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Abstract
There are several applications of wireless electronic components with little or no ambient energy
available to harvest, yet wireless battery charging for such systems is still of great interest.
Example applications range from biomedical implants to sensors located in hazardous
environments. Energy transfer based on the propagation of acoustic waves at ultrasonic
frequencies is a recently explored alternative that offers increased transmitter-receiver distance,
reduced loss and the elimination of electromagnetic fields. As this research area receives growing
attention, there is an increased need for fully coupled model development to quantify the energy
transfer characteristics, with a focus on the transmitter, receiver, medium, geometric and material
parameters. We present multiphysics modeling and case studies of the contactless ultrasonic
energy transfer for wireless electronic components submerged in fluid. The source is a pulsating
sphere, and the receiver is a piezoelectric bar operating in the 33-mode of piezoelectricity with a
fundamental resonance frequency above the audible frequency range. The goal is to quantify the
electrical power delivered to the load (connected to the receiver) in terms of the source strength.
Both the analytical and finite element models have been developed for the resulting acoustic-
piezoelectric structure interaction problem. Resistive and resistive–inductive electrical loading
cases are presented, and optimality conditions are discussed. Broadband power transfer is
achieved by optimal resistive-reactive load tuning for performance enhancement and frequency-
wise robustness. Significant enhancement of the power output is reported due to the use of a hard
piezoelectric receiver (PZT-8) instead of a soft counterpart (PZT-5H) as a result of reduced
material damping. The analytical multiphysics modeling approach given in this work can be used
to predict and optimize the coupled system dynamics with very good accuracy and dramatically
improved computational efficiency compared to the use of commercial finite element packages.
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1. Introduction

The harvesting of ambient vibrations for powering wireless
electronic components has been heavily researched over the
last decade [1–5]. As long as sufficient vibrational energy is
readily available in the neighborhood of small electronic

devices, it is possible to achieve mechanical-to-electrical
energy conversion by means of a proper transduction
mechanism and thereby enable self-powered wireless elec-
tronic systems. An alternative scenario is the case in which a
wireless electronic component has little or no vibrational
energy available in its environment, yet the wireless charging
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of its battery is still of great interest and is possible by means
of contactless energy transfer (CET). Examples of this sce-
nario range from biomedical implants (e.g. cardiac pace-
makers) to sensors located beyond physical access or in
hazardous environments (e.g. sensors in nuclear waste con-
tainers). As an alternative to relatively well-studied methods
of CET, namely the inductive, far-field electromagnetic (or
microwave), capacitive and optical coupling methods [6],
research in the field of ultrasonic acoustic energy transfer
(UAET) has recently gained momentum for energy trans-
mission to wireless electronic components in various
applications.

In particular, biomedical applications offer great potential
for CET since battery charging for medical implants without
surgery is tremendously valuable, and the vibration intensity
available inside of the body (from the organs that exhibit
motion or dynamic strain) is usually very low for energy
harvesting. It is worth mentioning that although the accel-
eration levels of muscular organs, such as the heart, have
appeared intriguing to some researchers for energy harvesting
[7], unfortunately, what matters is the available power (or
intensity) because tissue and muscle are dramatically more
compliant than standard lab shakers. In other words, a kine-
matic measurement (e.g. acceleration, velocity or displace-
ment) in the absence of the harvester provides insufficient
information to simulate vibrational energy available from a
compliant, low-impedance system when using an electro-
dynamic shaker in a lab environment. Using the example of
the heartbeat, the main limitation, therefore, is the impedance
mismatch to have the same heartbeat acceleration in the
presence of a non-compliant harvester. If the original heart
wall acceleration in the absence of the harvester is ao, it is
straightforward to show that [8] the acceleration available in
the presence of the harvester is = + α( )a a / 1f o , where
α = Z Z/ _harvester heart wall is the harvester to heart wall impe-
dance ratio at the mounting location, suggesting that the
kinematic input available to the harvester will substantially
diminish in the coupled system (after the harvester is moun-
ted), since α ≫ 1 for strongly coupled piezoceramic har-
vesters, as in the cm-scale device reported in [7]. This leaves
compliant materials (such as dielectric elastomers [9, 10] or
ionic polymers-metal composites [11, 12]) as the only option
to avoid a mechanical impedance mismatch at the expense of
dramatically reduced power density (of electronic/ionic
polymers) as the main trade off. On the other hand, using a
proper CET method, such as UAET, it is possible to transfer
usable energy (which is more than sufficient for pacemakers)
within a range of several centimeters to charge the battery of a
medical implant without surgery.

In UAET, the ultrasonic waves transfer acoustic energy
from a vibrating source (also called the transmitter) to a
piezoelectric receiver, which then converts the vibrational
energy into electricity and delivers it to an electrical load.
Among the methods of CET [6, 13–15], the relatively less-
studied UAET approach is an effective method for biomedical
applications toward powering implanted devices [16–22] due

to the number of advantages it offers, while the most heavily
investigated approach for CET remains inductive coupling
[23–28]. In the latter method (inductive coupling), the power
transfer is realized by means of two inductive resonators.
High efficiency is achieved only within distances of the same
order of the size of the transmitter and receiver coils, as the
inductive coupling reduces significantly with the increased
distance (which requires increased reactive currents; therefore
high conduction losses occur). In addition, inductive coupling
experiences losses at high frequencies involved [6]. The less
popular capacitive coupling method is limited to very short
distances for voltage levels to be realistic since capacitance is
inversely proportional to distance. The other two methods are
far-field electromagnetic coupling [13] and optical coupling
[29] for CET. Recent analytical and experimental studies in
the fields of both ultrasonic and inductive CET show that
UAET is more advantageous for power transfer at large dis-
tances and for small implants [6, 21, 30]. Moreover, UAET is
well suited for biomedical applications in which exposure to
electromagnetic fields is not allowed.

A brief summary of the limited (and mostly experi-
mental) literature on UAET follows next (more details can be
found in a recent review article [6]). The first biomedical
application of UAET for charging implants appears to be in
the early work by Cochran et al [16, 17]. They presented a
system based on an internal piezoelectric plate attached to the
bone fracture site in order to provide mechanical stability. The
piezoelectric element was excited by external ultrasonic
waves and generated an electrical current that was delivered
to the electrodes in order to stimulate treating the fractures.
Remarkably, this [16, 17] early approach was also used for
energy harvesting from the mechanical strain in the implanted
device due to the body’s motion. Recently, Kawanabe et al
[18] and Suzuki et al [19] demonstrated ultrasonic power and
information transmission to implanted medical devices. They
could achieve an energy transfer efficiency of 20% and a
9.5 kb s−1 bit rate for a power supply operating at 1 MHz
frequency. Ozeri and Shmilovitz [20] investigated ultrasonic
transcutaneous energy transfer as a method for powering
implant devices. In this method, two ultrasonic piezoelectric
transducers were used as the external transmitter to the body
and as the receiver implanted inside of the body. The mea-
surements of ultrasonic radiation and energy transfer were
conducted thorough pig muscle tissue, and the results showed
a 27% power transfer efficiency (70 mW of the power output
at a 5 mm distance) for an excitation frequency of 673 kHz.
After that, Ozeri et al [21] proposed an ultrasonic transcuta-
neous energy transfer system similar to [20] with the aim of
minimizing the diffraction losses by using segmented elec-
trodes in the driver transducer. More recently, Maleki et al
[22] presented an implantable micro-oxygen generator pow-
ered ultrasonically at 2.15 MHz. The experimental results
obtained by the proposed method showed less directionality
and greater power transmission efficiencies for larger pene-
tration depth and smaller receiver dimensions compared to
inductive transmission. In 2013, Roes et al [6] reviewed the
methods of CET in detail along with available technologies of
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UAET. Specifically, they [6] pointed out the lack of modeling
efforts for UAET, which is the central theme of our present
work, along with performance enhancement, as outlined in
the next section.

2. UAET concepts and outline

The schematic representations of various possible and
potential concepts in UAET are demonstrated in figure 1. The
first one shown in figure 1(a) represents the energy transfer
from a pulsating sphere to an array of piezoelectric receiver
bars (which are separately shunted to electrical loads).
Acoustic waves can be transmitted in various media, such as
water, air or tissue, as long as the vibrating source is well
coupled to the medium, i.e. the impedance mismatch between
the source and the medium is minimized. For instance, in the
absence of ambient energy to harvest, underwater sensor
networks or other arrays of wireless electronic components
can be powered by UAET, as depicted in figure 1(a). The
second schematic (figure 1(b)) is analogous to the transcuta-
neous UAET concept studied by Ozeri et al [20, 21] for
transferring energy from an external piezoelectric source to a
piezoelectric receiver inside of the tissue (i.e. multiple
domains are involved). Figure 1(b) may represent various
other problems of more than one domain (medium). For
instance, a third domain is often introduced to minimize a
possible impedance mismatch between two domains of pri-
mary interest (e.g. the domains of the transmitter and receiver
in UAET). The last schematic in figure 1(c) is implemented
from the HIFU (high-intensity focused ultrasound) technol-
ogy [31] to focus the transmitted energy in space and thereby
strongly excite the receiver with dramatically reduced energy
input to the source. This focusing should obviously be
employed in UAET with care since HIFU may yield sub-
stantial energy localization and heating, which is the basis of
its use in hyperthermia therapy [31] to destroy diseased or
damaged tissue. It is worth mentioning that other than using
curved piezoelectric transducers to create focusing, as
depicted in figure 1(c), mirroring concepts [32] can also be
employed with point sources in order to focus the transmitted
energy in space.

In the present work, we explore the basic concept of
figure 1(a), i.e. UAET from a pulsating spherical source to a
receiver piezoelectric bar shunted to an electrical load. While
the focusing concept (figure 1(c)) is suitable for exciting a
single receiver, radiation from a spherical source (figure 1(a))
is a practical solution to power multiple wireless electronic
components by using a single source. The application of the
scenario in figure 1(a) is not limited to underwater sensor
networks, and it could represent the powering of wireless
electronic devices in another medium by means of a single
source.

Although there has been growing interest in the field of
UAET under the area of CET, fully coupled acoustic-piezo-
electric structure interaction modeling that combines the
source and the receiver dynamics with fluid coupling as well
as the electrical load has not been covered in the existing
literature. Analytical modeling and a closed-form solution of
this electromechanical and acoustical problem can be used for
the design and performance optimization of UAET concepts
with substantially improved computational efficiency as
compared to multiphysics finite element modeling. To this
end, in the present paper, a coupled model is developed for
the wireless acoustic energy transfer from a spherical wave
source to the electrical load of a piezoelectric receiver (the
special case of figure 1(a) with a single receiver). The fully
coupled model relates the source strength to the electrical
power output of the receiver through the acoustic-structure
interaction at the receiver-fluid interface. The receiver is a
thickness-poled piezoelectric transducer located at a specific
distance from the source and is excited longitudinally by
incident acoustic pressure waves. In the following, first, an in
vacuo electromechanical model is developed for linear long-
itudinal vibration of a fixed-free cylindrical piezoelectric bar
with the fundamental vibration mode. Then, in order to
account for the acoustic-structure interaction, a lumped-
parameter electromechanical piston representation of a fully
submerged piezoelectric bar is used. The equivalent para-
meters are defined, and the in vacuo model is extended by
adding the radiation impedance terms to the equation of
motion. The effects of the various parameters, such as the
source strength, source-to-receiver distance and receiver dia-
meter, are explored. Both the resistive and resistive-reactive
electrical loads are considered for the receiver bar. Soft

Figure 1. Example concepts of UAET using piezoelectric receiver bars (separately connected to electrical loads) operating in the 33-mode of
piezoelectricity: (a) Excitation of an array of receivers by a pulsating sphere in the same domain; (b) excitation of a receiver by a disk/bar in
separate domains (as in biomedical applications; the receiver is in the tissue domain); and (c) excitation by a focused transducer for spatial
localization of the transmitted energy for enhanced excitation of the receiver.
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(PZT-5H) and hard (PZT-8) piezoelectric materials are con-
sidered for performance comparison.

3. Coupled modeling of UAET from a spherical wave
source to a 33-mode receiver

3.1. In vacuo electromechanical dynamics of a 33-mode
receiver

The linear constitutive equations for a thickness-poled (i.e.
longitudinally poled) piezoelectric bar operating in 33-mode
are [33–35]

= +S s T d E , (1)E
3 33 3 33 3

ε= +D d T E , (2)T
3 33 3 33 3

where S3 is the strain, T3 is the stress, D3 is the electric dis-
placement and E3 is the electric field, while s E

33 is the elastic
compliance at constant electric field; d33 is the piezoelectric
strain constant, and ε T

33 is the permittivity component at
constant stress. Based on equations (1) and (2), it is assumed
that the excitation of the receiver is such that the elastic,
coupling and dissipative nonlinearities [36–39] are not pro-
nounced, i.e. linear piezoelectricity is assumed.

The coupled partial differential equation for the long-
itudinal vibrations of the receiver and the electrical circuit
equation (figure 2) can be derived as
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where ξu t( , ) is the displacement response of the bar at the
axial position ξ and time t, Y is the Young’s modulus at
constant electric field, m is the mass per unit length, αc is the
stiffness-proportional damping coefficient, βc is the mass-
proportional damping coefficient1, A is the cross-sectional

area, θ is the electromechanical coupling term in the physical
coordinates and = ωf t Fe( ) j t is the external harmonic force
resultant at the free-end surface of the bar (where F is the
force amplitude, ω is the frequency and j is the unit imaginary
number). Furthermore, Cp and Yl are the internal capacitance
of the piezoelectric receiver and the admittance of the external
load, respectively; v t( ) is the voltage output across the elec-
trical load, and δ ξ( ) is the Dirac delta function. As depicted in
figure 2, the mechanical strain axis and the electrical poling
axis (perpendicular to the surface electrodes) are coincidental;
therefore, the receiver bar is employed in the 33-mode of
piezoelectricity. The dielectric loss is neglected, although it
can easily be included by using a complex permittivity that
includes the loss tangent of the piezoelectric material. Two
types of electrical loading are to be considered in this work:
purely resistive (yielding =Y R1/l l, where Rl is the load
resistance) and resistive-reactive (yielding, under harmonic
excitation at frequency ω, ω ω= +Y R j L( ) 1/ 1/l l l for resis-
tive–inductive loading, and ω ω= +Y R j C( ) 1/l l l for resis-
tive–capacitive loading, where Ll is the load inductance
connected to the load resistance in parallel and Cl is the load
capacitance connected to the load resistance in parallel).

The linear displacement at the free end of the piezo-
electric bar (x t( ) in figure 2, where =x t u L t( ) ( , )) due to the
harmonic excitation at or around the fundamental longitudinal
(axial) vibration mode, is obtained by modal analysis of the
distributed-parameter electromechanical system with a focus
on the first mode only (i.e. higher modes are excluded in the
following). The longitudinal tip displacement of the bar at
time t is then

ξ ϕ η= =ξ=x t u t L t( ) ( , ) ( ) ( ), (5)L

where ϕ L( ) and η t( ) are, respectively, the mass-normalized
eigenfunction evaluated at ξ = L (in figure 2) and the gen-
eralized modal coordinate of the longitudinal vibration mode
for a fixed-free uniform bar. The mass normalized eigen-
function evaluated at the tip is obtained as
ϕ ρ πξ ρ= =

ξ=
L AL L AL( ) 2 sin( /2 ) 2

L
(where ρ is the

mass density of the piezoelectric bar), which satisfies the
companion mass and stiffness forms of the orthogonally
conditions (see, for instance, appendix C.2 in Erturk and
Inman [34] for standard modal analysis derivations under
short-circuit conditions).

The electromechanically coupled equations of the forced
vibration and current balance are expressed for this lumped-
parameter model (reduced from a distributed-parameter
solution) as

ζω ω ϕ θ ϕ̈ + ̇ + − =x t x t x t L v t L f t( ) 2 ( ) ( ) ( ) ( ) ( ) ( ), (6)n n
2 2 2

θ̇ + + ̇ =C v t Y v t x t( ) ( ) ( ) 0, (7)p l

where ω π ρ= s L( 2) 1n
E

33
2 is the fundamental short-circuit

natural frequency, ζ is the viscous damping ratio (that is due
to internal mechanical losses only in the in vacuo problem)
and an overdot represents the differentiation with respect
to time.

Figure 2. Longitudinal excitation of a fixed-free cylindrical piezo-
electric receiver bar connected to an electrical load for power
generation.

1 Proportional damping is assumed to represent in-vacuo material dissipation
(which can be merely due to the stiffness-proportional damping term αc in the
Kelvin–Voigt approximation).
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By substituting = ωx t Xe( ) j t and = ωv t Ve( ) j t for the
steady state response, the single-mode tip displacement x t( )
and voltage response v t( ) of the longitudinal 33-mode config-
uration (figure 2) can be extracted from equations (6) and (7) as
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+

− + +

+

ω

( )
( )

( )
x t

Y j C F L

j Y j C

j L

e( )
( ) ( )

2 ( )

( )

, (8)
l p

n n l p

j t
2

2 2

2 2

ωθ ϕ

ω ω ζωω ω ω

ωθ ϕ

= −
− + +

+

ω

( )( )
v t

j F L

j Y j C

j L

e( )
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( )

, (9)
n n l p

j t
2

2 2

2 2

which are valid for vibrations with the fundamental longitudinal
vibration mode, i.e. for excitations at or around the first long-
itudinal resonance frequency.

3.2. Acoustic-piezoelectric structure coupling and receiver
power output

The fluid-loaded longitudinal vibration of the piezoelectric
bar is based on a lumped-parameter electromechanical piston
representation of the fully submerged piezoelectric receiver
excited by incident acoustic pressure waves originating from
a spherical source of known strength Q (figure 3). Therefore,
the model development in this section is compatible with the
lumped-parameter model reduced from the distributed-para-
meter formulation given in the previous section. We assume
linear acoustics in the fluid (i.e. neither kinematic nor medium
nonlinearities exist) and negligible loss in the fluid domain.
Scatter pressure effects are also assumed to be negligible for
the wavelength and receiver dimensions considered.

The electromechanically and acoustically coupled
mechanical equation of motion for the lumped model in the x
coordinate (figure 3(c)) can be written in the form of [34, 40]:

χ̈ + ̇ + + − =m x t c x t k x t F t v t f t( ) ( ) ( ) ( ) ( ) ( ), (10)eq eq eq r

where meq, ceq, keq and χ are the equivalent in vacuo mass,
damping coefficient, stiffness and electromechanical coupling
of the receiver, respectively. By multiplying both sides of

equation (6) by meq and using the expression for short-circuit
natural frequency ωn, one can obtain the lumped-parameter
terms as ρ π=m AL ( /2)eq

2, ζω=c m2eq eq n, ω=k meq eq n
2 and

χ θϕ= m L( )eq
2 . Furthermore, =f t p t A( ) ( ) is the resultant

force due to the incident acoustic pressure wave evaluated at
the piston’s surface as = ωp t Pe( ) j t (where P is the complex
pressure amplitude, and A is the piston area), and

= ̇F t Z x t( ) ( )r r is the force exerted by the fluid on the piston
(where Zr is the radiation impedance due to the acoustic-
structure interaction at the free end of the receiver bar). The
radiation impedance is given by = +Z R jXr r r, where Rr and
Xr are the resistive and reactive components for an unbaffled
piston estimated using [35, 40]:

σ ρ= −
⎛
⎝⎜

⎞
⎠⎟R ka c A

J ka

ka
( ) 1

(2 )
, (11)r R 0 0

1

σ ρ=
⎛
⎝⎜

⎞
⎠⎟X ka c A

H ka

ka
( )

(2 )
. (12)r X 0 0

1

Here, J ka(2 )1 and H ka(2 )1 are the first-order Bessel and
Struve functions of the first kind, respectively [40], while
σR(ka) and σX(ka) account for the modifications relative to the
baffled problem (see, for instance, figure 10.19 in [35]).
Moreover, ω=k c0 is the wave number, c0 is the speed of
sound in fluid (e.g. water) surrounding the piston, ρ0 is the
mass density of the surrounding fluid and a is the radius of the
piston (i.e. radius of the receiver’s cross section: π=a A/ ).
The pressure field created by a pulsating spherical harmonic
wave source in an infinite, homogeneous and isotropic med-
ium is [40, 41]:

ρ
π

= −
−

ω + −

( )
p t c

jkQ

r jka
e( )

4 1 ¯
, (13)( )j t k r a

0 0
( ¯)

where r is the source-to-receiver distance, and ā is the source
radius. Moreover, Q is the acoustic source strength, which is
defined as a product of surface velocity U0 and surface area
( πa4 ¯2) of the pulsating spherical wave source, i.e.

π=Q a U4 ¯2
0.

The single-mode tip displacement, voltage response and
power output (normalized with respect to source strength)

Figure 3. (a) Finite element simulation snapshot, (b) schematic representation and (c) lumped-parameter model of electrical power generation
from spherical acoustic waves.
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frequency response functions for longitudinal vibrations of
the fluid-loaded piezoelectric receiver are obtained using
equations (10) and (7) as follows:

ρ ω ω

π
ϕ

ω ω

ω ξ ω

ω ω ω θ ϕ

=

− +

×
−

− + +

+ +

× + +

ω + −

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎡⎣
⎤⎦

( )

( )
( )

( )

( )

x t

Qe

c A Y j C

jk

r jka
m L

m m m

j m R

Y j C j m L

( )

( )

4 1 ¯
( )

2

( ) ( )

, (14)

( )j t k r a

l p

eq

eq r eq n

eq n r

l p eq

( ¯)

0 0

2

2 2

2 2

ρ ωθ
π

ϕ

ω ω

ω ξ ω

ω ω

ω θ ϕ

=

−

×

− + +

+ +

× +

+

ω + −

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎡⎣
⎤⎦

( )
( )

( )

( )

v t

Qe

c Aj
jk

r jka

m L

m m m

j m R

Y j C

j m L

( )

4 1 ¯

( )

2

( )

( )

, (15)

( )j t k r a

eq

eq r eq n

eq n r

l p

eq

( ¯)

0 0

2

2 2

2 2

Π

ρ ωθ
π

ϕ

ω ω

ω ξ ω

ω ω

ω θ ϕ

=

−

×

− + +

+ +

× +

+

ω + −

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎡⎣
⎤⎦

( )

( )
( )

( )

( )

t

Qe

R

c Aj
jk

r jka

m L

m m m

j m R

Y j C

j m L

( )

1

4 1 ¯

( )

2

( )

( )

, (16)

( )j t k r a

l

eq

eq r eq n

eq n r

l p

eq

( ¯)
2

0 0

2

2 2

2 2

2

where ω=m X /r r is the radiation mass, i.e. added mass, due
to the reactive term given by equation (12), and Π stands for
the electrical power output (to avoid confusion with the
pressure amplitude P). In the above formulation, the dielectric
loss can easily be added by changing the real-valued

capacitance Cp to the complex form of δ−C j(1 tan )p , where
δtan is the loss tangent of the piezoelectric material.

4. Optimal power and performance enhancement by
resistive-reactive loading

4.1. Purely resistive electrical loading

The electrical load admittance in the presence of a purely
resistive load of Rl is simply =Y R1/l l. Then, the expression
for the power output normalized with respect to the incident
acoustic pressure amplitude on the surface is obtained from
equation (16) as:
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where ωn fluid, is the natural frequency of the receiver bar
submerged in fluid, and the remaining parameters are
dimensionless load resistance α, dimensionless system elec-
tromechanical coupling term κ2, dimensionless excitation
frequency ω̃ and total damping ratio (in fluid) ζt:
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The optimal electrical load [42] that gives the maximum
power output can then be obtained as:

α ω

ω

ω ζ ω

κ ω ζ ω

=

=
− +

+ − +

( )
( )

( )
( )

( )

R C

1

˜

1 ˜ 2 ˜

1 ˜ 2 ˜
, (19)

opt l opt p n fluid

t

t

2
, ,

2

2

2 2

2 2 2 2

which can be substituted into equation (17) to yield:
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t opt

opt t

2

,
2 2 2

2 2
2

2 2

2

4.2. Resistive–inductive electrical loading

For the case of resistive–inductive loading (the resistive load,
Rl, and the inductive load, Ll, are connected in parallel),
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ω ω= +Y R j L( ) 1/ 1/l l l, and the power output normalized
with respect to the incident pressure amplitude on the surface
is:

Π αβ κ ω

ω β αζ ω β αζ ω

α βζ α β βκ ω

αβω

=
+

+ − +

+ − + + +

+

⎡⎣ ⎤⎦
⎡⎣

⎤⎦ }
( )

{
( )

( )
( ) ( )P

k A m m˜ /

2 ˜ 1 2 ˜

2 1 ˜

˜

, (21)
eq eq r

n fluid t t

t

2

2 2 2 4 2

,
3 3

2

2 2

4 2

where

α ω β ω= =R C L C, , (22)l p n fluid l p n fluid, ,
2

Following an optimization process in the same vein as
Renno et al [43], the optimal resistive and inductive loads are
obtained as:

α ω
ω ζ ω

ζ κ ω
= =

+ − +( )
R C

˜ 4 2 ˜ 1

2 ˜
, (23)opt l opt n fluid p

t

t
, ,

4 2 2

2 2

β ω

ω ζ ω

ω ω κ ζ ω

κ ω ω ω ω

=

=
+ − +

− + −

+ + ∼ < ∼ ∼ > ∼

( )
( ( )

)

L C

˜ 4 2 ˜ 1

˜ ˜ 2 4 ˜

1 , and

. (24)

opt l opt n fluid p

t

t

sc oc

, ,
2

4 2 2

2 4 2 2 2

2

Substituting equations (23) and (24) into equation (21)
yields:

Π

ζ ω
ω ω ω ω=

+
∼ < ∼ ∼ > ∼

‐
( )P

k A

m m8
, and

(for resistive inductive loading) (25)

opt eq

t n fluid eq r

sc oc2

2

,
3 2

It should be noted that βopt given by equation (24) is valid

only outside the short- and open-circuit resonance frequencies
[43], i.e. for ω ω<˜ ˜sc and ω ω>˜ ˜oc, therefore equation (25) is
valid only for this range under optimal resistive–inductive
loading. The optimal inductance given by equation (24)
would be negative between the short- and open-circuit
resonance frequencies, implying that optimal capacitive tun-
ing should be performed for ω ω ω< <˜ ˜ ˜sc oc, as dis-
cussed next.

4.3. Resistive–capacitive electrical loading

For the case of resistive–capacitive loading (the resistive
load, Rl, and the capacitive load, Cl, are connected in paral-
lel), ω ω= +Y R j C( ) 1/l l l, and the power output normalized
with respect to the incident pressure amplitude on the

surface is

Π α κ ω

ω αγζ ω ω αζ ω

αγ ω ζ

α κ ω ω

=
+

− + +

+ − +

+ + −

⎡⎣ ⎤⎦
⎡⎣

⎤⎦

{

}

( )
( )

( )

( )
( )P

k A m m˜ /

2 ˜ 1 ˜ 1 2 ˜

1 ˜ 2

1 ˜ ˜

, (26)
eq eq r

n fluid t t

t

2

2 2 4 2

,
3 2 3

2

2

2 2
2

4

where

α ω γ= =R C C C, / (27)l p n fluid l p,

yielding the following optimal parameters:

α ω
ω ζ ω

ζ κ ω
= =

+ − +( )
R C

˜ 4 2 ˜ 1

2 ˜
, (28)opt l opt n fluid p

t

t
, ,

4 2 2

2 2

γ
ω κ ζ ω κ

ω ζ ω

ω ω ω

= =
− − + − + +

+ − +
< <

( )( )
( )

C C/
˜ 2 4 ˜ 1

˜ 4 2 ˜ 1
,

˜ ˜ ˜ . (29)

opt l opt p

t

t

sc oc

,

4 2 2 2 2

4 2 2

Using equations (28) and (29) in equation (26) leads to

Π

ζ ω
ω ω ω=

+
< <

−
( )P

k A

m m8
, ˜ ˜ ˜

(for resistive capacitive loading), (30)

opt eq

t n fluid eq r

sc oc2

2

,
3 2

which is identical to equation (25) but valid for frequencies
between the short- and open-circuit resonance values, i.e. for
ω ω ω< <˜ ˜ ˜sc oc, in capacitance tuning.

Briefly, the optimal resistive–inductive loading results in
broadband power output for ω ω<˜ ˜sc and ω ω>˜ ˜oc, while the
optimal resistive–capacitive loading yields broadband power
output for ω ω ω< <˜ ˜ ˜sc oc. Note that the resulting broadband
power output (Π P/opt

2) will not have a flat spectrum due to
frequency-dependent fluid loading effects.

5. Case studies, model validation and performance
enhancement

5.1. Receiver properties and finite element model simulations

Analytical model results are compared with numerical simu-
lations performed by 3D finite element modeling (FEM) in
COMSOL Multiphysics version 4.2 for model validation
using fixed-free boundary conditions. The receiver investi-
gated in this case study is a cylindrical PZT-5H bar sub-
merged in water (with thickness L = 20 mm and diameter
d= 6 mm). The material properties are listed in table 1.
Among the standard parameters of PZT-5H, the mechanical
quality factor is assumed to be the only source of in vacuo
dissipation; this is a reasonable assumption (since external
fluid damping is already incorporated by the model). There-
fore, the purely mechanical (material) damping ratio is
approximated as 0.77% based on the mechanical quality
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factor of PZT-5H in this table. The dielectric loss is neglected,
although it can easily be included.

Figure 4 shows a typical demonstration of spherical wave
excitation for a fixed-free fully submerged piezoelectric
receiver bar over one period of excitation at its fundamental
resonance frequency under open-circuit condition (47.7 kHz).
The details of the spherical source location and the piezo-
electric bar were previously shown in figure 3(a). The
acoustic pressure field in the fluid domain and the piezo-
electric longitudinal displacements are shown in each
subgraph.

In the following sections, the goal is first to validate the
analytical model with comparisons against finite-element
simulations for different parameter values under open-circuit
conditions. Then, the analytical model is employed to extract
and optimize the transmitted power for finite values of load
impedance under resistive and resistive-reactive electrical
loading.

5.2. Analytical vs. finite element model frequency response
results

The longitudinal displacement at the top end of the bar (x in
the analytical derivation) and the voltage output are obtained
from COMSOL as frequency response functions and com-
pared with the analytical results. The relationships between
the electromechanical outputs and system parameters, such as
the distance of the receiver from the source (r), the level of
source strength (Q) and the receiver diameter (d), are explored
and shown in Figs. 5–7.

Figure 5 shows that the mechanical and electrical
response amplitudes decrease monotonically as the source-to-
receiver distance increases. The dependence of the response
amplitude to the distance from the source is nonlinear (which
makes sense from the analytical standpoint due to the
hyperbolic dependence of the pressure to distance r in
equation (13)). The results show very good agreement
between the analytical and numerical (FEM) predictions.

Next, the variations of vibration (longitudinal tip dis-
placement) and voltage frequency response magnitudes of the
receiver with source strength are shown in figure 6. The
results indicate that increasing source strength, amplifies the

response of the receiver significantly. It is worth mentioning
that the small-amplitude approximation [40] (the assumption
used in equation (13)) requires that the displacement of the
source surface should be much less than the radius of the
source ω ≪( )U ā0 .

Figure 7 shows the effects of receiver diameter on the
electromechanical frequency response functions. It is
observed that with the increased cross-sectional area of the
receiver, the underwater resonance frequency shifts to the left
slightly; additionally, the peak vibration and voltage ampli-
tudes decrease significantly. This is because the acoustic
radiation resistance (or added damping) and reactance (or
radiation added mass) are amplified in equations (11) and (12)
due to the increased piston area (i.e. cross-sectional area) that
vibrates against the fluid loading at the free end of the receiver
bar. Therefore, in order to minimize, in particular, the radia-
tion damping of the receiver bar, it may be preferable to
reduce the cross-sectional area of the surface that interacts
with the fluid. It should be noted that, while the voltage output
decreases with increased receiver diameter, the capacitance
increases, yielding increased current extraction.

5.3. Power output for resistive and resistive-reactive loading

Having validated the analytical model results for open-circuit
conditions against 3D FEM simulations, finite load resistance
cases are considered next (which cannot be easily simulated
in a standard FEM environment). The purely resistive loading
case is considered first ( =Y R1/l l is the load admittance).
Figure 8(a) shows the longitudinal tip displacement FRFs
obtained from equation (14) for a set of resistors and for a
broad range of frequencies, which cover the fundamental
vibration mode, and for fixed values of distance from the
source (r= 20 mm) and diameter of the piezoelectric receiver
(d= 6 mm). The frequency response curves are given per
source strength in agreement with equation (14). The elec-
trical load resistance values range from 100Ω (close to short-
circuit conditions) to 100MΩ (close to open-circuit condi-
tions). As the load resistance is increased, the resonance
frequency shifts from the short-circuit resonance frequency
(31.4 kHz) to the open-circuit resonance frequency
(47.7 kHz). From figure 8(a), one can observe that with the
increased load resistance, the peak vibration amplitude
decreases significantly from the peak of the short-circuit
condition to a certain value, and then is amplified toward the
open-circuit resonance frequency with a further increase in
load resistance. This phenomenon happens because of the
changing electrical boundary condition of the receiver (which
alters the elastic modulus) and Joule heating (for moderate
values of load resistance), as in standard vibration-based
piezoelectric energy harvesters [34, 44]. In figure 8(b), by
changing the electrical load resistance from short- to open-
circuit conditions, the voltage output obtained from
equation (15) increases monotonically at each frequency, and
the resonance frequency of each finite load resistance takes a
value between the short- and open-circuit resonance
frequencies.

Table 1. Material properties of the PZT-5H receiver bar used in
analytical and FEM simulations (ε0 = 8.854 pF m−1 is the
permittivity of free space, and =Q 65m is the mechanical quality
factor).

Material PZT-5H

Elastic compliance, −⎡⎣ ⎤⎦s pm NE
33

2 1 20.7

Mass density, ρ −⎡⎣ ⎤⎦kg m 3 7500

Piezoelectric constant, −⎡⎣ ⎤⎦d pm V33
1 593

Relative permittivity, ε εT
33 0 3400

Equivalent capacitance, ε=C A/L [pF]p
T
33 42.5

Electromechanical coupling, θ −⎡⎣ ⎤⎦C m 1 0.067

Mechanical damping ratio, ζ = Q1/2 m 0.0077
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Figure 4. Multiphysics finite-element simulation for spherical wave excitation of a fixed-free piezoelectric receiver bar submerged under
water under open-circuit condition. The acoustic pressure in the fluid domain (first color bar, in Pa) and the longitudinal displacement of the
piezoelectric bar at its free end (second color bar, in mm) are shown for one period (T) of harmonic excitation at the fundamental open-circuit
resonance frequency (47.7 kHz).

Figure 5.Comparison of the analytical (red dashed lines) and FEM (blue solid lines) frequency response curves for different values of source-
to-receiver distance (r) under open-circuit conditions: (a) longitudinal tip displacement and (b) voltage output of the receiver bar
(Q= 5.65 cm3 s−1; d= 6 mm).

Figure 6. Comparison of the analytical (red dashed lines) and FEM (blue solid lines) frequency response curves for different values of source
strength (Q) under open-circuit conditions: (a) longitudinal tip displacement and (b) voltage output of the receiver bar (r= 20 mm; d= 6 mm).
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The electrical power FRFs obtained from equation (16)
are plotted in figure 9 for the same set of resistors. An optimal
resistive load can be found at each excitation frequency.
Among the finite set of resistance values in this graph, the
maximum power output is obtained for the load resistance of
1 MΩ close to the open-circuit resonance frequency. How-
ever, the optimal electrical load changes dramatically with the
changing excitation frequency. A more global picture is
explored next using equation (16) to construct a surface plot.

The power output of the receiver bar normalized with
respect to the source strength squared versus the load resis-
tance and excitation frequency is plotted in figure 10 for fixed
values of distance from the source (r= 20 mm) and diameter
of the piezoelectric receiver (d= 6 mm). The resonance fre-
quency smoothly shifts from the short-circuit value
(31.4 kHz) to the open-circuit value (47.7 kHz). The local
peak power at 31.4 kHz is 8.82 μW/(cm3/s)2 for the electrical
load of 2.5 kΩ, while the global peak at 47.7 kHz is 18.8 μW/
(cm3/s)2 for the optimal load of 2.5 MΩ. It is important to

Figure 7. Comparison of the analytical (red dashed lines) and FEM (blue solid lines) frequency response curves for different values of
receiver diameter (d) under open-circuit conditions: (a) longitudinal tip displacement and (b) voltage output of the receiver bar
(Q= 5.65 cm3 s−1, r= 20 mm).

Figure 8. (a) Tip displacement-to-source strength FRFs and (b) voltage output-to-source strength FRFs of the receiver for a broad range of
load resistance (r= 20 mm, d= 6 mm).

Figure 9. Power output-to-source strength FRFs of the receiver for a
set of electrical load resistance values (r = 20 mm, d = 6 mm).

Figure 10. Power output (normalized with respect to the source
strength squared) for the PZT-5H receiver versus the excitation
frequency and load resistance (r = 20 mm, d = 6 mm).
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note that the short- and open-circuit resonance excitations
with the same source strength do not yield the same power
output for the PZT-5H receiver, as a result of significant
damping effects in fluid (soft piezoelectric receiver combined
with fluid damping).

The resistive and resistive-reactive load optimization
results (for power output normalized by the incident acoustic
pressure squared acting on the free-end surface of the recei-
ver) discussed in section 4 are plotted in figure 11 for the
optimal purely resistive circuit, for the optimal resistive–
inductive circuit (for frequencies less than 31.4 kHz and
greater than 47.7 kHz), and for the optimal resistive–capaci-
tive circuit (for frequencies in between 31.4 kHz and
47.7 kHz). It is clearly demonstrated that by optimizing the
inductor/capacitor and resistor values simultaneously, broad-
band power generation is successfully achieved over a range
of frequencies. The broadband power amplitude behavior is
not flat (unlike the case of optimal resistive–inductive loading
in vibration-based energy harvesters [43]) because of the fluid
loading effects. It is worth adding that the inductance value
required for conjugate matching is inversely proportional to
the capacitance and frequency squared in equation (24). As
long as the inductance requirement is low enough, a passive
inductor can be employed for broadband behavior. To keep
the inductance requirement low, a high-capacitance piezo-
electric stack transducer [45] can be used instead of a
monolithic receiver (so that the μF-level capacitance is
achieved instead of the pF/nF-level capacitance) for which the
above formulating still applies without a loss of generality
using the effective values of d eff

33 and Cp for the entire
cylindrical stack [45]. Alternatively, the excitation frequency
can be kept high to reduce the inductance requirement.
Otherwise, in the case of a large inductance requirement, a
synthetic inductor (or synthetic impedance) circuit [46, 47]
would be necessary (and part of the transmitted power would
have to be used for that).

5.4. The effect of receiver material: Case study for PZT-8

As the last case study, we intended to explore the same
problem (with a focus on purely resistive electrical loading)

for an alternative piezoelectric material: PZT-8. The material
properties for the PZT-8 receiver bar are listed in table 2. The
dimensions of the receiver, source-to-receiver distance, fluid
parameters, etc are all kept the same as in the previous case
study for PZT-5H; only the material properties are changed.
The mechanical quality factor of PZT-8 =( )Q 1000m is more
than an order of magnitude larger than that of PZT-5H

=( )Q 65m , whereas the piezoelectric constant of PZT-8
(d33 = 225 pmV−1) is lower compared to the PZT-5H
(d33 = 593 pmV−1). The capacitance and stiffness values also
differ, resulting in the system coupling term (κ2) values of
0.88 and 1.54 for PZT-8 and PZT-5H, respectively2. There-
fore, PZT-8 offers reduced mechanical loss (which is favor-
able) at the expense of reduced electromechanical coupling
compared to PZT-5H.

The surface plot of the PZT-8 receiver’s power output
(normalized with respect to the source strength squared)
versus the excitation frequency and load resistance is given in
figure 12. As compared to the PZT-5H counterpart of this
graph, previously given by figure 10, two things are note-
worthy. First, the overall resonant power output of the PZT-8
receiver is larger than that of the PZT-5H receiver. Second,
the short- and open-circuit resonance power outputs of the

Figure 11. Optimal receiver power output frequency response curves
(normalized by the incident acoustic pressure squared acting on the
free end surface of the receiver) for the optimal resistive and
resistive-reactive electrical loading cases.

Table 2. Material properties of the PZT-8 receiver bar =( )Q 1000m

used for performance comparison against the PZT-5H receiver.

Material PZT-8

Elastic compliance, −⎡⎣ ⎤⎦s pm NE
33

2 1 13.5

Mass density, ρ −⎡⎣ ⎤⎦kg m 3 7600

Piezoelectric constant, −⎡⎣ ⎤⎦d pm V33
1 225

Relative permittivity, ε εT
33 0 1000

Equivalent capacitance, ε=C A/L [pF]p
T
33 12.5

Electromechanical coupling, θ −⎡⎣ ⎤⎦C m 1 0.034

Mechanical damping ratio, ζ = Q1/2 m 0.0005

Figure 12. Power output (normalized with respect to the source
strength squared) for the PZT-8 receiver versus the excitation
frequency and load resistance (r = 20 mm, d = 6 mm).

2 The receiver’s system level coupling term (κ2) should not be confused with
the piezoelectric material’s extensional coupling factor ( ε=k d s/ E T

33
2

33
2

33 33),
although they are related to each other.
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PZT-8 receiver (which has lower mechanical damping, and
therefore, lower total damping) are very similar to each other
as in strongly coupled and lightly damped piezoelectric
energy harvesters [34]. The short- and open-circuit resonance
power output values are around 39 μW/(cm3/s)2 (for 3.5 kΩ
and at 38.7 kHz) and 41 μW/(cm3/s)2 (for 15MΩ and at
50.9 kHz), respectively. These resonant power outputs for the
PZT-8 receiver are larger than those of the PZT-5H coun-
terpart by factors of 4 and 2, respectively. Therefore, the hard
ceramic PZT-8 (with reduced material loss at the expense of
lower electromechanical coupling) should be preferred to the
soft ceramic PZT-5H as the receiver material for resonant
excitation. The same conclusion applies to soft versus hard
single crystals [48, 49],
e.g. PMN-PZT-Mn should be preferred to PMN-PT or
PMN-PZT.

6. Conclusions

As an alternative to widely used methods of contactless
energy transfer (such as inductive coupling), the use of pie-
zoelectric transduction for the ultrasonic energy transfer to
wireless electronic components (such as medical implants or
sensors located in hazardous environments) has received
growing attention over the last few years. However, fully
coupled acoustic-piezoelectric structure interaction modeling
that combines the source and the receiver dynamics with the
fluid domain as well as the electrical load has not been cov-
ered in the existing literature. In this work, the contactless
ultrasonic acoustic energy transfer is investigated by analy-
tical and numerical multiphysics modeling along with several
case studies with an emphasis on analytical model validation
and performance enhancement. In vacuo and underwater
dynamics of a cylindrical piezoelectric receiver are modeled
for longitudinal vibrations under harmonic acoustic excita-
tion. The fluid loading effects (resistive and reactive radiation
impedance components) are added to the in vacuo electro-
mechanical model to predict the underwater electro-
mechanical response forms of the piezoelectric receiver. In
addition to successful model validations against 3D finite
element simulations, a study on the effects of several system
parameters (e.g. source strength, receiver dimensions and
source-to-receiver distance) is performed. Optimal resistive-
reactive electrical loading results in a substantially enhanced
broadband power transfer compared to the purely resistive
electrical loading case. Soft (PZT-5H) and hard (PZT-8)
piezoelectric receivers are considered, and significant per-
formance enhancement is reported due to using PZT-8.
Therefore, receivers made from hard piezoelectric ceramics
(e.g. PZT-8, PZT-4) and single crystals (e.g. PMN-PZT-Mn)
outperform those made from soft piezoelectric ceramics (e.g.
PZT-5H, PZT-5A) and single crystals (e.g. PMN-PT, PMN-
PZT) for resonant contactless power transfer. The electro-
mechanically and acoustically coupled analytical model
developed in this work can be used to predict and optimize
the coupled system dynamics with very good accuracy and
substantially improved computational efficiency compared to

using commercial finite element simulation packages. Future
work may explore energy focusing concepts [31, 32] and
resulting acoustic nonlinearities [50] due to wave kinematics
or medium, as well as transmitter/receiver electroelastic
nonlinearities [36–39], and advanced electrical power con-
ditioning circuits [51–57].
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