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Abstract. The transformation of waste vibration energy into low-power
electricity has been heavily researched over the last decade to enable
self-sustained wireless electronic components. Monostable and bistable
nonlinear oscillators have been explored by several research groups in
an effort to enhance the frequency bandwidth of operation. Linear two-
degree-of-freedom (2-DOF) configurations as well as the combination
of a nonlinear single-DOF harvester with a linear oscillator to consti-
tute a nonlinear 2-DOF harvester have also been explored to develop
broadband energy harvesters. In the present work, the concept of non-
linear internal resonance in a continuous frame structure is explored
for broadband energy harvesting. The L-shaped beam-mass structure
with quadratic nonlinearity was formerly studied in the nonlinear dy-
namics literature to demonstrate modal energy exchange and the sat-
uration phenomenon when carefully tuned for two-to-one internal res-
onance. In the current effort, piezoelectric coupling and an electrical
load are introduced, and electromechanical equations of the L-shaped
energy harvester are employed to explore primary resonance behaviors
around the first and the second linear natural frequencies for bandwidth
enhancement. Simulations using approximate analytical frequency re-
sponse equations as well as numerical solutions reveal significant band-
width enhancement as compared to a typical linear 2-DOF counterpart.
Vibration and voltage responses are explored, and the effects of various
system parameters on the overall dynamics of the internal resonance-
based energy harvesting system are reported.

1 Introduction

The conversion of mechanical vibration energy into low-power electricity has received
growing attention as an enabling technological concept for small electronic compo-
nents and wireless applications [1–5]. Various research groups have reported their
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Fig. 1. Piezoelectrically coupled and electrically shunted L-shaped beam-mass structure
under base excitation as a quadratically nonlinear energy harvester with two-to-one in-
ternal resonance (lumped masses are tuned to have the first two linear natural frequen-
cies satisfy ω2 ≈ 2ω1, while the higher natural frequencies are far removed from the first
two).

work on modeling and applications of vibration-based energy harvesting using electro-
magnetic [6–8], electrostatic [9,10], piezoelectric [11–14] and magnetostrictive [15,16]
transduction mechanisms, as well as the use of electronic and ionic electroactive poly-
mers [17,18] and polymer electrets [19], and even flexoelectricity for energy harvest-
ing at submicron scales [20]. Among the basic transduction mechanisms that can be
used for vibration-to-electricity conversion, piezoelectric transduction has received the
most attention due to the high power density and ease of application of piezoelectric
materials [3,4,21].
Conventional energy harvesters [11–14] are typically designed based on the lin-

ear resonance phenomenon, and therefore they suffer from frequency bandwidth
limitations and extreme sensitivity to uncertainties. In order to overcome this
issue, multi-degree-of-freedom (MDOF – in simplest form 2-DOF) configurations
with multiple linear resonance frequencies and designed nonlinearities with nonlin-
ear resonances and highly inclined backbone curves have been studied for frequency
bandwidth enhancement. The reader is referred to several review articles by Tang et
al. [22], Pellegrini et al. [23], Twiefel and Westermann [24], Harne and Wang [25],
and Daqaq et al. [26] on broadband and nonlinear energy harvesting concepts. The
existing efforts on frequency bandwidth enhancement in vibration energy harvesters
range from 2-DOF linear concepts [27–31] to monostable [32–34] and bistable [35–41]
single-DOF energy harvesters, as well as 2-DOF combination of linear and nonlinear
oscillators [42,43].
The present work is focused on the exploitation of two-to-one internal resonance

in the L-shaped beam-mass structure of Haddow et al. [44] (as a simple alterna-
tive to the recently explored snap-through configuration with internal resonance by
Chen and Jiang [45]). Linearized distributed-parameter electroelastic dynamics of an
L-shaped piezoelectric energy harvester was formerly described by Erturk et al. [46].
Therefore the present work is centered on the nonlinear problem for the exploitation
of two-to-one internal resonance with a focus on the two primary resonance cases
for excitations near the first two natural frequencies. In the following, the govern-
ing nonlinear electromechanical equations are analyzed using the method of multiple
scales for the modal mechanical response amplitudes and the voltage output across
the electrical load. The effects of various system parameters on the electromechanical
frequency response are then reported, and bandwidth enhancement is discussed. Com-
parisons of the perturbation-based approximate analytical solution with time-domain
exact numerical simulations are also given briefly.
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2 Governing electromechanical equations and perturbation analysis

2.1 Governing equations

Linearized two-way electromechanical coupling of piezoelectricity [21] and a resis-
tive electrical load are introduced to the governing equations of the L-shaped passive
beam-mass structure1 [44] to yield the following dimensionless mechanical force bal-
ance and electrical current balance equations:
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where ui (i = 1, 2) are the modal displacements that are of order unity, θi are the
piezoelectric coupling terms in the mechanical equations, κi are the piezoelectric cou-
pling terms in the electrical circuit equation, λ is the reciprocal of the time constant
of the resistive-capacitive circuit (due to the external resistive load and internal piezo-
electric capacitance), μi is mechanical damping term under short-circuit conditions,
Ω is the frequency of the base excitation force F , and ε is a small bookkeeping pa-
rameter, while the remaining terms (ωi, Xij , Yij , Zij , Ki) can be found in Ref. [44].
Furthermore, the modal displacements u1 and u2 can be combined with the struc-
tural linear eigenfunctions to approximate the vibration response of the structure as
in Haddow et al. [44].

2.2 Method of multiple scales

The method of multiple scales [47] is employed to obtain an approximate solution for
the electromechanical response in the form of

ui (t; ε) = ui0(T0, T1) + εui1(T0, T1)

v (t; ε) = u30(T0, T1) + εu31(T0, T1)
(2)

where T0 = t and T1 = εt are the time scales. The derivatives with respect to time
are also expansions as partial derivatives with respect to these time scales:

d

dt
(·) = (D0 + εD1)(·), d2

dt2
(·) = (D20 + 2εD0D1)(·) (3a)

1 The reader is referred to Haddow et al. [44] for derivation and non-dimensionalization
of the passive 2-DOF structural equations, while Erturk et al. [46] is a useful reference
for linearized distributed-parameter electroelastic formulation of the L-shaped structure (in
terms of introducing the piezoelectric effect and electrical load to the L-shaped beam-mass
structure).
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D0 ≡ ∂

∂T0
, D1 ≡ ∂

∂T1
(3b)

where terms of order ε2 have been neglected.
Soft excitation is assumed as common practice in primary resonance analysis so

that
F = εf. (4)

Substituting Eqs. (2)–(4) into (1) and equating coefficients of like powers of ε gives
the following equations for orders ε0 and ε1:

D20ui0 + ω
2
i ui0 = 0

D0u30 + λu30 = −κ1D0u10 − κ2D0u20 (5)

D20ui1 + ω
2
1ui1 = −2D0D1ui0 − 2μiD0ui0 + θiu30 −Xi1 (D0u10)2 − Yi1u10(D20u10)
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−Xi3 (D0u20)2 − Yi4u20(D20u20) + 2fK1 cos (ΩT0)

D1u31 + λu31 = −D0u30 − κ1(D0u11 +D1u10)− κ2(D0u21 +D1u20) (6)

From Eq. (5),

ui0 = Ai (T1) e
iωiT0 + cc (7a)

u30 = B(T1)e
−λT0 +B1 (T1) eiω1T0 +B2 (T1) eiω2T0 + cc
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+ cc (7b)

where Ai(T1) and B(T1) are unknown functions at this point and cc stands for the
complex conjugate of the preceding terms.
Substituting Eqs. (7) into (6) leads to
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where Āi is the complex conjugate of Ai. Note that the Ai terms are chosen to
eliminate the secular terms in the time scale T0 from u11 and u21 [44]. Therefore the
Ai terms depend on the relationships among the excitation frequency and the linear
natural frequencies. The excitation cases of Ω near ω1 and Ω near ω2 (for ω2 near
2ω1) are discussed next to obtain the frequency response equations.

3 Frequency response equations and results for the primary
resonance Ω ≈ ω1
3.1 Approximate analytical expressions

Two detuning parameters, σ1 (internal detuning parameter) and σ2 (external detun-
ing parameter), are introduced to describe the proximity of ω2 to 2ω1 and Ω to ω1,
respectively. Therefore the frequency relations for the two-to-one internal resonance
and the first primary resonance of Ω ≈ ω1 are

ω2 = 2ω1 + εσ1, Ω = ω1 + εσ2. (9)

In view of Eq. (8), the secular terms in the time scale T0 can then be eliminated from
u11 and u21 provided that

2i [(D1A1 + μ1A1) + ρ1(λ− iω1)A1]− 4C1A2A1eiσ1T1 − (2fK1)
ω1

eiσ2T1 = 0

2i [(D1A2 + μ2A2) + ρ2(λ− iω2)A2]− 4C2A21e−iσ1T1 = 0
(10)
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·
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The unknowns Ai can be expressed in polar form as

A1 =
1

2
√
C1C2

a1e
iβ1 , A2 =

1

2C1
a2e

iβ2 , (12)

where the ai and βi terms are real functions of the time scale T1. After substituting
Eq. (12) into Eq. (10) and then separating the result into real and imaginary parts,
one can obtain

a′1 + (μ1 + ρ1λ)a1 − a2a1 sin γ1 − F sin γ2 = 0,
a1β

′
1 − ρ1a1ω1 + a2a1 cos γ1 + F cos γ2 = 0,

a′2 + (μ2 + ρ2λ)a2 + a21 sin γ1 = 0,

a2β
′
2 − ρ2a2ω2 + a21 cos γ1 = 0,

(13)

which are the electromechanical modulation equations (where the prime denotes dif-
ferentiation with respect to T1) and

F =
2K1
√
C1C2f

ω1
, γ1 = σ1T1 − 2β1 + β2, γ2 = σ2T1 − β1 (14)
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Steady-state response implies a′1 = a′2 = 0 and γ′1 = γ′2 = 0, one can then find β′1 = σ2
and β′2 = 2σ2 − σ1, yielding

(ρ1λ+ μ1) a1 − a2a1 sin γ1 − F sin γ2 = 0,
ρ1a1ω1 − σ2a1 − a2a1 cos γ1 − F cos γ2 = 0,
(ρ2λ+ μ2) a2 + a

2
1 sin γ1 = 0

ρ2ω2a2 − (2σ2 − σ1)a2 − a21 cos γ1 = 0

(15)

and

a2 =
a21

{Γ21 + Γ24}1/2
, (16a)

a61 + 2 [Γ1Γ2 + Γ3Γ4] a
4
1 +
[
Γ21 + Γ

2
4

] [(
Γ22 + Γ

2
3

)
a21 − F 2

]
= 0, (16b)

where
Γ1 = σ1 − 2σ2 + ρ2ω2 Γ2 = σ2 − ρ1ω1
Γ3 = μ1 + ρ1λ Γ4 = μ2 + ρ2λ.

(17)

At steady state, the homogeneous part of Eq. (7b) vanishes (i.e. B(T1)→ 0 as T0 =
t → ∞ since B(T1) is bounded and λ > 0), yielding the following expression for the
steady-state complex voltage amplitudes in terms of the vibration amplitudes
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λ+ iΩ
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Therefore, at steady state
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u20 =
a2

C1
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(19)

where ψ1 and ψ2 are the arguments of B1/A1 and B2/A2, respectively. Since the
voltage response contains both frequency components, the root-mean-square (RMS)
voltage across the load is:

vRMS =
1√
2

√
(a1κ1Ω)

2

C1C2 (λ2 +Ω2)
+
4 (a2κ2Ω)

2

C21 (λ
2 + 4Ω2)

· (20)

3.2 Results and discussion

Approximate analytical results are demonstrated for the nonlinear electromechanical
frequency response equations, and the effects of various system parameters are dis-
cussed next. The parameters ωi, Xij , Yij , Xij , Ki are chosen as in Ref. [44], while
the other parameters are μ1 = 0.001, μ2 = 0.005, λ = 5, κ1 = 0.5, κ2 = 0.5, θ1 = 2,
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Fig. 2. Modal vibration and voltage output frequency response curves versus external de-
tuning parameter σ2 for different excitation levels (F = 0.6, 1.0, 1.5) and Ω ≈ ω1. Black
curves are stable and red curves are unstable solutions.
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Fig. 3. Modal vibration amplitudes and voltage output versus excitation amplitude F for
different values of external detuning parameter (σ2 = 1.5, 2.0, 2.5) and Ω ≈ ω1. Black curves
are stable and red curves are unstable solutions.

θ2 = 5, and σ1 = −2. In Fig. 2, the modal vibration and voltage frequency response
curves are shown as functions of the external detuning parameter σ2 for different
excitation amplitude levels. There are regions where the solution is multi-valued and
there exist double jump for up and down sweeps at the edges of these regions. As the
excitation level increases, a high energy attractor develops and grows over a broad
range of frequencies, yielding broadband energy harvesting capabilities. In Fig. 3,
the modal vibration and voltage outputs (both stable and unstable solutions) are
plotted as functions of the excitation level (F ) for different external detuning values.
Once again, there exist regions of forcing where the electromechanical response is
multi-valued.
Mechanical damping is an important parameter for the nonlinear energy har-

vesting system (as damping typically affects the performance of nonlinear vibrating
systems). The modal vibration and voltage frequency response curves for different val-
ues of damping ratio (μ2 for mode 2 is chosen here) are plotted in Fig. 4. The effect
of the nonlinearity is more pronounced with reduced mechanical damping. The peak
response amplitude and the bandwidth of frequency responses increase as mechani-
cal damping is decreased. Therefore, low mechanical damping (i.e. high mechanical
quality factor) is preferred for both increased electrical output and bandwidth.
In the governing equations, the product of piezoelectric capacitance and exter-

nal load resistance is embedded in the single term λ, which is the reciprocal of the
time constant for the resistive-capacitive circuit. This term (λ) is therefore inversely
proportional to the external load resistance. That is, the short-circuit and the open-
circuit conditions are λ→∞ and λ→ 0, respectively. In Fig. 5, the modal vibration
and voltage frequency response curves are displayed for different λ values. Certain
values of λ result in significant shortening in the bandwidth of the nonlinear frequency
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Fig. 4. Modal vibration and voltage output frequency response curves versus external de-
tuning parameter σ2 for different damping ratios (μ2 = 0.001, 0.005, 0.01) and Ω ≈ ω1.
Black curves are stable and red curves are unstable solutions.
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Fig. 5. Modal vibration and voltage output frequency response curves versus external de-
tuning parameter σ2 for different values of the reciprocal of time constant (λ = 0.5, 3, 10)
and Ω ≈ ω1. Black curves are stable and red curves are unstable solutions.

response curves as a result of dissipation due to Joule heating in the resistor [21] as
demonstrated previously by Leadenham and Erturk [48].

4 Frequency response equations and results for the primary
resonance Ω ≈ ω2
4.1 Approximate analytical expressions

For the second primary resonance case, Ω ≈ ω2, the frequency relations are
ω2 = 2ω1 + εσ1, Ω = ω2 + εσ2 (21)

where the internal detuning parameter σ1 (for two-to-one internal resonance) is as
previously defined, while the external detuning parameter σ2 has been redefined.
Based on Eq. (8), the secular terms in the time scale T0 are then eliminated from

u11 and u21 when the following equations are satisfied:

2i [(D1A1 + μ1A1) + ρ1(λ− iω1)A1]− 4C1A2A1eiσ1T1 = 0

2i [(D1A2 + μ2A2) + ρ2(λ− iω2)A2]− 4C2A21e−iσ1T1 −
(2fK1)

ω2
eiσ2T1 = 0

(22)

where C1, C2 and ρ1, ρ2 are defined in Eq. (11).
In order to solve for Ai in Eq. (22), it is convenient to use the polar forms given

in Eq. (12). Substituting Eq. (12) into (22) and separating the result into real and
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imaginary parts, one can obtain

a′1 + (μ1 + ρ1λ)a1 − a2a1 sin γ1 = 0
a1β

′
1 − ρ1a1ω1 + a2a1 cos γ1 = 0

a′2 + (μ2 + ρ2λ)a2 + a21 sin γ1 − F sin γ2 = 0
a2β

′
2 − ρ2ω2a2 + a21 cos γ1 + F cos γ2 = 0

(23)

where F is now defined as

F =
2C1K2f

ω2
, γ1 = σ1T1 − 2β1 + β2, γ2 = σ2T1 − β2. (24)

At steady state, a′1 = a′2 = 0 and γ′1 = γ′2 = 0, yielding β′2 = σ2 and β′1 = (σ1+σ2)/2.
One can then rewrite Eq. (23) as

[(μ1 + ρ1λ)− a2 sin γ1] a1 = 0[
1

2
(σ1 + σ2)− ρ1ω1 + a2 cos γ1

]
a1 = 0

(μ2 + ρ2λ)a2 + a
2
1 sin γ1 − F sin γ2 = 0

(σ2 − ρ2ω2)a2 + a21 cos γ1 + F cos γ2 = 0.

(25)

Following Haddow et al. [44], there are two possible solutions:

a1 = 0, a2 =
F√

(μ2 + ρ2λ)2 + (σ2 − ρ2ω2)2
(26a)

tan γ2 =
μ2 + ρ2λ

ρ2ω2 − σ2 , and γ1 is indeterminate; (26b)

and

a21 = (Γ1Γ2 − Γ3Γ4)±
√
F 2 − (Γ1Γ4 + Γ2Γ3)2 (27a)

a2 =

√
(μ1 + ρ1λ)2 +

[
1

2
(σ1 + σ2)− ρ1ω1

]2
(27b)

where

Γ1 =
1

2
(σ2 + σ1)− ρ1ω1, Γ2 = σ2 − ρ2ω2, Γ3 = μ1 + ρ1λ, Γ4 = μ2 + ρ2λ (28a)

tan γ1 =
−2(μ1 + ρ1λ)
2ρ1ω1 − (σ1 + σ2) , tan γ2 =

Γ3a
2
1 + Γ4a

2
2

Γ1a21 − Γ2a22
· (28b)

The first possibility is the approximate solution of the linear problem, which could
also be deduced from Eq. (8) if ω2 had been far removed from 2ω1; i.e. the case
of no internal resonance. The second possibility results in the so-called saturation
phenomenon [44,49,50]; i.e. in this latter case, the amplitude (a2) of the directly
excited mode is independent of the amplitude of the excitation, whereas the amplitude
(a1) of the mode that is not directly excited does depend on the amplitude of the
excitation.
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The second solution may take place for Γ1Γ2 − Γ3Γ4 ≤ 0 and Γ1Γ2 − Γ3Γ4 > 0
[44]. These cases can be considered separately in the following analysis: Case (1) is

Γ1Γ2 − Γ3Γ4 ≤ 0, a single real root for exists if F ≥ F2 =
√
(Γ21 + Γ

2
3) (Γ

2
2 + Γ

2
4) and

if F < F2, no real root exists; Case (2) is Γ1Γ2−Γ3Γ4 > 0, two real roots for a1 exist
if F2 > F > F1 = |Γ1Γ4 + Γ2Γ3|, and one real root exists if F > F2, and no real
root exists if F < F1. Substituting F2 from Case (1) into Eq. (26a), the solution of
the linearized system, one can find that a2 in Eq. (26a) is the same as that given by
Eq. (27b), the saturation value. In other words, when F is small, the solution is that
of the linearized set of equations.
As done previously with Eq. (18), the complex voltage amplitudes can be written

in terms of the vibration amplitudes. Therefore, at steady state

u10 = 0

u20 =
a2

C1
cos (Ωt− γ2) (29)

u30 =
κ2Ω√
λ2 +Ω2

a2

C1
cos (Ωt− γ2 + ψ2)

with the RMS voltage output

vRMS =
1√
2

a2κ2Ω

C1
√
λ2 +Ω2

(30)

or

u10 =
a1√
C1C2

cos

(
1

2
Ωt− γ1 + γ2

2

)

u20 =
a2

C1
cos (Ωt− γ2) (31)

u30 =
κ1Ω√
4λ2 +Ω2

a1√
C1C2

cos

(
1

2
Ωt− γ1 + γ2

2
+ ψ1

)

+
κ2Ω√
λ2 +Ω2

a2

C1
cos (Ωt− γ2 + ψ2)

with the RMS voltage output

vRMS =
1√
2

√
(a1κ1Ω)

2

C1C2 (4λ2 +Ω2)
+
(a2κ2Ω)

2

C21 (λ
2 +Ω2)

(32)

where ψ1 and ψ2 are the arguments of B1/A1 and B2/A2 in Eq. (18).

4.2 Results and discussion

Figure 6 illustrates the modal vibration and voltage output curves versus excitation
level for different values of external detuning parameter (while the internal detuning
parameter is the same as before, σ1 = −2). Here, σ2 = 2 corresponds to Γ1Γ2−Γ3Γ4 ≤
0, while σ2 = 3 and σ2 = 4 correspond to Γ1Γ2−Γ3Γ4 > 0. Both stable and unstable
solutions are shown (in black and red colors, respectively). In case of σ2 = 2, when
F ≤ F2, the only solution is due to Eq. (26). For F > F2, the second solution given
by Eq. (27), is also possible. For σ2 = 3 and σ2 = 4, when F ≤ F1, the only solution
is given by Eq. (26). For F2 > F > F1, there are three possible values of a1 (one
due to Eq. (26) and two due to Eq. (27)) and two values of a2. At the edges of the
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Fig. 6. Modal vibration amplitudes and RMS voltage output versus excitation amplitude F
for different values of external detuning parameter (σ2 = 2, 3, 4) and Ω ≈ ω2. Black curves
are stable and red curves are unstable solutions.
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Fig. 7. Modal vibration and voltage output frequency response curves versus external de-
tuning parameter σ2 for different excitation levels (F = 1.0, 1.5, 2.0) and Ω ≈ ω2. Black
curves are stable and red curves are unstable solutions. Blue circles indicate the jump points
for modal vibration and voltage output amplitudes at the respective excitation levels.

-10 -5 0 5 10
0

1

2

3

4

5

σ2

a 1

μ2=0.5

μ2=0.2

μ2=0.01

-10 -5 0 5 10
0

1

2

3

4

5

σ2

a 2

μ2=0.01

μ2=0.2

μ2=0.5

-10 -5 0 5 10
0

1

2

3

4

5

σ2

a 2

μ2=0.01

μ2=0.2

μ2=0.5

Fig. 8. Modal vibration and voltage output frequency response curves versus external de-
tuning parameter σ2 for different damping ratios (μ2 = 0.01, 0.2, 0.5) and Ω ≈ ω2. Black
curves are stable and red curves are unstable solutions. Blue circles indicate the jump points
for modal vibration and voltage output amplitudes at the respective damping ratios.

multi-valued regions the jump phenomenon occurs upward at F2 and downward at
F1. The stability analysis of the solution branches [44] reveals the energy transfer
between the vibration modes as clearly observed from the modal amplitudes.
As done in Sect. 3, vibration and voltage frequency response curves are plotted

as functions of the external detuning parameter σ2 for different values of the excita-
tion intensity (F ), linear damping ratio of mode 2 (μ2), and load resistance-related
parameter (λ). These graphs are shown in Figs. 7–9. Overall, substantial bandwidth
enhancement is clearly observed for the case of Ω ≈ ω2 as well, with fundamentally
different trends as compared to the first primary resonance case of Ω ≈ ω1 given in
Sect. 3 (cf. Figs. 2, 4, 5).
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Fig. 9. Modal vibration and voltage output frequency response curves versus external de-
tuning parameter σ2 for different values of the reciprocal of time constant (λ = 1, 3, 5) and
Ω ≈ ω2. Black curves are stable and red curves are unstable solutions.
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Fig. 10. Comparison of frequency-domain approximate analytical and time-domain numer-
ical solutions for Ω ≈ ω1 (F = 1.5). Black curves are stable and red curves are unstable
frequency-domain perturbation solutions. Blue circles are time-domain numerical solutions.
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Fig. 11. Comparison of frequency-domain approximate analytical and time-domain numer-
ical solutions for Ω ≈ ω2 (F = 1). Black curves are stable and red curves are unstable
frequency-domain perturbation solutions. Blue circles are time-domain numerical solutions.

5 Numerical validations

Finally, in order to validate the approximate analytical solutions from the method
of multiple scales, time-domain numerical simulations are obtained using the Runge-
Kutta method (e.g. ode45 in MATLAB) as applied to the first-order form of the gov-
erning equations given by Eq. (1). In this section, two specific instances are chosen
to compare the time-domain numerical (exact) and perturbation-based approximate
analytical solutions. One case is from the first primary resonance of Ω ≈ ω1 (Fig. 2),
while the other is from the second primary resonance of Ω ≈ ω2 (Fig. 7), and these
comparisons are shown in Figs 10 and 11, respectively. The numerical parameters
used in the perturbation and time-domain solutions are the same as those in the
original Figs. 2 and 7. The blue circles in Figs. 10 and 11 represent the steady-state
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amplitudes of the time-domain simulation cases at the respective excitation frequen-
cies. Very good agreement is observed between the approximate perturbation solution
and the exact time domain solution, verifying the overall trends reported in the previ-
ous sections for the internal resonance-based L-shaped piezoelectric energy harvester.

6 Conclusions

In this paper, the concept of nonlinear two-to-one internal resonance was explored for
broadband energy harvesting using an L-shaped beam-mass structure with quadratic
nonlinearity. For this previously established 2-DOF structure (with commensurate
first two linear natural frequencies, quadratic nonlinearity, and far removed higher vi-
bration modes), linearized piezoelectric coupling and an external electrical load were
introduced in order to obtain the governing electromechanical equations to simulate
broadband energy harvesting performance. In the resulting electromechanical system
with two-to-one internal resonance, two cases of primary resonance were reported for
frequency bandwidth enhancement in energy harvesting; namely excitations near the
first and the second linear natural frequencies. Significant bandwidth enhancement
was reported in each case with qualitative differences especially due to the satura-
tion phenomenon associated with the case of primary resonance excitation near the
second linear natural frequency. Effects of various parameters, such as the excitation
level, mechanical damping, and load resistance were also reported. Simulations based
on the approximate analytical solution using the method of multiple scales were also
validated against time-domain numerical simulations for specific instances. Overall,
this 2-DOF configuration with quadratic nonlinearity and two-to-one internal reso-
nance extends the bandwidth enhancement capability for 2-DOF configurations as
compared exploiting two linear modes.

The authors acknowledge support from the National Natural Science Foundation of China
(No. 11272016), Beijing Municipal Natural Science Foundation (No. 3122009) and Project of
Beijing Municipal Commission of Education, and from the U.S. National Science Foundation
grant CMMI-1254262.
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