

ing a design guideline for the locally resonant bandgap.

Wave-type arguments for bandgap formation rely on the

assumptions of traveling waves and an infinite structure

made from a repeated unit cell, such that no standing waves

form. However, in finite structures, the dynamic response is

determined by the mode shapes of the structure. In this work,

we present a modal analysis approach to bandgap formation

in locally resonant finite metamaterial beams as one-

dimensional waveguides. In an effort to gain an analytical

insight, we employ and validate an assumption of infinite

absorbers on the finite structure. We then provide a simple

design guideline for placing the bandgap at a desired fre-

quency range, present an experimental validation case, and

draw comparisons to the canonical single degree-of-freedom

tuned mass absorber.

II. MODAL ANALYSIS OF A BANDGAP FORMATION

Consider a uniform Euler-Bernoulli beam with arbitrary

boundary conditions with bending stiffness EI, linear mass

density (i.e., mass per length) m, and length L. The beam

has a transverse base motion wbðtÞ with relative transverse

vibrations w(x, t), such that the absolute displacement is

wabsðx; tÞ ¼ wbðtÞ þ wðx; tÞ. In addition, the beam experien-

ces some distributed external loading per unit length f(x, t).
Without a loss of generality, we assume that the system is

undamped, with the understanding that modal damping can

be easily introduced later. Assume there are S undamped

spring-mass absorbers attached to the beam at locations

xj, with masses mj, stiffnesses kj, natural frequencies x2
a;j

¼ kj=mj, and relative displacements uj, for j ¼ 1…S. A rep-

resentative schematic showing a locally resonant cantilever

beam under a base excitation is shown in Fig. 1.

Under these conditions, the governing equation for the

beam in physical coordinates is

EI
@4w

@x4
þ m

@2w

@t2
�
XS

j¼1

mjx
2
a;jujðtÞdðx� xjÞ

¼ f x; tð Þ � m €wb tð Þ; (1)

where dðxÞ is the Dirac delta function. The governing equa-

tion for each resonator is

€uj tð Þ þ x2
a;juj tð Þ þ @

2w

@t2
xj; tð Þ ¼ �€wb tð Þ: (2)

Assume that the natural frequencies xi and mode shapes

/iðxÞ of the plain beam (i.e., the beam without resonators) are

known and that the mode shapes are normalized such thatðL

0

/iðxÞ/jðxÞdx ¼ Ldij; (3)

where dij is the Kronecker delta.

Using an assumed-modes expansion with N terms and

employing the corresponding plain beam mode shapes as

basis functions, we assume

wðx; tÞ ¼
XN

k¼1

/kðxÞgkðtÞ: (4)

Substituting Eq. (4) into Eqs. (1) and (2), applying orthogo-

nality (see Meirovitch17 for more details), and rearranging

provide the governing equations in modal coordinates

XN

i¼1

dik þ
XS

j¼1

m̂j/i xjð Þ/k xjð Þ

2
4

3
5€gi tð Þ

þ
XS

j¼1

m̂j/k xjð Þ€uj tð Þ þ x2
kgk tð Þ

¼ �€wb tð Þ
ðL

0

/k xð Þdxþ
XS

j¼1

m̂j/k xjð Þ

0
@

1
A

þ 1

mL

ðL

0

f x; tð Þ/k xð Þdx; (5)

€ujðtÞ þ x2
a;jujðtÞ þ

XN

i¼1

€giðtÞ/iðxjÞ ¼ �€wbðtÞ; (6)

where m̂j ¼ mj=ðmLÞ is the jth normalized resonator mass,

and it is assumed that the free indices k and j go from 1 to N
and 1 to S, respectively.

Equations (5) and (6) form a system of Nþ S coupled

second order ordinary differential equations, which can be

solved in a variety of ways. Importantly, it is possible to

obtain the approximate resonant frequencies and mode

shapes of the entire structure by solving an eigenvalue prob-

lem. This provides little analytical insight, as the eigenvalue

problem must be solved numerically. Instead, assuming

everything is harmonic at some excitation frequency x,

using an overbar to indicate amplitude, Eq. (6) can be solved

for the absorber amplitudes

�uj ¼
x2

x2
a;j � x2

XN

i¼1

�gi/i xjð Þ þ
x2

x2
a;j � x2

�wb: (7)

Then, substituting Eq. (7) into Eq. (5), we obtain

x2
k � x2

� �
�gk � x2

XN

i¼1

XS

j¼1

m̂jx2
a;j

x2
a;j � x2

/i xjð Þ/k xjð Þ�gi ¼ �Qk;

(8)

FIG. 1. A schematic of a locally resonant metamaterial beam under base

excitation (in the absence of the distributed force f(x, t) in Eq. (1)).

Cantilever (fixed-free) boundary conditions are shown as a typical example.
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where

�Qk ¼
1

mL

ðL

0

�f xð Þ/k xð Þdx

þ�wbx
2 1

L

ðL

0

/k xð Þdxþ
XS

j¼1

m̂jx2
a;j

x2
a;j � x2

/k xjð Þ

0
@

1
A: (9)

Assuming the natural frequencies of the absorbers to be iden-

tical at some target frequency xt, Eq. (8) simplifies to

x2
k � x2

� �
�gk �

x2
t x

2

x2
t � x2

XN

i¼1

XS

j¼1

m̂j/i xjð Þ/k xjð Þ�gi ¼ �Qk:

(10)

This system of equations cannot be readily solved for a sim-

ple analytical expression for the modal weightings �gk due to

the coupling terms from the presence of the vibration absorb-

ers. However, for a sufficiently large S, assuming the attach-

ment locations xj and masses mj are sufficiently well

distributed, the following approximation can be employed:

XS

j¼1

m̂j/i xjð Þ/k xjð Þ �
l
L

ðL

0

/i xð Þ/k xð Þdx ¼ ldik; (11)

where

l ¼
XS

j¼1

m̂j (12)

determines the ratio of added mass (of the absorbers) to the

mass of the plain beam. If the attachment locations and

masses are evenly distributed, the approximation becomes

XS

j¼1

1

S
/i xjð Þ/k xjð Þ �

1

L

ðL

0

/i xð Þ/k xð Þdx ¼ dik; (13)

a right-sided Riemann sum approximation of the integral.

This sum becomes exact in the limit as S!1:

lim
S!1

XS

j¼1

1

S
/i xjð Þ/k xjð Þ ¼

1

L

ðL

0

/i xð Þ/k xð Þdx ¼ dik: (14)

This “infinite absorbers” assumption is the modal analysis

analogue to the wave theory assumption of an infinitely long

beam composed of repeated unit cells. Provided there are a

sufficient number of attachments on the beam, Eq. (13)

becomes a good approximation, as will be discussed later.

With this significant simplification, Eq. (10) can be solved

explicitly for �gk with a closed-form expression

�gk ¼
�Qk

x2
k � x2 1þ lx2

t

x2
t � x2

 ! : (15)

Note that, under the assumption of Eq. (13), a similar simpli-

fication can be made to the modal forcing due to base excita-

tion, i.e.,

XS

j¼1

m̂j/k xjð Þ �
l
L

ðL

0

/k xð Þdx (16)

such that the modal forcing is given by

�Qk ¼
1

mL

ðL

0

�f xð Þ/k xð Þdx

þ�wbx
2 1þ lx2

t

x2
t � x2

 !
1

L

ðL

0

/k xð Þdx: (17)

It can be shown that

lim
x!xt

�gk xtð Þ ¼ �
�wb

L

ðL

0

/k xð Þdx: (18)

For the cantilever beam excited only by base motion, this is

sufficient to ensure that j�wabsðLÞj is very small at xt, as will

be evident in later numerical studies. In the absence of base

excitation (i.e., �wb ¼ 0), �gkðxtÞ ¼ 0, an antiresonance that is

present for every mode shape, resulting in zero displacement

everywhere on the beam. This is the continuous system ana-

logue to a perfectly tuned undamped vibration absorber in a

single-degree-of-freedom system.

Rearranging Eq. (15) yields

�gk ¼
�Qk x2

t � x2
� �

x2
k x2

t � x2
� �

� x2 x2
t 1þ lð Þ � x2

� � : (19)

The roots of the polynomial in the denominator give the new

resonant frequencies associated with each mode. Much like

a single vibration absorber splits a single resonance into

two new resonances, the presence of an infinite number of

absorbers on the continuous structure of the beam splits the

resonance of every mode shape. Let the excitation frequency

and the plain beam natural frequencies be normalized by

the attachment natural frequency xt, such that x̂ ¼ x=xt

and Xk ¼ xk=xt. The two positive roots of the denominator

are then

x̂þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ lþ X2

k

2
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4X2

k

1þ lþ X2
k

� �2

vuut
0
B@

1
CA

vuuuut ; (20)

x̂� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ lþ X2

k

2
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4X2

k

1þ lþ X2
k

� �2

vuut
0
B@

1
CA

vuuuut : (21)

Both of these resonant frequencies are shown as a function

of Xk in Fig. 2 for illustration using a total absorber mass to

plain beam mass ratio of unity (i.e., l¼ 1).

The limiting values of these frequencies give an insight

into the formation of the bandgap. The higher resonance x̂þ

has a minimum value of
ffiffiffiffiffiffiffiffiffiffiffi
1þ l
p

at Xk ¼ 0 and then

increases with Xk without bound, approaching x̂þ ¼ Xk as

Xk !1. The lower resonance x̂� has a minimum value of

0 when Xk ¼ 0 and then asymptotically approaches x̂ ¼ 1
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as Xk !1. Thus, the new resonances associated with each

mode can never be in the frequency range

xt < x < xt

ffiffiffiffiffiffiffiffiffiffiffi
1þ l

p
: (22)

This frequency range defines the limits of the bandgap and

provides an easy method for locating the bandgap at a

desired frequency range. This agrees with the result given by

Peng and Pai,16 where they found the bandgap edge frequen-

cies in a plate with attached resonators, using a unit cell level

analysis. This type of assumed mode analysis can easily be

extended to any canonical continuous vibrating structure

with vibration absorbers. The bandwidth of the bandgap is

determined by the mass ratio and attachment frequencies,

given by

Dx ¼ xtð
ffiffiffiffiffiffiffiffiffiffiffi
1þ l

p
� 1Þ: (23)

The bandgap of attenuation bandwidth Dx can be centered

at some frequency xc by making the attachment natural

frequencies

xt ¼
2xc

1þ
ffiffiffiffiffiffiffiffiffiffiffi
1þ l
p : (24)

Note that the foregoing discussion of the infinite-

absorber bandgap edge frequencies has no dependence on

the type of excitation or the boundary conditions of the

beam. The only property of the beam that affects the

bandgap bandwidth is the total mass, as it directly changes

the mass ratio l. The boundary conditions and bending stiff-

ness of the beam will affect the exact shape of the transmissi-

bility, even in the infinite-absorber case. Furthermore, as can

be seen in Fig. 2, the values of Xk for the specific boundary

conditions and bending stiffness will affect how close x̂þ

are to the upper bound of the bandgap. For xt values that are

large relative to the fundamental of the original beam, there

will be less separation between the upper bound of the

bandgap and the first resonance after the bandgap. For xt val-

ues that are small relative to the fundamental frequency of the

beam, there will be more separation between the upper bound

of the bandgap and the first resonance after the bandgap.

This simplification also allows a quick calculation of the

deformed shape of the beam for large values of N, since there

is no need to solve a linear system of equations or an eigen-

value problem. A typical metric for vibration performance of

a structure (especially, in the base excitation scenarios) is

transmissibility, defined as

TR xð Þ ¼
���� �w xoutð Þ

�w xinð Þ

���� ¼
XN

i¼1

/i xoutð Þ�gi xð Þ

XN

i¼1

/i xinð Þ�gi xð Þ

����������

����������
: (25)

This is simple to calculate numerically as a function of x,

since we know the expression for �giðxÞ. This allows us

to generate heat maps of transmissibility as functions of exci-

tation frequency x and input location xin for some fixed

xout very rapidly, producing graphs such as shown in Fig. 3,

which characterizes the dynamic response of the full

structure.

III. MODEL VALIDATION

The assumed modes model used above was validated

with both the finite element method (FEM) and a simple

experiment. The FEM model for the beam was developed

using a one-dimensional mesh and beam elements. A com-

parison between the FEM and assumed-modes simulation

results for a cantilever beam undergoing a base excitation is

shown in Fig. 4.

To validate the assumed modes model, experiments

were performed with a vertical aluminum cantilever under a

base excitation. The absorbers comprised of small spring

steel cantilevers with tip masses attached to the main struc-

ture with magnets. The base acceleration was measured

using a Kistler piezoelectric accelerometer, and the tip veloc-

ity was measured using a laser Doppler vibrometer (LDV).

The base excitation was achieved with a long stroke shaker

and an amplifier. The experimental setup is shown as an inset

in Fig. 5.

The vibration absorbers were tuned to create a bandgap

around x2. A comparison of the model and experiment is

shown in Fig. 5. Note that, to fully model the system as

FIG. 2. New resonant frequencies as a function of original resonant fre-

quency for l¼ 1. The bandgap corresponds to the region with no resonances

between the two horizontal lines at x=xt ¼ 1 and x=xt ¼
ffiffiffiffiffiffiffiffiffiffiffi
1þ l
p

.

FIG. 3. Tip transmissibility versus point force input location xin and excita-

tion frequency for a cantilever beam bearing an infinite number of vibration

absorbers, l¼ 1, xt ¼ 50x1, N¼ 50.
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shown, it was necessary to add point masses to the assumed

modes formulation described earlier. This is a simple change

to implement, since point masses affect the mass matrix in a

similar fashion to the absorber masses, without the frequency

dependence. In addition, modal damping is introduced to the

model easily in order to capture the finite resonant ampli-

tudes. There was a good agreement between the model and

experimental results, although the bandgap is not very prom-

inent, since the target frequency is very low, and the total

absorber mass is not high (yielding a low l value).

IV. EVALUATING THE INFINITE ABSORBER
APPROXIMATION

One of the perceived shortcomings of a wave-type anal-

ysis of the bandgaps in finite structures is the loss of informa-

tion regarding mode shapes, such as the potential drawbacks

of placing a vibration absorber near a node of a mode shape.

The formulation presented here provides a way to understand

how both the absorber mass distribution and spatial distribu-

tion affect the bandgap.

The key approximation made is the Riemann sum

XS

j¼1

m̂j/i xjð Þ/k xjð Þ �
l
L

ðL

0

/i xð Þ/k xð Þdx: (26)

The convergence behavior of the approximation as S
becomes large can be seen by looking at the transmissibility

and resonant frequencies as a function of S. This is visual-

ized in Fig. 6 for evenly spaced attachments on a cantilever

beam undergoing base excitation with a mass ratio of l¼ 1,

targeting a frequency of xt ¼ 50x1. It is clear that, by

S¼ 13, the bounds on the bandgap agree well with the ideal

infinite-absorber case. This suggests that, even though the

derivation was only exact in the limit as S!1, the approx-

imation is sufficiently good for design purposes once S
becomes sufficiently large.

The accuracy of this approximation depends on not only

the mode shapes under consideration and, consequently, the

boundary conditions of the beam but also the absorber loca-

tions xj and the absorber masses mj. However, it is not trivial to

determine which modes are most important for a given target

frequency or how good the approximation needs to be for the

bandgap to appear. There is a significant qualitative difference

in modal weightings in the fully decoupled and coupled cases.

Under the infinite absorber assumption, each modal weighting

has only two resonant frequencies, and the resonant frequen-

cies of each mode are distinct. When the modal weightings are

fully coupled, each mode shows all of the resonances of the

structure, regardless of how lightly coupled the modes are. It is

possible to reduce the error in the sum for a particular set of

modes and attachment locations by varying the mass distribu-

tion, but this would not be the optimal arrangement for another

set of modes. To gain some insight into the approximation

error, consider a mass distribution of the form

mj ¼ lmDxj; (27)

where Dxj is the size of the interval before the jth absorber.

In this case, the approximation becomes a right Riemann

sum,

XS

j¼1

Dxj/iðxjÞ/kðxjÞ �
ðL

0

/iðxÞ/kðxÞdx; (28)

such that the Riemann sum error is bounded by the

expression

jErrorj � L

2
max

0;L½ �

���� d

dx
/i xð Þ/k xð Þð Þ

���� Dxj

� �
max
: (29)

FIG. 5. A comparison of the experimental results and assumed modes model

simulations. The bandgap approximation with an infinite number of absorb-

ers (S!1) is also shown for reference. The inset shows the experimental

setup of a vertical cantilever with five absorbers as a locally resonant meta-

material beam under base excitation.

FIG. 6. Transmissibility (tip displacement/base displacement) and resonant

frequencies for a cantilever undergoing base excitation versus S, l¼ 1,

xt ¼ 50x1, N¼ 50. Small circles indicate natural frequencies, the heatmap

shows the transmissibility, dashed lines show the infinite absorber bandgap,

and the two solid lines track xSþ1 and xS.

FIG. 4. A comparison of the assumed-modes method (AMM) and FEM

transmissibilities for a cantilever beam undergoing base excitation, S¼ 5,

l ¼ 0:7; xt ¼ 0:868x2. The bandgap approximation with an infinite num-

ber of absorbers (S!1) is also shown for reference.
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This upper bound on the error will become larger for higher

modes, because the maximum slope will tend to be larger.

This means not only that more absorbers will be necessary to

reduce the error in the approximation for higher target

frequencies but also that having more absorbers will reduce

the error for any type of boundary conditions. Thus, if it is

known in advance that a structure will experience an excita-

tion in a certain frequency band, the natural frequency and

mass ratio for the absorbers can be chosen using Eq. (22),

and the number of absorbers can be chosen to be sufficiently

high such that the exact boundary conditions or type of exci-

tation will not significantly affect the bandgap.

V. OPTIMAL NUMBER OF RESONATORS
FOR A FINITE STRUCTURE

The formulation described in this work provides a sim-

ple way to choose an “optimal” number of resonators for a

given type of beam. Reconsider Fig. 6 which shows trans-

missibility and resonant frequencies as a function of the

number of attachments. It is evident that the bandgap forms

between the resonant frequencies xS and xSþ1, assuming the

resonant frequencies are sorted in an ascending order. The

separation xSþ1 � xS is shown as a function of S in Fig. 7.

It is clear that the separation converges to Dx as S
becomes large, as defined in Eq. (23). Interestingly, certain

values of S give a greater bandwidth than the infinite-

absorber case, and there is a value Sopt (here S¼ 5), which

gives the greatest separation of resonances around the

bandgap. Note that the corresponding bandwidth may actu-

ally be smaller than the corresponding single-absorber

bandwidth, but it provides a clear design guideline for a

“bandgap-like” region of vibration reduction. The optimal

value Sopt depends on not only the mass ratio l and the tar-

get frequency xt but also the boundary conditions and exci-

tation of the system under consideration. Alternatively, if

the level of vibration reduction is the primary concern, a

similar method can be used to optimize for a minimum

average transmissibility across the bandgap or to minimize

the maximum transmissibility in the bandgap.

VI. COMPARISON TO A SINGLE ABSORBER

It is useful to compare the bandgap-type results described

in Sections II–V to the canonical one degree-of-freedom

(DOF) vibration absorber. The canonical vibration absorber,

as described by Den Hartog,18 consists of a single damped

oscillator attached to an undamped 1-DOF host structure. In

this case, the separation of the fixed points in the transmissi-

bility gives a measure of bandwidth that we can compare to

the bandwidth given in Eq. (23). Den Hartog shows that the

normalized frequencies of the fixed points are governed by

g4 � 2g2 1þ f 2 þ lf 2

2þ l
þ 2f 2

2þ l
¼ 0; (30)

where g ¼ x=Xn; f ¼ xa=Xn; l ¼ m=M, Xn is the resonant

frequency of the host structure, xa is the absorber natural fre-

quency, and m and M are the masses of the absorber and host

structure, respectively. For an absorber tuned exactly to the

resonance of the main structure, f¼ 1, giving fixed points

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16

ffiffiffiffiffiffiffiffiffiffiffi
l

lþ 2

rs
: (31)

As l!1, one of the fixed points approaches zero, and the

other approaches
ffiffiffi
2
p

. The separation of the fixed points is

simply

Dg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffiffiffiffiffiffiffi
l

lþ 2

rs
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

ffiffiffiffiffiffiffiffiffiffiffi
l

lþ 2

rs
: (32)

There are two reasonable ways to compare this bandwidth to

the bandwidth of the bandgap in Eq. (22). First, the attach-

ment frequencies can be taken to be fixed at the same value

xa regardless of mass ratio, in which case the bandwidth is

Dg ¼
ffiffiffiffiffiffiffiffiffiffiffi
1þ l

p
� 1; (33)

which increases without bound as l increases. Alternatively,

the bandgap could be centered at the same frequency xa, tak-

ing the mass ratio into account, in which case the bandwidth is

Dg ¼ 2
ffiffiffiffiffiffiffiffiffiffiffi
1þ l
p

� 1
� �
1þ

ffiffiffiffiffiffiffiffiffiffiffi
1þ l
p ; (34)

which asymptotically approaches Dg ¼ 2 as l!1. Note

that keeping the bandgap centered at a certain frequency

with the increasing mass ratio requires a decrease in the

attachment natural frequencies. These different bandwidths

are shown in Fig. 8 as functions of mass ratio.

For a single absorber or bandgap centered at xa, the band-

width is limited simply because the lower bound approaches

x¼ 0. In this case, a single absorber will almost always result

in a greater bandwidth, except for prohibitively large mass

ratios. However, if we keep the attachment natural frequency

fixed, adding mass will increase the bandgap bandwidth much

more than it will increase the single absorber bandwidth.

This is not a perfect comparison for a variety of reasons.

For a single degree of freedom system, it is assumed that the

absorber is targeting the resonant frequency of the system.
FIG. 7. Separation of resonant frequencies on the boundaries of the bandgap

versus S, l¼ 1, xt ¼ 50x1, and N¼ 50.
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The bandgap has no such restriction and can be placed with-

out considering the dynamic characteristics of the original

structure. Furthermore, there are practical limitations in the

Den Hartog absorber setting, such as the fact that vibration

levels of a single absorber may not be allowable in realistic

scenarios, due to space and material limitations, among

others.

VII. CONCLUSIONS

Locally resonant elastic/acoustic metamaterials result in

bandgaps at wavelengths much longer than the lattice size

for low-frequency vibration/sound attenuation, wave guid-

ing, and filtering, among other applications. We presented

modal analysis justification for bandgap formation in finite

beams with locally resonating attachments and prescribed

boundary conditions by bridging the gap between the lattice

dispersion characteristics in infinite media and modal behav-

ior of the overall finite structure. It was shown that the dual

problem to wave propagation through an infinite periodic

beam is the modal analysis of a finite beam with an infinite

number of vibration absorbers. A simple formula that

depends only on the absorber natural frequency and total

mass ratio was derived for placing the bandgap in a desired

frequency range, which can provide a quick rule of thumb

for design purposes, provided a sufficient number of absorb-

ers are used. A method for understanding the importance of

an absorber location and a mass was discussed in the context

of a Riemann sum approximation of an integral, and a

method for determining the optimal number of resonators for

a given set of boundary conditions and target frequency was

introduced. This analysis can be readily extended to other

types of locally resonant materials, such as rods or plates.
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