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Abstract
Bio-inspired hydrodynamic thrust generation using smart materials has received growing attention
over the past few years to enable improved maneuverability and agility, small form factor, reduced
power consumption, and ease of fabrication in next-generation aquatic swimmers. In order to
develop a high-fidelity model to predict the electrohydroelastic dynamics of macro-fiber composite
(MFC) piezoelectric structures, in this work, mixing rules-based (i.e. rule of mixtures) electroelastic
mechanics formulation is coupled with the global electroelastic dynamics based on the Euler–
Bernoulli kinematics and nonlinear fluid loading based on Morison’s semi-empirical model. The
focus is placed on the dynamic actuation problem for the first two bending vibration modes under
geometrically and materially linear, hydrodynamically nonlinear behavior. The electroelastic and
dielectric properties of a representative volume element (piezoelectric fiber and epoxy matrix)
between two subsequent interdigitated electrodes are correlated to homogenized parameters of MFC
bimorphs and validated for a set of MFCs that have the same overhang length but different widths.
Following this process of electroelastic model development and validation, underwater actuation
experiments are conducted for different length-to-width aspect ratios (L/b) in quiescent water, and
the empirical drag and inertia coefficients are extracted from Morison’s equation to establish the
electrohydroelastic model. The repeatability of these empirical coefficients is demonstrated for
experiments conducted using aluminum cantilevers of different aspect ratios with a focus on the first
two bending modes. The convergence of the nonlinear electrohydroelastic Euler–Bernoulli–Morison
model to its hydrodynamically linear counterpart for increased L/b values is also reported. The
proposed model, its harmonic balance analysis, and experimental results can be used not only for
underwater piezoelectric actuation, but also for sensing and energy harvesting problems.

Keywords: piezoelectricity, actuation, vibration, underwater, macro-fiber composites, bio-
inspired, morphing

(Some figures may appear in colour only in the online journal)

1. Introduction

Bio-inspired underwater vehicles have received growing interest
over the last few years. As an alternative to conventional

underwater vehicles with propeller-based propulsion systems, the
motivation for using bio-inspired structures in aquatic locomotion
is to enable enhanced low-speed maneuverability, silent opera-
tion, signature reduction, and reduced power consumption [1].
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The applications of fish-like biomimetic locomotion range from
underwater sensing and exploration for sustainable ecology to
drug delivery and disease screening in medicine [1–3].

Various successful designs with motors and appropriate
linkage systems or mechanisms have been proposed to mimic
biological creatures in the existing literature [3, 4]. In these
concepts, the locomotion is typically obtained by creating an
undulatory motion in the tail portion connected to a passive
caudal fin [4–6]. Other studies employing motor-based
actuation include pectoral fins for locomotion [7, 8]. Although
motor-based biomimetic vehicles have relatively high swim-
ming speeds, they are often noisy and not easy to miniaturize.
To overcome this problem, various research groups have
explored the use of smart materials as actuators in bio-
inspired aquatic robotics especially in the last few years [2].

The commonly used smart material actuators in bio-
inspired applications are ionic polymer-metal composites
(IPMCs), shape memory alloys, and piezoelectric materials as
covered in a recent review article [2]. Among these three
smart material types, the compliant IPMC technology offers
the largest mechanical deformation for low voltage actuation,
making it arguably the most heavily researched smart material
in bio-inspired underwater actuation and aquatic robotics
applications. The main tradeoff in the use of IPMCs is the
resulting low actuation force in contrast to their large geo-
metric deformation capabilities. Several studies have been
conducted by actuating a tail embedded with IPMC, such as a
cantilever beam, with or without a passive caudal fin attached,
including tadpole like robot in undulatory motion [9], an
untethered swimming robot [10], among other centimeter-
scale examples [11, 12]. This type of locomotion created by
IPMCs has been modeled by several authors [13–16].

Unlike conventional piezoelectric actuators, the macro-
fiber composite (MFC) piezoelectric technology developed at
the NASA Langley Research Center [17, 18] in the last
decade (and subsequently commercialized by the Smart
Material Corp.) offers flexible and robust piezoelectric
actuators made from PZT (lead zirconate titanate) fibers and
epoxy matrix sandwiched between interdigitated electrodes
and assembled in Kapton (figure 1). These actuators offer
significant advantages over monolithic piezoceramic materi-
als which have limitations such as their brittle nature and low
allowable curvature. The MFC technology provides high
strain and stress performance based on the 33-mode of pie-
zoelectricity (i.e. electric field and strain are in the same
direction), flexibility, endurance, and they can be manu-
factured in various sizes [17, 18] along with relatively
hydrophobic behavior with polyester electrode sheets. Fur-
thermore, the MFCs use PZT fibers with rectangular cross
section, yielding dramatically enhanced electrode contact and
reduced dielectric loss as compared to their previous gen-
eration counterparts, such as the active fiber composites with
circular cross section [19]. Therefore the MFCs overcome the
problem of small displacement response associated with
piezoelectric actuators without substantially compromising
high actuation force capability. MFC actuators have been
successfully used in tethered underwater robotic fish [20–22]
and lately being applied for active control and hydrodynamic

performance enhancement of flexible fins actuated in an
unsteady fluid flow [23]. Erturk and Delporte [24] investi-
gated underwater thrust and power production using MFC
bimorphs with and without a passive caudal fin extension
(with a focus on the first two vibration modes). More recently,
an untethered piezoelectric robotic fish was developed and a
swimming speed of 0.3 body length/second was reported by
Cen and Erturk [25].

Erturk and Delporte [24] performed in-air and under-
water base excitation experiments of an MFC-based fish-like
propulsor with a caudal fin for energy harvesting. Comparing
the in-air and underwater test results showed that maximum
underwater power output is an order of magnitude larger than
its in-air counterpart for the same base acceleration level due
to fluid loading effects. More recently electrohydroelastic
dynamics of a fully submerged MFC bimorph propulsor was
investigated by Cen and Erturk [25] for the modeling and
experimental analysis of fish-like aquatic robotics by
accounting the hydrodynamic effects following the work by
Sader and others [26–29]. Likewise, for underwater purposes,
Brunetto et al [30], Mbemmo et al [13], and Aureli et al [14]
used similar approaches to analyze the dynamics of IPMC
samples. Analyzing the force exerted on the oscillating
structure by the fluid shows that the fluid effects can be taken
as added mass and hydrodynamic damping [13, 14, 24–32].
The hydrodynamic effects reduce the resonance frequencies
of the structure and increase the damping ratios as compared
to in-air resonance frequencies and damping ratios.

The linear hydrodynamic function developed based on
Sader’s theory [26–29] assumes infinitesimal vibration
amplitude and large length-to-width (L/b) aspect ratio.
Therefore, as the vibration amplitude increases or L/b ratio
decreases, Sader’s model fails to be accurate. Through
extending the approach proposed by Tuck [33] and Sader
[26], studies were performed by Aureli et al [16, 34], Falcucci
et al [35], Phan et al [36], and Tafuni and Sahin [37] to
introduce a correction to Sader’s hydrodynamic function by
accounting for nonlinear hydrodynamic effects. The goal
was to develop accurate models for predicting underwater
response of flexible beams for a broad range of frequencies

Figure 1. (a) Picture of an MFC laminate and (b) close-up 3D
representation showing PZT fibers, epoxy matrix, and interdigitated
electrodes with non-uniform electric field lines (the composite
structure is embedded in Kapton film for robustness).
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and aspect ratios and in some cases for relatively large
amplitude vibrations. Aureli et al [34] and Phan et al [36]
performed computational fluid dynamics analysis to under-
stand the effects of certain parameters on the vibration of a
submerged beam and to obtain a hydrodynamic correction
term added to the classical hydrodynamic function. Facci and
Porfiri [38] performed numerical investigation on the 3D fluid
flow field induced by vibration of cantilevered beams with
different aspect ratios. In that work [38], model simulations
showed that the hydrodynamic function given by Sader [26],
Bidkar et al [39] and Aureli et al [34] predicted the distributed
load experienced by oscillating beams for L/b>3 with
reasonable accuracy. As the aspect ratio of the beam
decreased, the 3D fluid effects were responsible for significant
difference in the distributed added mass loading due to vortex
shedding from the edges of the beam [38, 40] while the actual
loads are overestimated by these theories [26, 34]. However,
the modeling approach proposed by Aureli et al [34] was
found to be effective in predicting hydrodynamic damping for
a broad range of aspect ratios. Cha et al [31] and Kopman and
Porfiri [41] adapted Morison’s nonlinear equation [42–45] to
incorporate the effects of the surrounding fluid on the oscil-
lating beams with small aspect ratios. Morison’s equation was
used to calculate the fluid loading on a circular cylinder in
viscous oscillatory flow consisting of added mass and non-
linear damping as functions of the transverse motion of the
cantilever beam.

In this work, we explore underwater electrohydroelastic
dynamic actuation of MFC bimorph cantilevers with inter-
digitated electrodes for different L/b aspect ratios in a
quiescent fluid [46, 47]. The electroelastic model that bridges
the mixing rules (i.e. rule of mixtures) formulation and global
resonant dynamics of the composite is coupled with hydro-
dynamic effects from Morison’s nonlinear equation. The
hydrodynamic coefficients (inertia and drag coefficients) in
Morison’s equation are extracted experimentally for MFC
cantilevers with three aspect ratios and the resulting nonlinear
mathematical framework is explored by using the method of
harmonic balance. The dependence of the experimentally
extracted hydrodynamic coefficients on the L/b aspect ratio is
shown and compared with the results reported in literature.
Specifically, the aspect-ratio dependent hydrodynamic coef-
ficients from base-excited aluminum beams are identified in a
separate set of experiments and used to predict the dynamics
of the first two bending modes with good accuracy for MFC
cantilevers with three aspect ratios. The dependence of the
identified hydrodynamic inertia and drag coefficients on the
Keulegan–Carpenter (KC) number [48] is also reported for
the first two bending modes.

2. Electrohydroelastic dynamics of MFC
bimorph cantilevers

2.1. MFC structure and mixing rules formulation

An MFC laminate and its interdigitated electrode configura-
tion (which results in a complex electric field distribution) are

shown in figures 2(a)–(c). The non-uniform electric field lines
through the piezoelectric fibers and dead zones are depicted in
figure 1(c). Because of the non-uniform electric field and
heterogeneous complex structure involving active and passive
regions (in figure 1(b); PZT fiber and epoxy, respectively) in
MFCs, a straightforward integration cannot be performed to
obtain the electromechanical coupling and capacitance para-
meters. This section briefly presents an analytical solution by
combining the effective properties of a representative volume
element (RVE—figure 2(d)) for an MFC laminate using the
33-mode of piezoelectricity (electric field and strain directions
are coincident) prior to the distributed-parameter electro-
elastic model.

The mixing rules formulation [49, 50] is employed to
homogenize the elastic and dielectric parameters of the
MFCs. Specifically, effective elastic modulus, piezoelectric
charge constant, and permittivity constant are incorporated in
the distributed-parameter electroelastic model [51, 52].
The piezoelectric fibers and interdigitated electrodes are
modeled as a set of piezoelectric RVEs in 33-mode (shown in
figures 2(c) and (d)). Each RVE is connected in parallel to the
remaining hundreds of RVEs along the length and width of
the MFC laminate.

The linear constitutive equations for a piezoelectric thin
beam (RVE in figure 2(d)) with 33-mode coupling are

= -T c S e E , 1e
E

e3 33, 3 33, 3 ( )

e= +D e S E , 2e e
S

3 33, 3 33, 3 ( )

where T3 is the stress, S3 is the strain, E3 is the electric field,
D3 is the electric displacement, c e

E
33, is the equivalent elastic

modulus at constant electric field, e e33, is the effective
piezoelectric stress constant (e e33, can be given in terms of the
more commonly used piezoelectric strain constant, d e33, as

=e d c ,e e e
E

33, 33, 33, ) and e e
S
33, is the permittivity component at

constant strain, respectively (subscript e stands for equivalent
properties). Analytical modal analysis of an Euler–Bernoulli
beam with monolithic piezoelectric layers for closed-form
distributed-parameter solutions has been thoroughly covered
in previous efforts [53] for energy harvesting applications.
For brevity, the key concepts will be developed and applied in
this paper.

The equivalent elastic modulus c ,e
E

33,( ) piezoelectric
charge constant d ,e33,( ) and dielectric relative constant e e

S
33,( )

are obtained by using mixing rules as follows [49, 50]:

n n= + -c c c1 , 3e
E

p
E

m
E

33, 33, 33,( ) ( )

n=d
c

d c
1

, 4e
e

E p p
E

33,
33,

33, 33, ( )

e ne n e= + - - d c1 , 5e
S

p
T

m
T

e e
E

33, 33, 33, 33,
2

33,[ ( ) ] ( )

where n is the PZT fiber volume fraction and is defined by the
measurement done from the digital image of the planar
surface of an MFC actuator (shown in figure 2(b)) and eT

33 is
the permittivity component at constant stress. The subscripts p
and m stand for PZT fiber and matrix (epoxy) properties in
RVE, respectively. The mixing rules-based effective
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electroelastic parameters will be coupled with the global
electroelastic dynamics based on the Euler–Bernoulli kine-
matics in the next section for an MFC bimorph using 33-
mode of piezoelectricity in bending operation.

2.2. In vacuo coupled mechanical and electrical circuit
equations

Electroelastically coupled equations for in vacuo actuation of
an MFC cantilever bimorph (figure 3) for small amplitude
bending vibrations and linearized piezoelectricity can be
obtained as follows3

⎡
⎣⎢

⎤
⎦⎥J

d d

¶
¶

+
¶
¶ ¶

+
¶

¶

+
¶

¶
= -

-

a bD
w x t
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w x t

x t
c

w x t
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m
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v t

, , ,

, d
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( ) ( ) ( ) ( )
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òJ- + +
¶
¶ ¶

=i t C
v t

t

w x t

x t
x

d

d

,
d 0, 7p

L

0

3

2
( ) ( ) ( ) ( )

where D is the bending stiffness of the composite cross
section, ac is the stiffness-proportional damping coefficient, bc

is the mass-proportional damping coefficient4, ms is the mass
per unit length of the beam, =L La is the active overhang
length, J is the electromechanical coupling term, Cp is the
capacitance, d x( ) is the Dirac delta function, i t( ) is the
electrical current input (negative sign indicates current flow
into the system), v t( ) is the actuation voltage input, and
w x t,( ) is the transverse displacement on the reference surface
(in z-direction). Note that this model assumes perfect bonding
between the laminates of the bimorph structure, furthermore it
neglects shear distortion or rotary inertia effects.

Figure 2. (a) MFC bimorph (made from two MFC laminates bonded using high-shear-strength epoxy); (b) digital image of the planar surface
of an MFC actuator (M8514-P1 with polyester electrode sheets and approximately 90% volume fraction of PZT fibers) under optical
microscope; (c) schematic view showing the interdigitated electrodes and non-uniform electric field lines and (d) a representative volume
element that operates in the 33-mode of piezoelectricity.

Figure 3. Schematic representation of a geometrically bimorph cantilever
under dynamic actuation in an unbounded quiescent fluid domain.

3 In the experiments of this paper, infinitesimal in-air vibration case will be
used to approximate in vacuo condition so that hydrodynamic load can be
superimposed as in the next section.

4 This combined generalized proportional damping form is assumed to
account for the internal losses as a convenient mathematical representation.
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For the resulting bimorph MFC cantilever, the electro-
mechanical coupling term, J, and capacitance, C ,p are

J = Md c
A

L
h , 8e e

E e

e
pc33, 33, ( )

e=C MN
A

L
, 9p e

S e

e
33, ( )

In each RVE (figure 2(d)), be is the sum of the width of
piezoceramic fiber and matrix layer (epoxy), b ,m in the
direction of bimorph width. In equation (8), M is the number
of RVE in active width direction of the bimorph, b ,a as

=b Mb .a e In equation (9), N is the number of RVE in active
overhang length direction, L ,a as =L NL .a e Le is the distance
between two subsequent electrodes (center to center) in the
direction of bimorph length, Ae is the effective cross sectional
area, and hpc is defined as the position of center of piezo-
ceramic layer from the neutral axis (in thickness direction).

The transverse deflection of the reference surface at
position x and time t is

åf h=
=

¥

w x t x t, , 10
r

r r
1

( ) ( ) ( ) ( )

where f xr ( ) and h tr ( ) are the mass-normalized eigenfunction
and the generalized modal coordinate for the rth mode,
respectively. The eigenfunction denoted by f xr ( ) is given for
the transverse vibration of a uniform clamped-free beam as

⎡
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where lr is the eigenvalue of the rth mode obtained from the
characteristic equation

l l+ =1 cos cosh 0, 12( )

The expression given for f xr ( ) satisfies the following
orthogonality conditions [25]:

ò f f d=x m x xd , 13
L

s s r rs
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( ) ( ) ( )

ò f
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w d=x D
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d

d
d , 14
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where

w l= D m L . 15r r s
2 4 ( )

Here wr is the undamped natural frequency of the rth vibration
mode and drs is the Kronecker delta. For harmonic excitation of
the form = wv t Ve j t( ) (where w is the excitation frequency and
j is the unit imaginary number), assuming harmonic steady-
state modal mechanical response h = wt H er r

j t( ) and current
= wi t Ie ,j t( ) using equation (10) in equations (6) and (7),

multiplying by f x ,s ( ) and integrating over the length of the
cantilever give the following equations for the complex

amplitudes:

w w z w w q- + =j H V2 , 16r r r r r
2 2( ) ( )

åw w q- + + =
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I j C V j H 0, 17
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eq

1

( )

where qr is the modal electromechanical coupling, Ceq is the
equivalent capacitance of the bimorph cantilever, and zr is the
modal mechanical damping ratio. The modal electromecha-
nical coupling and equivalent capacitance depend on the way
the MFC laminates are electrically connected. The analytical
expressions for the equivalent capacitance and modal
electromechanical coupling are given in table 1 for the series
and parallel connections [53] of the MFC laminates.

Solving equations (16) and (17) for the displacement
frequency response function (FRF), a w x, ,( ) and the admit-
tance FRF (current input per actuation voltage), b w ,( ) yields
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The velocity FRF can be obtained through multiplying
a w x,( ) by wj for harmonic response of the cantilever
bimorph.

2.3. Combining the fluid load: electrohydroelastic dynamics of
a bimorph cantilever

Electrohydroelastically coupled equations for underwater
actuation of an MFC cantilever bimorph (figure 3) can be
expressed as follows:
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Here G x t,( ) is the hydrodynamic loading of the surrounding
fluid per unit length ( =L Lo is the overall overhang length)
and it is expressed by Morison’s semi-empirical equation

Table 1. Modal electromechanical coupling and equivalent
capacitance of an MFC bimorph for the series and parallel
connections of individual MFC single laminates.

Series connection Parallel connection
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as [42, 43]:
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where rw is the mass density of water and b is the overall width
of the bimorph. Moreover, cm and cd are the inertia and drag
coefficients, respectively, which depend on the aspect ratio
and to be determined experimentally. Clearly, the damping
component in Morison’s equation introduces quadratic non-
linearity (different from the classical linearized hydrodynamic
function presented by Sader [26]), therefore vibration modes
need to be explored separately. The structural (geometric and
material) behavior is assumed to be linear.

Assuming well separated modes, the transverse deflection
of the reference surface at position x and time t can be expressed
as

åf h@
=

¥

w x t x t, , 23
r

r r
1

( ) ( ) ( ) ( )

where f xr ( ) and h tr ( ) are the respective eigenfunction (from
the linear in-vacuo solution) and modal coordinate5.

Substituting the expression for w x t,( ) into equations (20)
and (21), multiplying by the mass normalized eigenfunction
f x ,s ( ) integrating over the length of the beam, and applying the
orthogonality conditions, one obtains

m h z w g h h
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2 ( )∣ ( )∣ Here cmr and cdr are the inertia and drag

coefficients for the rth vibration mode.
We note that equation (24) has quadratic nonlinearity due

to fluid damping. In this work, the method of harmonic balance
is used to analyze periodic solutions of equations (24) and (25).
Using this method, a Fourier series solution is assumed and the
ordinary differential equations are replaced with algebraic
equations (the details of harmonic balance analysis have been
extensively explained elsewhere [54–58]). A single term (i.e.
single harmonic) is deemed sufficient in this effort.

The unknown modal coordinate h tr ( ) is expressed as

h w w= +t H t H tcos sin . 26r r r0 1( ) ( )

The voltage, v t ,( ) and the current flow through the
piezoelectric bimorph, i t ,r ( ) are of the form

w=v t V tcos , 27( ) ( )
w w= +i t I t I tcos sin . 28r r r0 1( ) ( )

Substituting equations (26)–(28) into equations (24) and
(25) and using the harmonic balance method yield the
following set of algebraic equations in H ,r0 H ,r1 I ,r0 and I r1 for
the rth vibration mode
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The following simplification suggested by Sarpkaya [45],
and later used by Aureli et al [34] and Cha et al [31], is
employed for the nonlinear damping term:

p
=w w wH e H e H H eIm Im

8

3
Im , 33j t j t j t∣ ˆ [ ]∣ ˆ [ ] ∣ ˆ ∣ ˆ [ ] ( )

where Ĥ is a complex number. The resulting system of
algebraic equations is solved numerically using the solve
function in MATLAB.

3. Experimental validations

Three MFC bimorphs shown in figure 4(a) are tested and
characterized in air and under water using the clamps
employed for in-air actuation FRF measurements. Each
bimorph is made from two identical custom-made MFC
laminates (sufficiently hydrophobic due to custom-made
polyester electrode sheets) labeled as M8507-P1, M8514-P1
and M8528-P1 (figure 4(a)) by Smart Material Corp. The
piezoelectric laminates are assembled by using high shear
strength epoxy through vacuum bonding process described
elsewhere [59]. The electrode leads of the MFC bimorphs are
connected in parallel throughout the experiments discussed in
this paper. The bimorphs are cantilevered in aluminum
clamps with the basic geometry and structural properties
given in table 2.

A sample bimorph (M8514-P1) cantilever in its fixture
mounted rigidly on to an optical table is shown in figure 4(b)
for in-air actuation test. During actuation experiments, the
actuation voltage signal (harmonic excitation with 10 avera-
ges) is generated by a Spectral Dynamics SigLab data
acquisition device while a Trek high voltage amplifier (Trek,
inc. Model 2220) provides reference driving voltage and
monitors current as well. A laser doppler vibrometer (LDV,
Polytec PDV 100) is used along with the monitored actuation
signal to obtain the tip velocity and admittance FRFs of the
MFC bimorphs in air and under water. Note that the admit-
tance FRF (actuation current-to-voltage ratio) is useful to
obtain the actuation power consumption level [60].

Underwater experiments are conducted in the same setup
as the in-air case (figure 5(a)) and an LDV is used for

5 Note that the assumption of modes being well separated is a reasonable one
for bending vibration and it enables analyzing the individual bending modes
separately to extract modal inertia and drag coefficients. Such an assumption
would not be necessary in a totally numerical solution setting (although
modal insight would not be clear in that case).
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obtaining the transverse tip velocity under dynamic actuation
(figure 5(b)). Note that, the laser signal amplitude is divided
by the refractive index of water (n=1.333) in the underwater
experiments [24, 25].

3.1. In-air tip velocity and admittance FRFs and parameter
identification

Tip velocity and admittance FRFs from in-air actuation
experiments and model simulation for the three bimorphs
(M8507-P1, M8514-P1, and M8528-P1) are shown in
figures 6–8, respectively. The inset figures show close-up
views around the resonance frequencies. The identified para-
meters from in-air actuation experiments are summarized in
table 3. Comparing the experimental and analytical second
resonance frequency values shows less than 4% error. The
major source of inaccuracy is unmolded effects (such as shear
effects in the bonding layer) which can be manifested and
pronounced in a mode shape-dependent way. Damping ratios
for the first and the second mode (z1 and z2) are obtained by
using the half-power method [61], electromechanical coupling
in physical coordinate (J) is obtained from equation (8) using
mixing rules (parallel connection of MFC laminates) for each
sample and the equivalent capacitance (Ceq) is measured
experimentally. Overall the electroelastic model successfully
represents the in-air dynamics of the samples for small oscil-
lations as further discussed in the next section by comparing
modeled and identified system parameters.

3.2. Analytical versus experimental system parameters

In figure 9, modal electromechanical coupling (qr) and
piezoelectric constant (e33) of the custom-made piezoelectric
MFCs with polyester electrode sheets are measured experi-
mentally and compared with the effective properties obtained
from the model employing mixing rules formulation. Details
of the geometric and homogeneous properties of the active
(PZT fibers) and passive (epoxy) layers of MFCs can be
found in [47]. From the surface image (e.g. figure 2(b) for
M8514-P1 bimorph) the width of each piezoceramic fiber is
approximately m355.5 m and each epoxy layer between the
fibers has a width of m34.4 m. Since the total active width is

14 mm, this sample (M8514-P1) has approximately 36 pie-
zoceramic fibers (M=36) and n = 0.9. The average spacing
between two subsequent electrodes is m407.18 m. Therefore,
the number of RVEs over the beam length is 185 (N=185).
Having the measured capacitance of the MFCs, the average
effective surface area of each RVE , Ae in equations (8) and
(9), is calculated as 0.02 mm2 while hpc is approximately

m157 m.
The MFCs use Navy II piezoceramics, for which the effective
value of the piezoelectric constant for RVE is =e e33,

-19.1 C m .2 In table 4, properties of PZT fibers, epoxy, RVE
(the equivalent properties for RVE are calculated by mixing
rules), and MFC are given. It is important to note that, as
shown in figures 1 and 2, the electrode layers are made from
epoxy and copper fibers (volume fraction of copper is
approximately 24%) which are perpendicular to the PZT
fibers while the composite structure is embedded in Kapton
film. The in-plane (yz-plane) sequence of layers for an MFC is
shown in detail by Deraemaeker et al [49] and Shahab and
Erturk [47]. The equivalent properties of electrode-Kapton
layer are calculated using the mixing rules. Then the prop-
erties of an MFC are calculated from the properties of all the
included layers (PZT-epoxy and electrode-Kapton layers).
For example, each RVE has the equivalent Young’s modulus
as 48.3 GPa, by including the electrode-Kapton layers (c E

33 is
117.2 GPa and 2.8 GPa for copper and Kapton, respectively),
c E

33 is evaluated as 31.1 GPa and the piezoelectric constant is
= -e 13.6 C m33

2 for MFC. The reported values in table 4
compare favorably with the previously published numerical

 

Figure 4. (a) MFC bimorphs in aluminum clamps, and (b) in-air dynamic actuation test setup: (1) sample bimorph (M8514-P1) cantilever in
fixture mounted rigidly on to table, (2) LDV for the measurement of the bimorph tip velocity FRF, (3) high voltage amplifier, and (4) data
acquisition system.

Table 2.Geometric and structural properties of the MFC bimorphs (L
is the overhang length, b is the width, h is the total thickness and ms

is the structural mass per length). The active length and width define
the portions which include the piezoelectric fibers.

L (mm)
(Active,
overall)

b (mm)
(Active,
overall) h (mm) ms (kg m

−1)

M8507-P1 [75.5, 83.5] [7, 16.5] 0.61 0.028
M8514-P1 [75.5, 83.5] [14, 21.5] 0.61 0.045
M8528-P1 [75.5, 88.5] [28, 43.5] 0.61 0.090
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Figure 5. (a) Underwater configuration of the bimorph MFC cantilever for the measurement of its tip velocity FRF and (b) close-up view of a
clamped M8514-P1 type bimorph cantilever fixed to the aluminum bar.

Figure 6. Experimental and analytical results for in-air actuation of M8507-P1 bimorph cantilever: (a) tip velocity and (b) admittance FRFs.

Figure 7. Experimental and analytical results for in-air actuation of M8514-P1 bimorph cantilever: (a) tip velocity and (b) admittance FRFs.

Figure 8. Experimental and analytical results for in-air actuation of M8528-P1 bimorph cantilever: (a) tip velocity and (b) admittance FRFs.
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and experimental data as well as the data from the manu-
facturer [49, 62].

It is possible to use the experimental results for parameter
identification, as done in figure 9 for the piezoelectric con-
stant. A good agreement is observed between the theoretical
predictions and experimental results in figure 9. In addition,
the results are consistent with the empirical estimates given by
Cacan and Erturk [63] for standard MFCs. This approach
therefore fully bridges the effective electroelastic, elastic, and
dielectric properties of the MFCs and the global electroelastic
dynamics of the MFC laminates explored in this work for
actuation.

3.3. Underwater velocity and admittance FRFs

Having validated the analytical model results for in-air
actuation of the bimorphs and identified parameters, three
case studies are tested and analyzed for underwater actuation.
As displayed in figure 5, each MFC bimorph is submerged in
quiescent water along with the same aluminum clamp used
for in-air experiments.

Figures 10–12 show the experimental and semi-empirical
model (using Morison hydrodynamic function) tip velocity and
admittance FRFs for a frequency range of 12–130 Hz which
captures underwater first two bending mode frequencies of the
bimorphs. The inertia and drag coefficients, cm and c ,d are
obtained by the analysis done on purely experimental in-air and
underwater data to avoid interference of other measurement
and modeling errors (see the appendix). Then cm and cd are
used in the analytical model to give figures 10–12. In table 5,
the experimental underwater fundamental frequencies and total

damping ratios are listed (zT in table 5 includes structural
damping ratio and the added fluid damping). As expected, the
effect of fluid loading is to lower the resonance frequencies of
the MFCs (for both modes) and to increase the damping ratio
as compared to in-air actuation results reported in table 3. The
electromechanical coupling term, J, in each case is the same as
the ones obtained from the in-air experiment.

3.4. Analysis of hydrodynamic inertia and drag coefficients

Figures 13(a)–(d) display the identified hydrodynamic inertia
and drag coefficients (cm and cd in Morison’s hydrodynamic
function) focusing on the first two bending modes for both
base-excited aluminum and actuated MFC cantilevers with
different aspect ratios ( /y = L b .) Experimental vibration
characteristics of the aluminum strips considered in this study
are explained in detail by Shahab and Erturk [64]. It is
observed that the inertia and drag coefficients show asymp-
totic behavior for y greater than approximately 5, making
inertia and drag coefficients insensitive to y ratio (cases of y
smaller than 5 are sensitive to aspect ratio). Specifically, In
figures 13(a) and (b), ycm ( ) value converges to unity (for
large y) in agreement with the predictions of classical flow
solutions based on 2D fluid-structure problem in which linear
hydrodynamic forces are dominant [26, 65]. In figures 13(c)
and (d), ycd ( ) approaches the values close to 21 and 125 for
the first and second vibration modes, respectively, consistent
with the range of experimental and numerical data summar-
ized in figure 11 of Kopman and Porfiri [41].

Figure 13 shows the asymptotic increase of cm and cd

with increased y for each mode separately. The curve fitting

Table 3. Identified parameters from in-air actuation experiments ( f2
is given in the form of [experimental, analytical] and w p=f 2r r ).

M8507-P1 M8514-P1 M8528-P1

f Hz1 ( ) 44.7 47.9 46.4
f Hz2 ( ) [279.3,

280.1]
[309.8,
300.2]

[289.2,
290.8]

D N m2( ) 0.0058 0.0107 0.0201
z z, %1 2 ( ) 1.8, 1.5 2, 1.5 1.5, 1.2
J - -10 Nm V6 1( ) 4.53 6.89 22.73
C nFeq ( ) 3.8 5.5 17.5

Figure 9. Experimental and analytical results for (a) modal electromechanical coupling, q ,r and (b) equivalent piezoelectric constant, e33.

Table 4. Properties of active layer (PZT fiber), passive layer or
matrix (epoxy), RVE, and 33-mode MFCs using analytical mixing
rules (e = -8.854 pF m0

1 is the permittivity of free
space, e e= - d cS T E

33 33 33
2

33).

PZT fiber Epoxy RVE MFC

c E
33 (GPa) 48.30 3.10 43.78 31.10

d33 (pm V−1) 440 — 437 437
e eT

33 0 1850 4.25 1665 1665
eS

33 (nF m−1) 7.02 — 6.38 8.8

9

Smart Mater. Struct. 25 (2016) 105007 S Shahab and A Erturk



toolbox of MATLAB is used in order to represent the curves
given in figure 13. The following quadratic curve fit poly-
nomial ratio expressions are given for the dimensionless

inertia and drag coefficients focusing on the two first bending
modes:

y y
y y
y y
y y

y y
y y
y y
y y

=
- +
- +

=
+ -
+ +

=
+ +

- +

=
- +
- +

c

c

c

c

0.701 0.3745

1.111 2.637
,

6.99 1.658

5.36 11.46

0.1432 0.5618

0.04983 0.03946 0.2674
,

0.412 0.4096

0.008492 0.007883 0.01853
.

34

m

m

d

d

1

2

2

2

2

2

1

2

2

2

2

2

( )

Figure 10. Experimental and analytical results for underwater actuation of bimorph M8507-P1 cantilever: (a) tip velocity and (b)
admittance FRFs.

Figure 11. Experimental and analytical results for underwater actuation of bimorph M8514-P1 cantilever: (a) tip velocity and (b)
admittance FRFs.

Figure 12. Experimental and analytical results for underwater actuation of bimorph M8528-P1 cantilever: (a) tip velocity and (b)
admittance FRFs.

Table 5. Experimentally identified model parameters from
underwater tests.

M8507-P1 M8514-P1 M8528-P1

f Hz1 ( ) 15.9 17.5 15.2
f Hz2 ( )a [100.7, 103] [109.2, 105.5] [84.6, 84.5]
z z, %T T1 2

( ) 3.3, 2.5 4.3, 3.2 3.3, 2.4

a
f2 is given in the form of [experimental, analytical].
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Comparing cm and cd values that belong to the first and
the second modes in figure 13 shows that both aspect ratio
and vibration frequency (especially for drag coefficient) are
determinants of fluid loading effects. The frequency
dependence is implicitly involved in the dependence of the
inertia and drag coefficients on the KC number, or the period
number: p= w L bKC 2 ∣ ( )∣ where w L∣ ( )∣ is the maximum
tip displacement amplitude of the oscillating beam. Figure 14
displays the identified hydrodynamic inertia and drag coeffi-
cients versus KC for both aluminum and MFC cantilevers
with different aspect ratios. The underwater vibration char-
acteristics of aluminum strips (Shahab and Erturk [64]) and
MFCs show that resonance frequencies of these two groups
keep close values for the same aspect ratio. Note that the
maximum displacement amplitudes for base-excited alumi-
num cantilevers are larger than the MFC ones. Therefore, the
results for the aluminum samples in figure 14 are given for
larger KC numbers. Figure 14(a) shows that, for both alu-
minum and MFC samples, the inertia coefficients for the first
and the second modes are on the same order of magnitude
(tend to converge to unity with increased aspect ratio),

making them relatively insensitive to vibration frequency and
amplitude for the KC range in this study
(0.008<KC<1.5). For each mode, the aluminum and the
MFC samples give drag coefficients on the same order of
magnitude (figure 14(b)). In contrast to the behavior of inertia
coefficient, for a given sample (MFC or aluminum) the drag
coefficient shows great sensitivity to vibration mode, which
suggests the presence of a mode shape dependence for the
drag coefficient. However, for a given vibration mode, the
drag coefficient for different samples (MFC versus aluminum)
is on the same order of magnitude.

4. Conclusions

Thin cantilevers made from MFC bimorphs of different
aspect ratios can be employed for underwater actuation,
sensing, and power generation, among other aquatic appli-
cations of direct and converse piezoelectric effects. In an
effort to develop electrohydroelastic models for such canti-
levers, the present work investigated MFC bimorphs with

Figure 13. Hydrodynamic inertia coefficient (cm) versus aspect ratio (y) for (a) mode 1 and (b) mode 2; hydrodynamic drag coefficient (cd)
versus y for (c) mode 1 and (d) mode 2.

Figure 14. (a) Hydrodynamic inertia coefficient (cmr) and (b) drag coefficient (cdr) versus KC number for the first two vibration modes.
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three different aspect ratios under dynamic actuation. Mixing
rules-based (i.e. rule of mixtures) electroelastic mechanics
formulation was coupled with the global electroelastic
dynamics based on the Euler–Bernoulli kinematics which was
then coupled with Morison’s semi-empirical model to account
for aspect ratio dependent nonlinear hydrodynamic effects.
The tip velocity and admittance FRFs were successfully
modeled for in-air actuation and validated experimentally for
all aspect ratios considered herein. Underwater tip velocity
and admittance FRFs were then derived by combining their
in-air counterparts with Morison’s nonlinear hydrodynamic
function. The inertia and drag coefficients in Morison’s
equation were identified experimentally and compared with
the ones obtained from base-excited aluminum cantilevers of
similar aspect ratios. In addition to the smooth trend and
converging behavior of the inertia and drag coefficients with
increased aspect ratio, the agreement between the MFC and
aluminum cantilever test results for both vibration modes was
reported. The repeatability of the inertia and drag coefficients
in Morison’s equation was noted to be promising for samples
with the same aspect ratio. The inertia and drag coefficients
were also explored against the KC number. The drag coeffi-
cient was observed to be more sensitive to the vibration mode
J;(first mode versus second mode in bending) for a given

sample. Overall the semi-empirical Euler–Bernoulli–Morison
model presented here can be used conveniently for predicting
the underwater dynamics of piezoelectric cantilevers for
geometrically and materially linear behavior.
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Appendix

Experimentally measured in-air and underwater FRFs
(figures A1 and A2) are correlated to accurately identify the
inertia and drag coefficients for the first two modes. That is,
purely experimental structural (in air—approximately in
vacuo for infinitesimal oscillations) natural frequencies and
structural damping ratios are used in the model FRF in
figure A1. Then, the modal inertia and drag coefficients are
identified using this experiment-based model to have the
model versus experiment agreement in figure A2.

Figure A1. In-air experimental and model frequency response results for actuation: tip velocity (left) and admittance FRFs (right) for (a)
M8507-P1, (b) M8514-P1 and (c) M8528-P1.
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