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Abstract. Bio-inspired hydrodynamic thrust generation using piezo-
electric transduction has recently been explored using Macro-Fiber
Composite (MFC) actuators. The MFC technology strikes a balance
between the actuation force and structural deformation levels for effec-
tive swimming performance, and additionally offers geometric scalabil-
ity, silent operation, and ease of fabrication. Recently we have shown
that mean thrust levels comparable to biological fish of similar size can
be achieved using MFC fins. The present work investigates the effect of
length-to-width (L/b) aspect ratio on the hydrodynamic thrust gener-
ation performance of MFC cantilever fins by accounting for the power
consumption level. It is known that the hydrodynamic inertia and drag
coefficients are controlled by the aspect ratio especially for L/b< 5. The
three MFC bimorph fins explored in this work have the aspect ratios of
2.1, 3.9, and 5.4. A nonlinear electrohydroelastic model is employed to
extract the inertia and drag coefficients from the vibration response to
harmonic actuation for the first bending mode. Experiments are then
conducted for various actuation voltage levels to quantify the mean
thrust resultant and power consumption levels for different aspect ra-
tios. Variation of the thrust coefficient of the MFC bimorph fins with
changing aspect ratio is also semi-empirically modeled and presented.

1 Introduction

The design of robotic fish exploiting smart materials has received growing interest
in the last few years [1–12] for various potential applications of fish-like biomimetic
locomotion ranging from underwater sensing and exploration for ecological monitoring
and sustainability studies to drug delivery and disease screening in medicine [2,13–15].
Among the commonly used smart materials (such as ionic polymer metal compos-
ites, shape memory alloys and piezoelectric materials as discussed in a recent re-
view article [2]), Macro-Fiber Composites (MFCs) are effective piezoelectric actuators
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with the advantages of being light weight, flexible, durable, and available in various
sizes. MFC actuators have been successfully used in tethered underwater robotic fish
[16–18]. Employing MFCs in the design of untethered robotic fish [11] and bio-
inspired thrust and power generation [10] has been proven to be fairly successful in
our group. However, more research is required to investigate the effect of length-
to-width (L/b) aspect ratio on the hydrodynamic thrust generation performance
of MFC cantilever fins while accounting for the power consumption level during
actuation.
Erturk and Delporte [10] investigated underwater thrust and power production us-

ing MFC bimorphs with and without a passive caudal fin. They [10] performed in-air
and underwater base excitation experiments with an MFC-based fish-like propulsor
with a caudal fin extension of the substrate. Comparing the in-air and underwater test
results showed that the maximum underwater power output was an order of magni-
tude larger than its in-air counterpart for the same base acceleration level. Recently,
an untethered piezoelectric robotic fish was developed by Cen and Erturk [11] with
a swimming speed of 0.3 body length/second. In that work [11], electrohydroelastic
dynamics of a fully submerged MFC bimorph propulsor was investigated for the the-
oretical and experimental analysis of fish-like aquatic robotics by accounting for the
hydrodynamic effects presented in the papers by Sader et al. [19–22], which are based
on two-dimensional fluid-structure interaction analysis for slender beams. Likewise,
for underwater applications, Brunetto et al. [23], Mbemmo et al. [7], and Aureli et al.
[8] used similar approaches to analyze the dynamics of ionic polymer-metal compos-
ite samples. The linear hydrodynamic function developed based on Sader’s theory
[19–22] assumes infinitesimal vibrations and a large length-to-width ratio. Therefore,
as the vibration amplitude increases or length-to-width ratio decreases, the accu-
racy of Sader’s theory is affected negatively [24,25]. Kopman and Porfiri [9] used
Morison’s nonlinear equation [26–30] to incorporate the effects of the surrounding
fluid on caudal fins with different aspect ratios (Morison’s equation was originally
used to calculate fluid loading on a circular cylinder in viscous oscillatory flow). They
[9] used a nonlinear hydroelastic model along with experimental thrust coefficients
to calculate the resultant thrust of the beams. Facci et al. [31] compared the thrust
coefficient for different values of oscillatory Reynolds numbers and aspect ratios by
using 3D computational fluid dynamics simulations. They showed that, while the de-
pendence of the thrust coefficient on the Reynolds number was relatively small and
linear, there was a significant nonlinear dependence on the aspect ratio due to 3D fluid
effects.
In the present paper, an experimentally validated nonlinear electrohydroelastic

model for underwater resonant actuation of piezoelectric MFC cantilevers in quies-
cent water is developed based on the Euler-Bernoulli theory while incorporating the
fluid effects using Morison’s semi-empirical model [26,27] as in Kopman and Porfiri [9]
and Cha et al. [32]. The inertia and drag coefficients in Morison’s equation are exper-
imentally identified by applying low input voltages for linear underwater actuation
tests (resulting in both small deformations and small electric fields) [32,33]. Based on
experimental data for the underwater vibration of passive aluminum plates and MFCs
with different aspect ratios [33], a quadratic polynomial quotient curve fit is given
for the dimensionless inertia coefficient. The electrohydroelastic model is used in con-
junction with Lighthill’s elongated-body theory to calculate the thrust production as
a function of tip velocity and virtual mass (corrected with aspect ratio dependence)
for quiescent water condition. Experiments are then conducted for various actuation
voltage levels to quantify the mean thrust resultant and power consumption levels for
different aspect ratios. The hydrodynamic thrust coefficient of the propulsor is esti-
mated based on the virtual mass and aspect ratio, and then validated experimentally
for MFC bimorphs with different aspect ratios.



Dynamics of Animal Systems 3421

2 Electrohydroelastic modeling

2.1 Underwater dynamics of a bimorph cantilever

Electrohydroelastically coupled equations for underwater actuation of an MFC can-
tilever bimorph (Fig. 1) can be expressed as follows:

D
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where D is the bending stiffness of the composite cross section, cα and cβ are the
stiffness-proportional and mass-proportional damping coefficients1, respectively,ms is
the mass per unit length of the beam, L is the active overhang length, ϑ is the electro-
mechanical coupling term, Cp is the capacitance, δ(x) is the Dirac delta function, i(t)
is the electrical current input (negative sign denotes current flow into the system),
v(t) is the actuation voltage input, and w(x, t) is the transverse displacement (in
z-direction). The electromechanical coupling term, ϑ, and capacitance, Cp, are ob-
tained using the mixing rules formulation [34]. Furthermore, Γ(x, t) is the hydrody-
namic load per unit length due to the surrounding fluid (and L is the overall overhang
length) and is expressed using Morison’s semi-empirical equation as [9,26,27,32]:
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where ρw is the mass density of water and b is the overall width of the bimorph.
Moreover, cm and cd are the inertia and drag coefficients, respectively, which depend
on the aspect ratio and are determined experimentally. Clearly, the damping com-
ponent in Morison’s equation introduces quadratic nonlinearity (unlike the classical
linearized hydrodynamic function presented by Sader [19]), and therefore, in case of
exploring multiple modes, vibration modes need to be explored separately as in [33].
Geometrically small oscillations and materially linear behavior are the main assump-
tions so that the only nonlinearity is due to hydrodynamic damping.
Assuming well separated modes (which is the case for bending modes of a uniform

cantilever), the transverse deflection of the reference surface at position x and time
t is

w(x, t) ∼= φ(x)η(t) (4)

where φ(x) and η(t) are the mass-normalized eigenfunction and the generalized modal
coordinate for the fundamental vibration mode, respectively. The eigenfunction de-
noted by φ(x) is given for the transverse vibration of a clamped-free beam as
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1 This combined generalized proportional damping form is assumed to account for the
internal losses as a convenient mathematical representation.
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Fig. 1. Schematic representation of a bimorph cantilever under dynamic actuation in an
unbounded quiescent fluid domain.

where λ = 1.87510407 and the expression given for φ(x) satisfies the orthogonality
conditions as [11]:

L∫
0

ms φ
2(x)dx = 1 (6)

L∫
0

φ(x)D
d4φ(x)

dx4
dx = ω2n (7)

where ωn is the in vacuo undamped fundamental natural frequency and expressed as

ωn = λ
2
√
D/msL4. (8)

Substituting the expression for w(x, t) into Eqs. (1) and (2), multiplying by the mass
normalized eigenfunction φ(x), integrating over the length of the beam, and applying
the orthogonality conditions (Eqs. (6) and (7)) one obtains

(1 + μ)η̈(t) + (2ζωn + γ |η̇(t)|)η̇(t) + ω2nη(t) = θv(t) (9)

−i(t) + Ceq v̇(t) + θη̇(t) = 0 (10)

where μ = (π/4)(ρwb
2cm
/
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L∫
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are the inertia and drag coefficients for the fundamental vibration mode. Here

θ = ϑdφ(x)
dx
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x=L

is the modal electromechanical coupling term, Ceq is the equiva-

lent capacitance of the bimorph cantilever, and ζ is the modal mechanical damping
ratio. The modal electromechanical coupling and equivalent capacitance depend on
the way the MFC laminates are wired. The analytical expressions for the equivalent
capacitance and modal electromechanical coupling are given in [34] for the series and
parallel connections of the MFC laminates.
To obtain the in vacuo2 coupled mechanical and electrical equations, the hydro-

dynamic loading is set to zero such that μ = 0 and γ = 0 in Eq. (9). For harmonic
voltage excitation of the form v(t) = V ejωt(where ω is the excitation frequency and

2 In the experiments of this paper, infinitesimal in-air vibration case will be used to ap-
proximate in vacuo condition so that the hydrodynamic load can be superimposed as in
Eq. (1).
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j is the unit imaginary number), assuming harmonic modal mechanical response of
the form η(t) = Hejωt and electrical current of the form i(t) = Iejωt, solving Eqs. (9)
and (10) for the displacement frequency response function (FRF), α(ω, x), yields

α(ω, x) =
w(x, t)

V ejωt
=

θφ(x)

ω2n − ω2 + 2jζωnω
· (11)

Note that the velocity FRF can be obtained through multiplying α(ω, x) by jω for
harmonic response of the cantilever bimorph.
The method of harmonic balance is used to analyze periodic solutions of nonlinear

ordinary Eqs. (9) and (10). Using this method, a Fourier series solution is assumed
and the ordinary differential equations are replaced with algebraic equations (the
details of harmonic balance analysis can be found elsewhere [35–37]). In this work, a
single-term harmonic balance solution is adequate for approximating the steady-state
response to harmonic input voltage.
The input voltage, v(t), is harmonic of the form

v(t) = V cos ωt. (12)

The unknown modal coordinate η(t) and the current flow through the piezoelectric
bimorph, i(t), are assumed to be of the form:

η(t) = H0 cos ωt+H1 sin ωt (13)

i(t) = I0 cos ωt+ I1 sin ωt. (14)

Substituting Eqs. (12)–(14) into Eqs. (9) and (10) and using the harmonic balance
method yield the following set of algebraic equations in H0, H1, I0, and I1 for the
first vibration mode.
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3π
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√
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2
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2
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−I0 + θωH1 = 0 (17)

I1 + C
eqω + θωH0 = 0. (18)

The coefficient γ in Eqs. (15) and (16) is obtained by evaluating the integral using
61 Gaussian quadrature points at given excitation frequency. The resulting system of
algebraic equations (Eqs. (15–18)) is solved numerically using the “solve” function in
MATLAB�. The numerical solution with the default algorithm (trust-region dogleg)
is attempted by the solve function and the default tolerance of 10−6 is used.

2.2 Hydrodynamic mean thrust and identification of the thrust coefficient based
on Lighthill’s theory of elongated-body propulsion

Lighthill’s model [40–43] is applied in the present work to estimate the mean thrust in
quiescent water. Lighthill’s elongated-body theory [43] is based on the reactive forces
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between the virtual mass of the surrounding fluid and the vibrating slender body.
The mean thrust, T , produced by the cantilever MFC bimorph is calculated as

T =
1

2
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∂t
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∂x

)2]

x=L
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where U is relative speed of external free stream (or the swimming speed of propul-
sor) which is neglected for quiescent water conditions (i.e. U → 0 is assumed as an
approximation). The overbar denotes the mean values for the time derivative and the
spatial derivative of the transverse deflection, w(x, t), and mv is the virtual mass at
x = L which is estimated as

mv =
πρwb

2

4
cm. (20)

In most instances of thrust calculation using Lighthill’s theory [6,7,11], the virtual
mass coefficient (equivalent to the inertia coefficient used in Eq. (3), cf. Eqs. (3)
and (20)), cm, is taken as unity based on two-dimensional fluid-structure analysis
for slender beams [19,44]. The current analysis utilizes accurate values of the virtual
mass coefficient to calculate the thrust stemming from the actuation of various MFC
bimorphs with differing aspect ratios. To identify cm [24,25], each MFC bimorph
is clamped and tested for actuation both in air and under water. The in-air and
underwater experimental FRFs are correlated with model simulations (based on the
analysis explained in Sect. 2.1) that used only experimental parameters for the iden-
tification of the inertia coefficients of the fundamental mode, and are then used in
the semi-empirical electrohydroelastic Euler-Bernoulli-Morison model for experimen-
tal validations. Figure 2 displays the identified hydrodynamic virtual mass coefficient
(cm values for different aspect ratios are determined experimentally) focusing on
the first bending mode for both mechanically base-excited aluminum cantilevers and
electrically actuated MFC cantilevers with different aspect ratios (ψ = L/b). The ex-
perimental vibration characteristics of the aluminum strips considered in this study
are explained in detail by Shahab and Erturk [25]. It is observed that cm shows as-
ymptotic behavior for ψ greater than approximately 5 and becomes insensitive to ψ
(the cases of ψ smaller than 5 are sensitive to aspect ratio). Specifically, in Fig. 2,
cm(ψ) converges to unity for large ψ in agreement with predictions of classical flow
solutions for the two dimensional fluid-structure problem in which the linear hydro-
dynamic forces are dominant [19,45]. The repeatability of cm is observed for samples
with the same aspect ratio [33], and curve fit expressions are reported for inertia coef-
ficients. The following quadratic curve fitting polynomial quotient, determined using
the curve fitting toolbox within MATLAB� is given for the dimensionless parameter
cm for the first bending mode.

cm =
ψ2 − 0.701ψ + 0.374
ψ2 − 1.111ψ + 2.637 · (21)

3 Experimental validations

3.1 Details of experimental setup

Three MFC bimorphs are formed by bonding pairs of MFCs of different aspect ratios
(M8528-P1, M8514-P1, and M8507-P1 from the Smart Material Corporation [46],
shown in Fig. 3a) using high shear strength epoxy and a vacuum bonding process
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Fig. 2. Hydrodynamic inertia coefficient (cm) vs. aspect ratio (ψ) for the fundamental
bending mode.

Table 1. Geometric and structural properties of the MFC bimorphs (L: overhang length,
b: width, h: total thickness, ms: structural mass per length).

L (mm) b (mm)
h (mm) ms(kgm

−1)
[active∗, overall] [active, overall]

M8507-P1 [75.5, 85.5] [7, 16.5] 0.61 0.028
M8514-P1 [75.5, 83.5] [14, 21.5] 0.61 0.045
M8528-P1 [75.5, 90.6] [28, 43.5] 0.61 0.075
∗ Active length and width define the portions which are covered with piezoelectric material.

(described elsewhere [47]). Table 1 summarizes the physical properties of the MFC
bimorphs. The MFC pairs are wired in parallel in all cases, and the equivalent ca-
pacitances of the bimorphs are measured experimentally via a capacitance meter.
These three bimorphs are rigidly clamped at one end (shown in Fig. 3b) and linearly
actuated in-air with a low-voltage sinusoidal input. The actuation voltage signal is
generated by a National Instruments NI USB-4431 card and amplified using a power
amplifier (Trek, Inc. Model 2220). Actuation voltage and current data are collected
from the amplifier, as well as tip velocity measurements from a laser Doppler vibrom-
eter (LDV, Polytec PDV 100) and recorded using the NI USB-4431 module.
To measure the hydrodynamic mean thrust, each sample is attached to the free

end of a fixed-free 254mm × 25.4mm × 6.35mm elastic aluminum transducer can-
tilever and submerged under water, as seen in Figs. 3c and d. The deflection of the
aluminum cantilever in response to thrust resultant of each sample during actuation
is measured by an optical displacement sensor (Micro-Epsilon optoNCDT 2300-50),
as shown in Fig. 3d, and the thrust force is extracted using the calibration curve seen
in Fig. 4, as explained next.
The hydrostatic pressure effects cancel out in the underwater experiments, so

the mean thrust is assumed to be a point force applied to the transducer cantilever
through the center of the clamp holding the MFC, which results in a deflection of the
free end of the transducer cantilever. The transducer cantilever is calibrated horizon-
tally and in air, where weights are gradually added to the location of the point force
with the aid of gravity while the static displacement of the free end of the transducer
is measured. The resulting calibration curve, shown in Fig. 4, is determined to be
linear for the range of deflections seen in these experiments. Since the stiffness of the
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Fig. 3. (a) Clamped MFC bimorphs (from left to right: M8528-P1, M8514-P1, and M8507-
P1), (b) in-air dynamic actuation test setup, (c) side view of the underwater configuration
of the MFC bimorph for the measurement of its tip velocity-to-actuation voltage FRF and
(d) front view of underwater configuration of MFC bimorph for mean thrust measurement.

Fig. 4. Linear calibration curve for the aluminum transducer cantilever to relate constrained
mean head displacement to mean thrust.

transducer cantilever is unchanged in air and under water, the in-air calibration can
be utilized for the underwater experiments as in Cen and Erturk [11]. Impact hammer
testing is performed on this transducer cantilever to ensure that the first mode of the
transducer is well separated from the first mode of the MFC bimorphs, both in air
and under water.
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Fig. 5. (a) In-air and (b) underwater experimental and analytical tip velocity FRF for
M8528-P1.

3.2 In-air and underwater velocity FRFs and parameter identification

Tip velocity-to-actuation voltage FRFs for in-air and underwater actuation experi-
ments and model results for M8528-P1 are shown in Figs. 5a and b, respectively. For
brevity, the results for the remaining samples are not graphically presented here. Dur-
ing the actuation experiments, low-voltage harmonic excitation is applied, resulting
in a linear response. The identified parameters based on the in-air actuation exper-
iments are summarized in Table 2. The bending stiffness, D, is identified by using
the experimental fundamental resonance frequency of the bimorph. The damping ra-
tio, ζ, is obtained by using the half-power-point method [48]. The identified modal
electromechanical coupling term, θ, for each sample is in agreement with the pre-
dicted values obtained using the mixing rules formulation (for the parallel wiring of
MFC laminates) presented by Shahab and Erturk [34]. The equivalent capacitance,
Ceq, of each bimorph is measured experimentally.
Once the analytical model for in-air actuation of the bimorphs is validated (using

Eq. (11) in Fig. 5a) and the parameters are identified, three case studies are tested
and analyzed (using Morison’s hydrodynamic function) for linear underwater actu-
ation. As previously explained in Sect. 2, in-air and underwater experimental FRFs
are correlated with model simulations based on purely experimental parameters for
accurate identification of the first mode inertia and drag coefficients (e.g. the inertia
coefficients are given in Fig. 2) [34]. The correlation is done by using the built-in “fit”
function in MATLAB� for the experimental data. Specifically, the inertia coefficient,
cm, can be obtained by correlating the resonance frequency of the model to the exper-
imental data. The monotonic increase of coefficients cm and cd with respect to aspect
ratio with an asymptotic trend for large aspect ratios was shown in Fig. 9 in [34].
In that work [34], the authors presented curve fitting polynomial ratio expressions
for the dimensionless inertia and drag coefficients as a function of the aspect ratio.
These drag and inertia coefficients, when used in the semi-empirical electrohydroelas-
tic Euler-Bernoulli-Morison model, result in the underwater FRF prediction given in
Fig. 5b.
The cm values used in this work are 0.069, 0.91, and 1.02 for length-to-width

aspect ratios of ψ = 2.1, 3.9, and 5.4, respectively. These coefficients are consistent
with what is presented in Fig. 2 and Eq. (21). In this work, Lighthill’s slender-body
theory [40,41] is used to predict the thrust output in quiescent water by reducing
Lighthill’s mean thrust expression to quiescent water condition.
It is important to note that the electrohydroelastic model given in Sect. 2 is

valid only for excitations around the fundamental natural frequency since higher
vibration modes are not used in Eqs. (15)–(18). In addition, the derivation neglects the



3428 The European Physical Journal Special Topics

Table 2. Experimentally identified parameters from in-air actuation experiments.

M8507-P1 M8514-P1 M8528-P1
fsc (Hz) 35.5 46.4 38.1

D (Nm2) 0.0045 0.0101 0.0125
ζ(%) 1.6 1.8 1.3

θ (10−3 C/m
√
kg ) 4.5 7.5 10

Ceq (nF) 5.5 6.7 19.3

geometric, material, and internal dissipative nonlinearities [49–51]. Therefore, the
geometrically and materially linear model predictions would fail under high actuation
voltage levels (e.g. peak-to-peak voltage input: 400V to 800V) due to geometric and
electroelastic nonlinearities [49–51]. Modeling of MFC dynamics under high voltage
actuation and incorporating hydrodynamic effects [52] in such a nonlinear model are
of interest for future work.

3.3 Mean thrust and tip velocity correlation, and power consumption analysis

The experimental tip velocity and mean thrust measurements for the M8528-P1 bi-
morph are shown in the frequency range of 1–11Hz, which captures the resonance
frequency of the bimorph for peak-to-peak actuation voltage levels of 400, 600, and
800V (Figs. 7a and b). For a given actuation frequency and amplitude, the bimorphs
were excited as per Fig. 6a, where there is 10 seconds of pre-actuation where no volt-
age is applied, then 10 seconds of a sinusoidal voltage input at the given frequency
and amplitude, and finally 10 seconds of post-actuation where there is again no input
voltage. The tip velocity of the bimorph, displacement of the transducer cantilever,
input voltage and current for the bimorph were measured as the bimorph is excited,
and subsections where the response of the bimorph is in quasi-steady state during
the pre-actuation, actuation, and post-actuation phases are extracted from the time
histories. These quasi-steady state subsections are used to determine the RMS tip
velocity, mean thrust, RMS current, and mean power consumed for each actuation
frequency and amplitude. The mean displacement of the transducer cantilever caused
by the thrust is the difference between the mean value during actuation and the aver-
age of the mean values during the pre-actuation and post-actuation phases. Figure 6
shows a representative time trace of input actuation voltage, transverse tip velocity,
and transducer cantilever displacement in the direction of positive thrust (in Figs. 3c
and d) during pre-actuation, actuation, and post-actuation phases at 5.5Hz under a
peak-to-peak input actuation voltage of 800V.
The analytical thrust curves shown in Fig. 7b use Lighthill’s theory for a bimorph

propulsor in quiescent water conditions based on the measured tip velocity shown
in Fig. 7a. For M8528-P1 (ψ = 2.1), M8514-P1 (ψ = 3.9), and M8507-P1 (ψ =
5.4), the inertia coefficients (cm) in Eq. (20) are defined as 0.069, 0.91, and 1.02,
respectively, based on the semi-empirical Euler-Bernoulli-Morison electrohydroelastic
analysis presented in Sect. 2 and plotted in Fig. 2. It should be noted that, the
inertia coefficient is estimated close to unity when the linear hydrodynamic forces are
dominant on the predictions of classical flow solutions of the two-dimensional fluid-
structure problem [19], whereas recent experimental and analytical data presented
by Cha et al. [32] and Shahab and Erturk [24,25] show that the inertia coefficient is
controlled by the aspect ratio, especially for ψ < 5.
The experimental current amplitude and average power plots for the MFC bi-

morph at various actuation frequencies and voltages are shown in Figs. 7c and d. The
data obtained for the thrust and power consumption is used later to analyze the effect
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Fig. 6. Representative time trace of (a) input actuation voltage, (b) measured transverse
tip velocity, and (c) head displacement during pre-actuation, actuation, and post-actuation
at 5.5Hz.

Fig. 7. (a) Experimental tip velocity, (b) measured and predicted thrust curves, (c) exper-
imental current input, and (d) average power input curves for M8528-P1 (ψ = 2.1) under
different actuation voltage levels.

of aspect ratio on the thrust generated per power input. In Fig. 7b, the agreement
between the experimental thrust measurements and the model validates the use of the
reduced form of Lighthill’s theory [40,41] (which uses the measured tip velocity and
predicted virtual mass by the Euler-Bernoulli-Morison electrohydroelastic model) for
the bimorph under three different high-level input voltages.

Next, Lighthill’s theory is employed for two more case studies with larger aspect
ratios where the thrust levels, which are prone to noise, are difficult to accurately
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Fig. 8. (a) Experimental tip velocity, (b) predicted thrust curves, (c) experimental current
input, and (d) average power input curves for M8514-P1 (ψ = 3.9) under different actuation
voltage levels.

measure experimentally. In each case, the correlation between measured tip velocity
and predicted thrust shows that the thrust levels increase with increasing tip ve-
locities, as expected. Figures 8a and 9a show the experimentally determined RMS
tip velocity for the higher aspect ratio bimorphs under varying actuation frequencies
and voltages, and Figs. 8b and 9b show the corresponding predicted thrust curves.
In Figs. 7, 8 and 9c,d, the current amplitude and average power plots for different
actuation frequencies and voltages are given.
The ratio, Φ, between the mean thrust (obtained using Lighthill’s theory for the

measured tip velocity for 800V peak-to-peak input voltage) and the average power
consumption for the three aspect ratios is shown in Fig. 10a. Figures 7a, 8a and 9a
show that at resonant frequencies, the magnitudes of the tip velocities between the
three samples are comparable. However, the MFC bimorph with largest aspect ratio
has the least added mass, resulting in a lower power consumption level for the same
tip velocity as compared to the other two samples. For example, Figs. 7d, 8d and 9d
show that the average power consumption for the sample with ψ = 5.4, is approxi-
mately 2 times less than that of the sample with ψ = 3.9, and approximately 5 times
less than the sample with ψ = 2.1 around the resonant frequencies for 800V input
actuation voltage. At the same time, the thrust levels generated by the bimorph can-
tilevers are dominantly proportional to the square of their widths (based on Eqs. (19)
and (20), and considering the dependence of thrust on inertia coefficient). The sample
with largest aspect ratio (ψ = 5.4) produces the least thrust, as can be observed in
Figs. 7b, 8b and 9b. Combining these two effects, the maximum mean thrust resultant
to average power consumption level for the three MFC bimorphs is approximately a
constant average value of 60.7 mN/W, as presented in Fig. 10b. However, it is ob-
served in Fig. 10a that the samples with larger aspect ratios maintain their response
in a broader frequency range (due to higher drag coefficient [34]), which might be
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Fig. 9. (a) Experimental tip velocity, (b) predicted thrust curves, (c) experimental current
input, and (d) average power input curves for M8507-P1 (ψ = 5.4) under different actuation
voltage levels.

(a) (b) 

Fig. 10. (a) Mean thrust to power consumption ratio for three aspect ratios (800V peak-
to-peak input voltage) and (b) maximum mean thrust to average power consumption ratio
vs. aspect ratio.

of interest for future design purposes to have less sensitivity to frequency variations
around resonance.

3.4 Identification of the thrust coefficient

In order to study the effects of the cantilever geometry, oscillation frequency, and
tip displacement amplitude on the resultant thrust with a compact expression, the
non-dimensional thrust coefficient, cτ , is defined as [53]

cτ =
T

1
2ρwω

2|w(L, t)|2bL · (22)
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Fig. 11. Identified experimental and semi-empirical Euler-Bernoulli-Morison model curve
of thrust coefficient vs. aspect ratio (ψ).

Substituting Eqs. ((19)–(20)) into Eq. (22) yields an expression for cτ in terms of
the inertia coefficient, cm. Combining this expression with the expression given in
Eq. (21) results in an expression for cτ as a function of the length-to-width aspect
ratio, ψ:

cτ = 0.393
cm

ψ
=
0.393ψ2 − 0.275ψ + 0.147
ψ3 − 1.111ψ2 + 2.637ψ (23)

Figure 11 displays the experimental thrust coefficients of the actuated MFC can-
tilevers with different aspect ratios (ψ = L/b) along with the curve obtained from
Eq. (23). By increasing ψ, the thrust coefficient is significantly reduced with this
nonlinear dependence on aspect ratio, which is attributed to the reduction of the
overall fluid loading on the structure. This observation is consistent with the results
reported by Facci et al. [31] (Fig. 7 in [31]) through 3D computational fluid dynamics
simulations that investigate the effects of aspect ratio on the thrust production from
vibration of a thin cantilever plate submerged in fluid.

4 Conclusions

Bio-inspired thrust generation using piezoelectric transduction is investigated theo-
retically and experimentally for MFC bimorphs with different length-to-width aspect
ratios. In an effort to develop electrohydroelastic models for these cantilevers, the
present work studied MFC bimorphs with three different aspect ratios for small am-
plitude bending vibrations under piezoelectric actuation. In-air experiments were con-
ducted for model validation and for the characterization of the bimorph propulsors.
Underwater tip velocity FRFs were then derived by combining their in-air coun-
terparts with Morison’s nonlinear hydrodynamic function. The inertia and drag co-
efficients in Morison’s equation were identified experimentally. The hydrodynamic
effects added to the electroelastic in-air model successfully represent the underwater
dynamics for small oscillations. However, high actuation voltage levels during the
experiments that included thrust measurements cause nonlinear electrohydroelastic
behavior due to electroelastic, geometric, and dissipative nonlinear effects. For future
work, accounting for nonlinear electroelastic dynamics [49–51] along with nonlinear
hydrodynamic effects [52] is required to predict the dynamics of the propulsor for
large oscillations and strong electric fields. In this work, the experimentally obtained
vibration response and the inertia coefficient (defined in Morison’s hydrodynamic
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function) are coupled with Lighthill’s elongated-body theory [40,41] to predict the
thrust output. Although the inertia and drag coefficients were found to be highly
dependent on the aspect ratio for ψ< 5, the maximum mean thrust to power con-
sumption ratio is found to be insensitive to the aspect ratio, which may influence the
future design of untethered biomimetic robotic fish using MFCs. It is also noted that
the thrust output per power input frequency response has increased bandwidth for
increased length-to-width aspect ratio (due to increased drag coefficient). Variation
of the thrust coefficient of the MFC bimorph fins with changing aspect ratio is also
semi-empirically modeled and presented.

This work was supported in part by the NSF Grant CMMI-1254262.
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