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Abstract
The idea of vibration-to-electric energy conversion for powering small electronic components
by using the ambient vibration energy has been investigated by researchers from different
disciplines in the last decade. Among the possible transduction mechanisms, piezoelectric
transduction has received the most attention for converting ambient vibrations to useful
electrical energy. In the last five years, there have been a considerable number of publications
using various models for the electromechanical behavior of piezoelectric energy harvester
beams. The models used in the literature range from elementary single-degree-of-freedom
(SDOF) models to approximate distributed parameter models as well as analytical distributed
parameter solution attempts. Because of the diverse nature of researchers working in energy
harvesting (including electrical, mechanical and materials engineers), several oversimplified
and incorrect physical assumptions have been propagated in the literature. Issues of the correct
formulation for piezoelectric coupling, correct physical modeling, use of low fidelity models,
incorrect base motion modeling, and the use of static expressions in a fundamentally dynamic
problem are discussed and clarified here. These common indiscretions, which have been
repeated in the existing piezoelectric energy harvesting literature, are addressed and clarified
with improved models, and examples are provided. This paper aims to provide corrections and
necessary clarifications for researchers from different engineering disciplines interested in
electromechanical modeling of piezoelectric energy harvesters.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Recent developments in power electronics have reduced the
power requirements of small electronic components (such
as the wireless sensors used in structural health monitoring)
and motivated the research on powering these devices by
using the vibration energy available in their environment.
The ultimate goal is to remove the external power source
or battery replacement requirement for such small electronic
devices, especially in remote locations. The basic transduction
mechanisms that can be used to convert the ambient vibration
energy to electrical energy are electromagnetic, electrostatic
and piezoelectric transductions. Among these transduction
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mechanisms, piezoelectric transduction has received the
greatest attention in the last five years, and review articles
summarizing the relevant work on piezoelectric energy
harvesting can be found in the literature (see, for instance,
Anton and Sodano [1]).

The research community working on piezoelectric energy
harvesting is a very rapidly growing community, and it
includes researchers from mechanical, electrical, materials
and civil engineering areas. Other than the applications
of piezoelectric energy harvesting, several researchers from
different disciplines have studied modeling of piezoelectric
energy harvesters. Certain issues have been observed in some
of the existing models, and moreover, it has been noted that
some very misleading models have been repeated by different
researchers. The motivation here is therefore to discuss the
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modeling problems and provide the necessary corrections for
the research community interested in analytical modeling of
piezoelectric energy harvesters.

In the following sections, the existing problems are
investigated under two topics as issues in SDOF modeling
and issues in distributed parameter modeling. The relevant
concerns are addressed and clarifications are provided, with
improved models and demonstrations. SDOF modeling
problems include the incorrect representation of piezoelectric
coupling and deficiencies originating from the well-known
SDOF base excitation relation. As an alternative to the
relatively low fidelity SDOF models, single-mode relations
obtained from the distributed parameter solution are presented.
The section related to SDOF modeling is given as a prelude
to the more important discussion dealing with distributed
parameter modeling.

Although SDOF modeling provides useful insight
into the harvesting problem, it is required to derive
a distributed parameter model to predict and investigate
the electromechanical behavior of piezoelectric energy
harvesters accurately. Consequently, several researchers
have studied developing a distributed parameter model based
on Euler–Bernoulli beam theory and the constitutive laws
of piezoelectricity. The distributed parameter modeling
approaches published include analytical solution attempts as
well as approximate solutions in the sense of Rayleigh–Ritz
discretization. The issues in distributed parameter modeling
include avoiding the use of modal expansion and the resonance
phenomenon, not modeling the piezoelectric coupling in
the mechanical equation or oversimplifying the coupling as
viscous damping, modeling of the mechanical forcing term
due to base excitation as a tip force, use of static sensing and
actuation equations, and the use of a static deflection pattern
for a dynamics problem. Some of the above problems have
caused fundamentally incorrect conclusions in the published
literature. For instance, omitting the resonance phenomenon
yields a totally different power frequency response function
and therefore faulty conclusions. As another example, if
the effect of piezoelectric coupling is not modeled in the
mechanical (beam) equation, the variation of the resonance
frequency with load resistance cannot be predicted. One
particular phenomenon not predicted by low fidelity models is
the amplification of the motion amplitude at the open circuit
resonance frequency with increasing load resistance. The
only way of predicting this phenomenon requires accurate
consideration of piezoelectric coupling in the mechanical
domain. In addition, the optimum resistive load that gives the
maximum power is inaccurately predicted if the piezoelectric
coupling in the beam equation is not modeled or oversimplified
as a viscous damping term. These issues and others are
discussed and clarified with improved models and examples
in the following.

2. Issues in SDOF modeling

Since the electrical domain of the coupled piezoelectric
energy harvesting problem consists of lumped parameters
(internal capacitance of the piezoceramic and an external

Figure 1. Schematic of an electromagnetic generator proposed by
Williams and Yates [2].

load resistance), representing the mechanical domain with
lumped parameters (as a mass–spring–damper system) has
been a useful modeling approach to obtain a fundamental
understanding of the system dynamics. Issues in SDOF
modeling include, but are not limited to, the use of
electromagnetic generator equations to represent piezoelectric
systems and different sources of inaccuracies due to the
mechanical representation of the base excitation problem for
cantilevered structures. This section clarifies the faults in using
these assumptions.

2.1. An SDOF electromagnetic generator model

In their early work on the subject, Williams and Yates [2]
briefly described the three possible transduction mechanisms
that can be used for vibration-to-electric energy conversion as
electromagnetic, electrostatic and piezoelectric transductions.
They [2] ‘chose to use the electromagnetic type of
transduction’ and presented a simple electromagnetic generator
model. In their analysis, Williams and Yates [2] considered
a magnetic seismic mass moving inside a coil as the micro-
electric generator (figure 1). They used the well-known SDOF
base excitation relation for describing the motion of the seismic
mass with respect to the generator housing as

mz̈ + cż + kz = −mÿ (1)

where m is the seismic mass, k is the spring constant, c
is the viscous damping coefficient, y is the displacement
of the vibrating generator housing, z is the displacement of
the seismic mass relative to the generator housing, and a
dot above a variable represents differentiation with respect
to time. The combined effect of electrical and mechanical
damping is considered in the damping coefficient c. This
is a fairly accurate model for the electromagnetic generator
type (magnet–coil configuration) analyzed by Williams and
Yates [2]. A reasonable assumption in electromagnetic energy
harvesting from a magnet–coil system is that the backward
coupling in the mechanical domain is proportional to velocity
only. Hence the electrical effect due to the presence of a
resistive load can be represented by an electrically induced
viscous damping coefficient in the mechanical equation of
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motion4. This convenient assumption makes it possible to
express the magnet displacement frequency response function
(FRF) per base acceleration and the average power FRF
converted from the mechanical domain to the electrical domain
as
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where Y0 is the amplitude of harmonic base displacement
at frequency ω and ce is the electrically induced damping
coefficient such that the total damping coefficient in
equation (1) can be separated as c = cm + ce, where cm is the
mechanical part of the damping coefficient c in equation (1).
Note that, in equations (2) and (3), ζ = c/2

√
km is the total

damping ratio, ζe = ce/2
√

km is the damping ratio due to
electromagnetic transduction, and ωn is the undamped natural
frequency due to ωn = √

k/m. It is clear from equation (2)
that the backward coupling information in the mechanical FRF
is simply embedded in the viscous damping term ζ since ζ =
ζe + ζm.

The foregoing simple generator model is suitable for
electromagnetic energy harvesting in which a magnetic seismic
mass moves inside a coil due to the vibratory motion of the
generator housing. The Williams and Yates model [2] has led
to extended discussions on the power output and the effect
of mechanical damping in the vibration energy harvesting
literature [3]. However, the foregoing model and the relevant
discussion in the literature are restricted to electromagnetic
generators of the aforementioned type. Unfortunately, several
researchers have wrongly used the electromagnetic model in
their work on piezoelectric energy generation, which is an
entirely different physical phenomenon.

2.2. Use of the SDOF electromagnetic generator model for
piezoelectric energy harvesting

Piezoelectric transduction uses different physics than electro-
magnetic transduction. The mechanism of piezoelectric trans-
duction is due to the constitutive relations [4] emerging from
the material itself. As will be presented, the backward cou-
pling effect of piezoelectric energy harvesting in the mechani-
cal domain is not necessarily proportional to velocity only (i.e.,
it cannot be represented by just an electrically induced vis-
cous damper). However, the SDOF electromagnetic genera-
tor model proposed by Williams and Yates [2] has been used
in some papers on piezoelectric energy harvesting. In a re-
cent work, Jeon et al [5] presented their micro-scale piezoelec-
tric energy harvester that uses interdigitated electrodes to uti-
lize the more effective 33-mode in bending. Later, Fang et al
[6] introduced their micro-scale unimorph harvester which is
operated in classical bending mode (31-mode). In both stud-
ies, the authors used the electromagnetic generator equations

4 The form of equation (1) has other assumptions from the mechanical side
of the problem (e.g., it assumes the spring to be massless and the seismic mass
to undergo small oscillations so that the stiffness of the spring is constant).

Figure 2. Cantilever piezoelectric energy harvester configurations
under base excitation: (a) unimorph, (b) bimorph (series connection)
and (c) bimorph (parallel connection) [8, 9].

of Williams and Yates [2] along with figure 1 to represent a
simple mathematical model for piezoelectric energy harvest-
ing. More recently, in a review article on piezoelectric energy
harvesting, Priya [7] described figure 1 as ‘the schematic of the
piezoelectric generator’ and discussed the Williams and Yates
model as a ‘generalized’ model for conversion of vibration en-
ergy into electrical energy although the authors [2] did not have
such a claim in the original work.

The reason we stress the incorrect use of equation (1)
is to prevent future researchers from using this expression
to model piezoelectric-based energy harvesters and hence
from obtaining false theoretical results. The effect of
electrical energy generation can be represented by a viscous
damper in the mechanical domain only for magnet–coil
type electromagnetic harvester configurations. Therefore,
equation (1) does not describe a generalized model for
vibration-to-electric energy conversion.

2.3. On the mechanism of piezoelectric transduction

The effect of piezoelectric coupling in the mechanical equation
of motion is more sophisticated than that of electromagnetic
coupling. Figure 2 shows the basic piezoelectric energy
harvester configurations (unimorph and bimorph) under base
excitation. The base excitation is due to the motion of the
host structure (on which the harvester is attached) and it
is represented in figure 2 in the form of translation in the
transverse direction with small rotation as studied by Erturk
and Inman [8, 9]. Typically, in most of the literature, only the
translational component has been considered by assuming no
base rotation. The conductive electrodes covering the top and
the bottom faces of the piezoceramic layer(s) are connected
to a resistive electrical load. Note that, depending on the
poling direction of the piezoceramic layers and combination
of the electrode leads, the piezoceramic layers of the bimorph
configuration can be combined either in series or in parallel.

Basically, such a cantilevered harvester (a unimorph or
a bimorph) is located on a vibrating host structure, and the
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dynamic strain induced in the piezoceramic layer(s) due to
base excitation results in an alternating voltage output. The
source of coupling in piezoelectric energy harvesting is the
constitutive relations of the piezoceramic material. Based
on Euler–Bernoulli beam assumptions (i.e., the classical thin
beam model), the tensorial representation of the constitutive
relations [4] can be reduced to the following two scalar
equations for harvester beams operating in 31-mode (e.g.,
figure 2)

{

T1

D3

}

=
[

cE
11 −e31

e31 εS
33

]{

S1

E3

}

(4)

where T1 is the stress component, D3 is the electric
displacement component, S1 is the strain component, E3 is
the electric field component, e31 is the piezoelectric constant,
cE

11 is the elastic stiffness component (Young’s modulus) at
constant electric field, and εS

33 is the permittivity component
at constant strain. Furthermore, the directions 1 and 3 coincide
with the longitudinal (x) and the transverse (y) directions of
the beam in figure 2, respectively. According to equation (4),
a mechanical strain field induced in the piezoceramic layer
results in an electric displacement field throughout its length.
Meanwhile, an electric field develops across the conductive
electrodes in the thickness direction and it sends feedback
to the mechanical domain and affects the mechanical stress
field. In the light of equation (4), one can anticipate that
the effect of piezoelectric coupling in the mechanical domain
does not have to be in the form of viscous damping. Indeed,
developing a distributed parameter model by integrating the
electric displacement in equation (4) over the electrode area
and the moment of mechanical stress over the beam cross-
section makes it possible to observe the distinctions of the
effects of piezoelectric coupling on beam vibrations [8, 9]. One
important distinction is due to the short circuit and the open
circuit resonance frequencies. As the load resistance in the
electrical circuit is increased from zero to infinity, reasonably,
the system moves from short circuit to open circuit conditions.
This is associated with a variation in the modal frequencies
(of the harvester beam) from the short circuit to the open
circuit resonance frequencies. Although increasing the load
resistance attenuates the motion amplitude at the short circuit
resonance frequency up to a certain point, interestingly, it
amplifies the motion amplitude at the open circuit resonance
frequency [8, 9] (see section 3.2). Load–resistance dependent
variation of the resonance frequencies and amplification of the
motion at the open circuit resonance frequency with increasing
load resistance are strong indicators of the fact that the effect
of piezoelectric coupling in the mechanical domain is more
complicated than simple viscous damping.

2.4. An improved SDOF piezoelectric energy harvester model

An SDOF piezoelectric energy harvester model was introduced
by duToit et al [10], in which they considered the mechanism
of piezoelectric coupling in a simple way. Figure 3 shows the
schematic of their cantilevered harvester, which is excited by
the motion of its base in the longitudinal direction. Therefore,
rather than bending, this model uses longitudinal vibrations of
a piezoceramic (like a typical accelerometer). As the direction

Figure 3. Schematic of the 1D harvester model proposed by
duToit et al [10].

of mechanical strain and the electric field are coincident, the
harvester model shown in figure 3 uses the 33-mode (and
therefore the d33 constant of the piezoceramic) where the 3-
direction is the longitudinal direction. The electrodes are
connected to an equivalent resistive load Req (which is the
parallel combination of piezoceramic leakage resistance Rp

and load resistance Rl, where Rl � Rp; hence Req ≈ Rl).
The coupled SDOF equations are given by duToit et al [10] as

ẅ + 2ζmωnẇ + ω2
nw − ω2

nd33v = −ẅB (5)

ReqCpv̇ + v + meff Reqd33ω
2
nẇ = 0 (6)

where wB is the base displacement, w is the displacement of
the proof mass relative to the base, v is the voltage output,
meff is the effective mass, ζm is the mechanical damping
ratio, ωn is the undamped natural frequency, and Cp is the
capacitance of the piezoceramic. Comparing equations (1)
and (5) shows that equation (5) still relies on the SDOF base
excitation relation. However, the backward coupling effect
of the voltage generated is considered in equation (5) in a
convenient manner with the additional term ω2

nd33v. For a
harmonic base displacement wB at frequency ω, equations (5)
and (6) give the coupled mechanical response FRF of the proof
mass and the electrical power output FRFs (per harmonic base
acceleration) as
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where � = ω/ωn is the dimensionless frequency, ke is the
coupling coefficient, and r = ωn ReqCp [10]. Comparing
equations (2) and (7) shows that the backward piezoelectric
coupling acts in a more complicated way than viscous
damping. Moreover, the denominator of equation (8) shows
that the resonance of the power FRF for a given Rl cannot
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Figure 4. Variation of correction factors with proof mass to beam/bar mass ratio for (a) transverse and (b) longitudinal vibrations [11].

be predicted accurately if equation (3) is used. That is, for
a given Rl, the maximum power is not necessarily obtained
for ω = ωn (or not for ω = ωn

√

1 − ζ 2
m) as the resonance

frequency may change considerably with Rl. Using the
above two simple equations, duToit et al [10] were able to
observe the short circuit and open circuit resonance trends later
observed by Erturk and Inman [8, 9] based on the analytical
distributed parameter solution. As addressed in section 2.5,
the well-known SDOF base excitation relation of the form
given by equation (5) (or equation (1)) fails to predict the
forcing amplitude accurately if the tip mass (proof mass) to
distributed mass ratio is not very high. Correction factors [11]
were derived to improve the predictions of the above SDOF
piezoelectric energy harvester model proposed by duToit et al
[10].

Another improved SDOF cantilever model was presented
by Roundy et al [12, 13] for a bimorph cantilever configuration
(figures 2(b) and (c)) in transverse (bending) vibrations due
to base excitation. In modeling, Roundy et al [13] did not
model the distributed mass of the cantilever which implicitly
assumes the tip mass (Mt in figure 2) to be much larger
than the distributed mass of the cantilevered beam. Note
that an inaccurate estimation of the harvester total mass may
cause not only inaccurate estimation of the harvester’s natural
frequency, but may also result in inaccurate estimation of
the excitation amplitude, since the forcing term in the base
excitation problem is due to the mass of the harvester. Even
though this model [13] was an introductory modeling attempt
for harvesters operating in bending mode, just like the model
proposed by duToit et al [10], it also showed that the electrical
power expression for piezoelectric energy harvesting is not as
simple as equation (3).

2.5. Further issues in SDOF modeling

The problems regarding SDOF modeling are not limited to
the representation of piezoelectric coupling. One particular
issue is due to the deficiency of using the well-known SDOF
base excitation relation. The governing equation for the base
excitation problem of a mass–spring–damper system (figure 1)
is given by equation (1). In the presence of piezoelectric
coupling, duToit et al [10] modified this expression to
equation (5) by adding the relevant voltage term. Yet, the origin
of equation (5) is clearly equation (1), which is the SDOF base
excitation relation. Based on distributed parameter modeling

of the uncoupled mechanical problem, Erturk and Inman [11]
recently showed that, if the proof mass of the harvester is
not much larger than the mass of a cantilevered beam in
transverse vibrations (or a cantilevered bar in longitudinal
vibrations), the form of equation (1) yields highly inaccurate
results. The inaccuracy is due to the contribution of the spring
mass (i.e., the distributed beam/bar mass) to the excitation
amplitude, which becomes very important if the proof mass is
not very large. It was proposed [11] that the SDOF uncoupled
governing equation (which is equation (1) in this paper) should
be modified such that, for a uniform cantilevered beam in
transverse vibrations,

mz̈ + cż + kz = −μ1mÿ (9)

and for a uniform cantilevered bar in longitudinal vibrations,

mz̈ + cż + kz = −κ1mÿ (10)

where μ1 and κ1 are the correction factors (for transverse
and longitudinal vibrations, respectively). These factors
correct the excitation amplitude with a mode shape dependent
consideration of the distributed mass, and subscript 1 is for
the mode number (the fundamental mode here). Note that, in
the absence of a proof mass, μ1 = 1.566 and κ1 = 1.273.
Hence, even if the natural frequency prediction was correct5,
in the absence of a proof mass, the tip motion would be
underestimated with an error of 36% for transverse vibrations
and with an error of 21% for longitudinal vibrations [11].
As depicted in figure 4 (along with curve fit relations), the
correction factors depend on the proof mass to beam/bar mass
ratio, and they tend to unity as this ratio becomes very large.
That is, there is no need to correct the excitation amplitude if
the harvester beam/bar has a large proof mass. Reasonably,
if the proof mass is very large, its inertia (as the source of
excitation due to base motion) dominates the total inertia of
the cantilevered harvester, and the distributed inertia of the
beam/bar becomes negligible.

The SDOF correction factor κ1 is then applied to the
excitation amplitude of the coupled mechanical equation given

5 In the absence of a proof mass, Rayleigh’s [14] effective mass relation for
the transverse vibrations case (i.e., 33/140 of the beam mass) results in an
acceptable error of 0.5% in the natural frequency prediction (compared to the
exact Euler–Bernoulli beam solution). However, the effective mass relation
for the longitudinal vibrations (i.e., 1/3 of the bar mass) yields a fundamental
natural frequency with an error of about 10.3% compared to the exact solution
of the respective partial differential equation (in the absence of a proof mass).
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by equation (5) as

ẅ + 2ζmωnẇ + ω2
nw − ω2

nd33v = −κ1ẅB. (11)

After this improvement, κ1 and κ2
1 appear in the numerators

of equations (7) and (8), respectively. Otherwise, both the
vibratory motion of the harvester and the resulting voltage and
power outputs are underestimated. In their modeling work,
duToit et al [10] presented a numerical case study for their
harvester operating in the longitudinal mode (figure 3). In
their case study [10], the proof mass to bar mass ratio was
Mt/mL = 1.33, which is not large enough to ignore the
respective correction factor according to figure 4(b). It was
shown [11] that the excitation amplitude in that particular case
study should be corrected with a factor of κ1 = 1.0968.
Theoretically, this modification avoids underestimation of the
tip motion and the voltage amplitudes with an error of 8.83%
and the resulting power amplitude with an error of 16.9% [11].

As an additional point, the base excitation problem yields
an excitation term that is due to external viscous damping [11].
Compared to the inertial excitation term, the damping related
excitation is negligible for cantilevers operating in fluids with
less damping effect, such as air. For a uniform cantilever
without a tip mass, it was shown in a dimensionless basis
that the contribution from air damping to the excitation at
resonance is less than 5% of the total (inertial and damping)
excitation if the damping ratio due to air damping is less
than 2.5% (see figure 3 in [11]). The presence of a tip
mass reduces the percentage contribution of this external
damping related excitation term to the modal forcing function
even more. Recently, duToit and Wardle [15] identified
1.78% total damping for a cantilevered bimorph, and Erturk
and Inman [9] identified 2.7% total damping for a similar
cantilevered bimorph with a tip mass (for the fundamental
mode). Hence, one can conclude that the damping ratio due
to air damping is typically less than these values and that
the excitation due to air damping is negligible for harvesters
operating in air. However, one should be careful when
analyzing harvesters (under base excitation) operating in fluids
with larger damping effect.

2.6. Single-mode equations based on the distributed
parameter solution

Recently, the closed-form distributed parameter solutions
(based on Euler–Bernoulli beam theory) have been ob-
tained [8, 9] for the configurations shown in figure 2. The cou-
pled steady state response expressions to harmonic excitation
at an arbitrary frequency (given in section 3.6) are simplified
for modal excitations (i.e., for excitations at or around the nat-
ural frequencies) to obtain single-mode relations. The single-
mode relations proposed by Erturk and Inman [8, 9] are as ac-
curate as the multi-mode solutions (section 3.6) for excitations
in the vicinity of a modal (natural) frequency of interest [9].
For instance, for the unimorph cantilever shown in figure 2(a),
the closed-form analytical solution for the coupled displace-
ment response ŵrel(x, t) at an arbitrary point on the harvester
beam (relative to the base) and the voltage response v̂u(t)

across the resistive load are given by equations (12) and (13),
respectively:

ŵrel(x, t)

= (1 + jωτc) mω2γ w
r φr(x)

jωτcχrϕr + (1 + jωτc)
(

ω2
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where hat (∧) denotes that the equations are reduced for modal
excitations (ω ∼= ωr), the subscript u is for unimorph (in
agreement with figure 2(a)), r is the vibration mode of interest,
and the relevant terms can be found in [8]. Note that the
above expressions assume the base excitation to be in the
form of harmonic translation g(t) = Y0ejωt with no rotation
(i.e., h(t) = 0); however, small rotation of the base can be
incorporated easily [8, 9]. From equations (12) and (13), the
displacement and the electrical power FRFs (per harmonic base
acceleration) can be obtained as
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It is worth stressing that the origin of the above single-
mode expressions is the distributed parameter solution (not
the SDOF base excitation modeling). This is the reason that
the term ‘single-mode’ is used and these equations represent
the multi-mode expressions given in section 3.6 accurately
for the r th vibration mode [9]. The particular interest in
energy harvesting is the fundamental vibration mode, which
corresponds to the r = 1 case in equations (14) and (15). It
is worth highlighting the qualitative similarity of the SDOF
equations (7) and (8) derived by duToit et al [10] and the
distributed parameter single-mode equations (14) and (15)
derived by Erturk and Inman [8]. This is an indication of the
fact that the simpler model proposed by duToit et al [10] was
fairly successful in describing the piezoelectric coupling of the
electromechanical system in the qualitative sense. However,
the SDOF equations (7) and (8) lack the important information
involved in the single-mode equations (14) and (15), such
as the accurate strain distribution, mode shape and electrode
location dependence of electromechanical coupling, besides
the fact that the former equation pair was given for longitudinal
vibrations.

3. Issues in distributed parameter modeling

Although SDOF modeling gives initial insight into the
coupled problem, accurate electromechanical modeling of a
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Figure 5. Sample power FRFs from the analytical relations presented in (a) Lu et al [16] and (b) Erturk and Inman [8] for different case
studies.

piezoelectric energy harvester requires using a distributed
parameter modeling approach. The existing distributed
parameter modeling approaches range from Rayleigh–Ritz
type of discretization to analytical modeling attempts, and the
modeling issues are due to the effect of modal expansion and
the resonance phenomenon, oversimplification of piezoelectric
coupling in the mechanical equation of motion, representation
of base excitation as a forcing term, use of the existing
static actuation equations, and inaccuracies due to using static
beam deflection equations in the dynamic problem. These
problems are addressed in this section, and improved models
are introduced for the reader’s reference.

3.1. Effects of higher vibration modes and the resonance
phenomenon

Based on the expansion theorem of operator theory, the
instantaneous deflection pattern of an elastic curve (the neutral
axis of one of the harvester beam configurations in figure 2)
can be represented by an absolutely and uniformly convergent
series of orthogonal eigenfunctions as

wrel(x, t) =
∞∑

r=1

φr(x)ηr(t) (16)

where wrel(x, t) is the elastic transverse displacement of the
neutral axis at point x and time t relative to the base of the
cantilever (figure 2), φr(x) is the eigenfunction, and ηr(t) is
the modal response of the r th vibration mode [8, 9]. If one
is strictly interested in the response to modal excitation (at the
r th natural frequency ωr), representing wrel(x, t) as follows is
fairly acceptable:

wrel(x, t) ∼= φr(x)ηr(t). (17)

Otherwise, for arbitrary excitation frequencies away from ωr,
equation (17) estimates the response inaccurately because it
takes the r th mode shape as the only basis of the deflection
pattern and ignores all the other orthogonal modes. The form of
the mechanical response given by equation (17) was assumed
by different authors for relating the voltage or electrical power
of cantilevered piezoelectric energy harvesters to vibration
mode shape [16, 17]. Among the other issues in Lu et al [16],
the ultimate expression that relates the electrical power to tip
vibration amplitude of the cantilever is highly deceptive as it

lacks not only the information of higher vibration modes but
also, more importantly, it misses the resonance phenomenon
completely due to incorrect representation of the tip vibration
amplitude. The resulting average power P̄ expression is
obtained by Lu et al [16] as

P̄ = ω2b2h2e2
31 Ā2

4(1 + bLε33ωR/)2
R (18)

where Ā is the amplitude of the bending slope difference
at the boundaries of the piezoceramic layer. The
resonance phenomenon is supposed to be exhibited by the
vibration frequency response ( Ā in the above equation), and
consequently, by the voltage and power FRFs as well. Lu
et al [16] used equation (18) to compare two cantilevered
piezoelectric energy harvester configurations theoretically.
For the numerical parameters and a certain value of Ā
from [16], the power frequency response is obtained by
using equation (18), as shown in figure 5(a). In [16],
Lu et al presented a similar graph to compare the power
outputs of two generator configurations for low and high
frequency excitations (see figure 6 in [16]). The cantilevered
harvesters [16] had a resonance frequency of about 2939 Hz
but no resonance was observed (as in figure 5(a) here) within
a frequency range of 0–1000 kHz because the resonance
information was lost due to using a constant amplitude for Ā.
Just like a vibration response FRF, an electrical power FRF
displays the resonance behavior at the resonance frequencies
of the harvester. As an example, the electrical power FRF
of the unimorph cantilever analyzed in [8] is shown in
figure 5(b) (for a resistive load of 10 k�). For convenience, the
electrical power output of a cantilevered harvester under base
excitation can be given per base motion input (in terms of base
acceleration, velocity or displacement). Since the cantilevered
harvester investigated in [8] has three natural frequencies in the
frequency range 0–1000 Hz, the power FRF experiences three
resonances in this frequency range. Similar trends are expected
from the cantilevers analyzed by Lu et al [16] with the correct
treatment based on the fundamental vibration theory. Formal
treatment of the vibration problem using equation (17) could
capture the resonance at the frequency of the vibration mode
of interest. However, in order to account for all the vibration
modes in the power FRF as depicted in figure 5(b), one should
use the expansion of the vibration modes as in equation (16).
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Figure 6. Variation of the (a) tip velocity FRF and the (b) voltage FRF with changing load resistance with a focus on the resonance frequency
shift of a bimorph cantilever [9].

3.2. Oversimplification of piezoelectric coupling in the beam
equation

The mechanism of piezoelectric coupling was discussed in
section 2.3. One particular issue repeated in the literature
is due to the lack of including piezoelectric coupling or its
oversimplification as viscous damping in distributed parameter
modeling [16–19]. For instance, in their distributed parameter
modeling attempts based on Euler–Bernoulli beam theory, Lu
et al [16], Lin et al [18] and Ajitsaria et al [19] did not consider
the effect of backward piezoelectric coupling in the beam
equation, which may result in very inaccurate predictions.
Leaving out the piezoelectric coupling in the mechanical
equation assumes the beam vibration to be totally unaffected
by the electrical power generation process and violates the
coupling coming from the piezoelectric constitutive laws
(equation (4)). Chen et al [17] assumed the effect of
piezoelectric coupling in the beam equation to be in the
form of viscous damping, which is still an oversimplified
assumption for distributed parameter modeling, as discussed
in the following.

As mentioned in section 2.3, the piezoelectric constitutive
relations do not necessarily imply a dissipative coupling effect
that is proportional to velocity only. The complexity associated
with piezoelectric coupling was observed in the denominators
of the single-mode relations given by equations (14) and (15).
Hence, it may yield inaccurate results to represent the effect of
a resistive electrical load as a viscous damper in the mechanical
equation. Figure 6(a) shows the tip velocity FRF (per base
acceleration in gs) of a bimorph cantilever configuration (in the
form of figure 2(b)) for different values of load resistance, as
recently investigated by Erturk and Inman [9]. The variation
of the voltage output FRF of the bimorph for the same set
of resistive loads is presented in figure 6(b) [9]. These
two figures focus on the fundamental vibration mode of the
bimorph. Clearly, as the load resistance is increased (from 1
to 470 k�), the resonance frequency of the cantilever shifts
from the short circuit resonance frequency (45.6 Hz) to the
open circuit resonance frequency (48.4 Hz). Furthermore,
it is very interesting to observe that, due to the shift in the
resonance frequency, increasing load resistance amplifies the
tip motion of the cantilever at the open circuit resonance
frequency although it attenuates the motion up to a certain
point for excitation at the short circuit resonance frequency.

This resonance frequency shift cannot be captured by models
which do not consider the backward piezoelectric coupling
effect in the beam equation or oversimplify it as a viscous
damping term. Since the resonance frequency for a given load
resistance cannot be predicted accurately by oversimplifying
the backward piezoelectric coupling effect [16–19], the
frequency and amplitude of the maximum voltage and power
(in the electrical FRF, such as the voltage FRF shown in
figure 6(b)) are predicted inaccurately. As a result, such
models [16–19] fail in estimating the maximum performance
of a given piezoelectric energy harvester accurately. Note that
the bimorph counterparts of the single-mode equations (14)
and (15) (for series connection) were derived and used in [9] to
predict the coupled system dynamics around the fundamental
vibration mode as shown in figure 6. It is worth adding that
the frequency shift mentioned here is a direct measure of the
quality of the electromechanical coupling for a piezoelectric-
based energy harvester.

Besides the deficiency in predicting the coupled system
dynamics due to incorrect modeling (or viscous damping
representation) of piezoelectric coupling [16–19], an important
misinterpretation that originates from the same issue should
be addressed briefly. Lu et al [16] and Lin et al [18] drew
the same incorrect conclusion by not considering the backward
piezoelectric coupling effect. They [16, 18] claimed that the
optimum load resistance that gives the maximum power is
Ropt

l = 1/ωCp, where ω is the excitation frequency and Cp is
the internal capacitance of the piezoceramic layer. It is well
known that a piezoelectric element can be represented as a
current source in parallel with its internal capacitance or as a
voltage source in series with its internal capacitance. However,
one should be very careful with these representations in the
electrical domain because the complete representation of the
coupled electromechanical problem is actually a transformer.
The current source term (in the respective representation)
receives feedback from the voltage across the resistive load
(connected to the electrodes), and the feedback sent to the
mechanical domain depends on the load resistance, as depicted
in figure 6(a). Ignoring the backward piezoelectric coupling
and just adding a resistive load Rl to one of the aforementioned
circuit representations results in an optimum load resistance of
Ropt

l = 1/ωCp for the maximum power, which is incorrect.
One can easily demonstrate the inaccuracy of this expression.
The optimum load resistance of the bimorph discussed with
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Figure 7. Comparison of the coupled and uncoupled distributed parameter model predictions for the bimorph used in [9]: (a) electrical power
FRFs for three different resistive loads and (b) variation of the electrical power amplitude with load resistance for resonance excitation.

figures 6(a) and (b) was about 35 k� for excitation at
45.6 Hz (fundamental short circuit resonance frequency) and
it was about 186 k� for excitation at 48.4 Hz (fundamental
open circuit resonance frequency) as extracted experimentally
and predicted successfully by the bimorph counterpart of
equation (15) in [9]. However, the expression Ropt

l = 1/ωCp

presented in [16, 18] predicts the optimum values of load
resistance for excitations at 45.6 and 48.4 Hz very inaccurately
as 84.6 and 79.7 k�, respectively. Recently, this relation
(Ropt

l = 1/ωCp) given by Lu et al [16] was referred to
in a review article by Beeby et al [20] as the equation that
shows how the optimum electrical load varies for different
piezoelectric generators.

Figures 7(a) and (b) show the inaccuracy in the
electrical power prediction by not considering the backward
piezoelectric coupling effect in the distributed parameter beam
equation. The model predictions and the experimental results
given in figure 7 belong to the bimorph cantilever used in [9].
The electrical power FRFs for three different resistive loads
are displayed in figure 7(a), where the uncoupled model is
in agreement with the coupled one only for the lowest load
resistance (1 k�). As the load resistance is increased, the
electrical power prediction of the uncoupled model strongly
deviates from that of the coupled model (and more importantly
from the experimental results). Deviation of the uncoupled
model as a function of load resistance is more clearly observed
in figure 7(b) for excitation at the short circuit resonance
frequency (45.6 Hz). As mentioned in the previous paragraph,
the uncoupled model predicts the optimum load resistance for
excitation at 45.6 Hz as 84.6 k�, which overestimates the
optimum load resistance of the coupled system (35 k�) with
an error of about 142%. Moreover, the uncoupled model
overestimates the maximum power by more than a factor of 4.
The distributed parameter model with backward coupling [9]
is in very good agreement with the experimental results.

3.3. Representation of the mechanical forcing term due to
base excitation

Since it is not one of the typical external loading types (such as
a point force at the tip), the representation of base excitation as
a forcing function has caused some confusion in the literature.
As discussed by Erturk and Inman [8], in the absence of a
tip mass, the forced partial differential equation of motion for

the transverse displacement wrel(x, t) of a uniform cantilevered
beam relative to its base can be written as

Y I
∂4wrel(x, t)

∂x4
+ cs I

∂5wrel(x, t)

∂x4∂ t
+ ca

∂wrel(x, t)

∂ t

+ m
∂2wrel(x, t)

∂ t2
+ ϑv(t)

[
dδ(x)

dx
− dδ(x − L)

dx

]

= −m
∂2wb(x, t)

∂ t2
− ca

∂wb(x, t)

∂ t
(19)

where wb(x, t) = g(t) + xh(t) is the base displacement
acting on the beam due to the translation g(t) in the transverse
direction with superimposed small rotation h(t) (figure 2), and
the remaining terms can be found in [8]. The right-hand-
side forcing function is therefore a pressure distribution due
to base excitation and it consists of an inertial term along
with an external (air) damping related term. As discussed
in section 2.5, the contribution from external damping to the
forcing function is usually negligible (compared to the inertial
term) for harvesters operating in air. Therefore, the effective
force acting on the beam is basically a pressure distribution
proportional to the mass distribution. The presence of a proof
mass at the tip of the cantilever (x = L) creates a jump in
the pressure distribution generated by the tip mass since m
should be replaced by m + Mtδ(x − L), where δ(x) is the
Dirac delta function. In the presence of a tip mass, substituting
equation (16) in (19) and applying the orthogonality conditions
of the eigenfunctions φr(x) yields an infinite set of ordinary
differential equations for the modal response ηr(t):

η̈r(t) + 2ζrωrη̇r(t) + ω2
r ηr(t) + χrv(t)

= −d2g(t)

dt2

(

m
∫ L

0
φr(x)dx + Mtφr(L)

)

(20)

where the base rotation is assumed to be zero (i.e., h(t) = 0)
and the forcing term due to air damping is neglected (the
general form and the relevant terms can be found in [8]). This
short discussion completes the analytical treatment of base
excitation as a forcing term in distributed parameter modeling.
Hence, the above treatment should be preferred to representing
the base excitation as a tip force acting in the transverse
direction. As an example from the literature, recently, Ajitsaria
et al [19] multiplied the SDOF prediction of the tip acceleration
and the effective tip mass to represent the base excitation rather
than following the foregoing formal procedure. Indeed, when
the component of the forcing term due to proof mass is much

9



Smart Mater. Struct. 17 (2008) 065016 A Erturk and D J Inman

larger than the component due to the distributed mass, one can
estimate the forcing function by considering the proof mass
component only. However, it is important to note that the proof
mass, as a point force at the tip, multiplies the base acceleration
in equation (20), not the tip acceleration [19].

Other than the analytical distributed parameter model-
ing attempts mentioned here, the Rayleigh–Ritz type of dis-
cretization proposed by Hagood et al [21] (based on Hamil-
ton’s principle for electromechanical systems given by Cran-
dall et al [22]) was employed for piezoelectric energy harvest-
ing [10, 23, 24]. The first implementation of the Rayleigh–Ritz
solution for modeling of piezoelectric energy harvester beams
was due to Sodano et al [23], in which they considered a can-
tilevered bimorph without a tip mass with the following me-
chanical equation of motion:
(

M∼ s
+ M∼ p

)

r̈∼ (t) + C∼ ṙ∼ (t) +
(

K∼ s
+ K∼ p

)

r∼ (t)

− �∼ C∼
−1

p
q∼ (t) =

n f∑

i=1

φT

∼
(xi) fi (t). (21)

Here, they [23] directly used the mechanical forcing function
given by Hagood et al [21] on the right-hand side (the under
tilde represents a matrix or a vector; see [23] for the remaining
terms). In the original work, Hagood et al [21] defined discrete
forces acting on nf coordinates (x1, x2, . . . , xn f ) of the system.
However, the base excitation problem does not include such
a set of discrete forces. After concluding that the problem
needed a new set of mode shapes due to the moving clamped
boundary, Sodano et al [23] found it convenient to represent
the mechanical forcing function as

f (t) =
∫ ∫ ∫

V

ρ Aω2 sin (ωt) dV (22)

which, apparently, is nothing but the total beam mass times
the base acceleration as the acceleration term Aω2 sin(ωt) can
be taken outside the integrand. The same formulation was
very recently used by Liu and Sodano [25] for a similar base
excitation problem.

A correct implementation of Hagood et al’s discrete
forces to base excitation was due to duToit et al [10], in
which they concluded that the beam under base excitation has
infinitely many discrete forces due to the local inertias of the
infinitesimal elements, yielding an integral for the mechanical
forcing term instead of the summation term in equation (21):

M∼ r̈∼ (t) + C∼ ṙ∼ (t) + K∼ r∼ (t) − �∼ v∼ (t) = −ẅB

∫ L

0
mφT

∼
(x) dx

(23)
where m is the mass per unit length of the beam, ẅB is the base
acceleration, and the remaining terms can be found in [10].
They [10] also presented an expression for the right-hand-side
forcing function in equation (23) in the presence of a proof
mass.

For the general case of the base excitation problem for a
cantilevered beam with a proof mass located at the tip (as in

figure 2), Elvin and Elvin [24] presented the following compact
form:

M∼ r̈∼ (t) + C∼ ṙ∼ (t) + K∼ r∼ (t) − �∼ v∼ (t)

= −ẅB

(∫ L

0
mφ∼ (x) dx + Mtφ∼ (L)

)

(24)

where φ∼ (x) is the vector of admissible functions, and the
remaining terms can be found in [24]. Note that the electrical
term in equation (21) is given in terms of the electric charge
q∼ (t), whereas it is given by the voltage term in equations (23)
and (24).

It is very useful to observe the analogy between the
mechanical forcing functions of the analytical model and
the discrete (Rayleigh–Ritz) model from equations (20)
and (24), respectively. Representation of base excitation
as a forcing function becomes more involved for structures
more complicated than a conventional cantilevered beam [26].
Handling of base excitation problems of continuous structures
(beams and frames) is extensively discussed in texts on
earthquake engineering (see, for instance, Chopra [27]).

3.4. Use of the static sensing and actuation equations

In the 1990s, several researchers were interested in
developing analytical relations to predict the static behavior of
piezoelectric sensors and actuators [28–30]. Among others,
Smits and Choi [28] and Wang and Cross [29] derived
constituent relations under different static loading conditions
of cantilevered bimorphs (tip force, tip moment, and uniformly
distributed pressure). Later, DeVoe and Pisano [30] used
Timoshenko’s approach [31] of modeling bi-metal thermostats
for modeling the static behavior of piezoelectric multi-morph
cantilever actuators.

Recently, Ajitsaria et al [19] attempted to combine the
relations given the literature of static sensing and actuation
with the dynamic problem of energy harvesting. Although
they [19] gave the modal expansion (equation (16) here) as
the general solution to the Euler–Bernoulli beam equation,
Ajitsaria et al [19] tried to combine the dynamic Euler–
Bernoulli beam equation with the constant radius of curvature
relations presented by DeVoe and Pisano [30]. The assumption
of constant radius of curvature is reasonable for cantilevers
bent by a static tip force, but this assumption clearly fails in
the dynamic problem where the radius of curvature changes
over the beam length as well as with the excitation frequency.
After attempting to represent the base excitation as a tip
force (see section 3.3), they [19] used the voltage to static
tip force equation given by Wang and Cross [29] (and others
later) to estimate the voltage in open conditions without a
resistive load. Clearly, using the static sensing and actuation
relations (which were derived for a static tip force) yields
highly inaccurate results in the dynamic vibration-based energy
harvesting problem (which is usually associated with base
excitation).

3.5. Use of the static deflection pattern instead of the
fundamental mode shape

Another simplification encountered in the literature is due to
using the static deflection pattern obtained by a static tip force
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Figure 8. Comparison of the static and dynamic (a) deflection shapes, (b) slope distributions, and the (c) absolute value of the error in the
slope due to using the static deflection expression.

with the assumption that it looks like the deflection pattern
of the first vibration mode shape for clamped–free boundary
conditions. Cornwell et al [32] studied energy harvesting
from a cantilevered auxiliary structure attached to a three-story
frame structure. The auxiliary structure (a cantilevered beam
with a piezoceramic patch attached to the root) was excited
from its base due to the motion of the three-story frame. After
observing that the voltage response of the cantilever depends
on the slope difference at the boundaries of the piezoceramic
patch, Cornwell et al [32] used the following static deflection
relation that gives the slope at point x on the beam in terms of
the static deflection at the free end:

dyst(x)

dx
= 3ya

2L

[
2x

L
−
( x

L

)2
]

(25)

where ya is the deflection at the free end (i.e., yst(L) = ya)
and L is the length of the beam. Equation (25) is derived
for a cantilevered beam with a static tip force acting in the
transverse direction, where the tip force term is eliminated by
using the transverse stiffness (3E I/L3) and the deflection ya at
the free end. The interpretation of Cornwell et al [32] regarding
the relevance of the voltage output and the slope difference
at the boundaries of the piezoceramic patch is correct (see
equation (35) in [8] and equation (3) in [32]). However,
they [32] considered a deflection pattern due to a static tip force
assuming that the slope would not change significantly if one
used the first mode shape instead. It is important to note that
one of the natural boundary conditions to be satisfied at the free
end of a clamped–free beam is no transverse force condition.
The static deflection relations given for the case with a tip force
directly violates this boundary condition as there is no tip force
in the base excitation problem.

In the dynamic problem, for the same tip deflection
amplitude (i.e., when ydyn(L) = ya is satisfied) the slope of

the first vibration mode shape at point x can be given by

dydyn(x)

dx
= λ1 ya

2L

[(

sinh
λ1x

L
+ sin

λ1x

L

)

− σ1

(

cosh
λ1x

L
− cos

λ1x

L

)]

(26)

where λ1 = 1.875 104 07 is the eigenvalue of the first mode
and σ1 = 0.734 095 514 is a modal parameter (for a uniform
cantilever without a tip mass). Note that equations (25)
and (26) are such that the tip deflections at the free end
are the same, i.e., yst(L) = ydyn(L) = ya . This is
displayed in figure 8(a), in which yst(x) and ydyn(x) are plotted
together. For the static and dynamic deflection curves given in
figure 8(a), the slope distributions are plotted in figure 8(b.)
Note that equations (25) and (26) are made dimensionless
since ya/L is the same in both cases. Figure 8(b) shows that,
for the same tip deflection amplitude, the slope distribution
obtained from equation (25) is different from that obtained
from equation (26). Reasonably, assuming the dynamic
solution to be the accurate one, one can plot the absolute value
of the error in the slope over the beam length due to using
the static relation (figure 8(c)). Depending on the location of
the piezoceramic patch on the beam, the error in the voltage
prediction may be significant. Although it is not the case
in Cornwell et al [32], for a piezoceramic patch having 20%
of the total beam length located at the root (which is a very
preferable location due to the large mechanical strain at the
root), the voltage prediction with static deflection pattern may
yield an error larger than 10% in the voltage amplitude, and an
error larger than 20% in the power amplitude for a given load
resistance.

Note that the discussion in this section is given for
a uniform cantilevered beam without a tip mass. It is
worth adding that, if one still prefers using a polynomial
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Figure 9. Comparison of the static and dynamic (a) deflection shapes and (b) slope distributions, showing the improvement in the static
solution due to considering a uniform pressure loading.

representation based on the static deflection relation, the
deflection formula for a uniform pressure loading [33] (rather
than a concentrated tip force) should be preferred in the base
excitation problem when there is no tip mass. As mentioned
in section 3.3, the base excitation of a uniform beam without
a tip mass is similar to the uniform pressure excitation of the
respective stationary beam6. Figure 9(a) shows the deflection
comparison for the first mode shape (dynamic deflection) of a
uniform cantilever without a tip mass, static deflection due to
a tip force, and static deflection due to uniform pressure. The
same normalization used in figure 8 is applied in figure 9. The
slope distribution over the beam length is given in figure 9(b).
Note that the static deflection due to uniform pressure loading
predicts the first mode shape and the slope distribution of a
cantilevered beam without a tip mass better than the static
deflection due to a tip force.

3.6. Closed-form analytical equations from the distributed
parameter solution

After the analytical solution attempts based on Euler–Bernoulli
beam theory and the approximate solutions with Rayleigh–
Ritz discretization, recently, the closed-form expressions have
been derived [8, 9] based on the Euler–Bernoulli assumptions,
and attention was given to the issues discussed in the previous
sections. That is, the piezoelectric coupling is treated
accurately based on equation (4), modal expansion is assumed
in the form of equation (16), and the base excitation is
represented in the formal way as discussed with equations (19)
and (20) here.

For a unimorph cantilever (figure 2(a)) excited by the
motion of its base by harmonic translation g(t) = Y0ejωt and
harmonic small rotation h(t) = θ0ejωt , the steady state voltage
response across the resistive load is given by (from [8])

vu(t) =

∞∑

r=1

jmω3ϕr
(

γ w
r Y0 + γ θ

r θ0
)

ejωt

ω2
r − ω2 + j2ζrωrω

∞∑

r=1

jωχrϕr

ω2
r − ω2 + j2ζrωrω

+ 1 + jωτc

τc

(27)

6 The problem becomes a combination of pressure excitation and tip force
excitation when a tip mass is added to the beam. Reasonably, it converges
to the tip force excitation problem if the tip mass is much larger than the
distributed mass of the beam.

and the coupled steady state displacement response at point x
on the harvester beam relative to its base is

wrel(x, t) =
∞∑

r=1

⎡

⎢
⎢
⎢
⎣

(

γ w
r Y0 + γ θ

r θ0
)

− χr

⎛

⎜
⎜
⎜
⎜
⎝

∞∑

r=1

jωϕr
(

γ w
r Y0 + γ θ

r θ0
)

ω2
r − ω2 + j2ζrωrω

∞∑

r=1

jωχrϕr

ω2
r − ω2 + j2ζrωrω

+ 1 + jωτc

τc

⎞

⎟
⎟
⎟
⎟
⎠

⎤

⎥
⎥
⎥
⎥
⎦

× mω2φr(x)ejωt

ω2
r − ω2 + j2ζrωrω

(28)

where the relevant terms can be found in [8]. Note that
both the voltage and the vibration response expressions given
by equations (27) and (28) include the piezoelectric coupling
information given by equation (4). Quite recently, Elvin and
Elvin [24] have shown the convergence of the piezoelectrically
coupled Rayleigh–Ritz solution (based on the formulations
given by Hagood et al [21] and Crandall et al [22], as
mentioned in section 3.3) to the closed-form analytical solution
(equations (27) and (28) above) given by Erturk and Inman [8],
if a sufficient number of admissible functions are used in
the Rayleigh–Ritz discretization. In addition, it can be
observed that the form of the fundamental mode Rayleigh–Ritz
equations [15] is in agreement with the single-mode analytical
equations (14) and (15).

The bimorph counterparts of equations (27) and (28)
are presented in [9] along with experimental validations.
Assuming that the base does not rotate (θ0 = 0), for excitation
frequencies very close to the natural frequency of the r th
vibration mode (ω ∼= ωr), the multi-mode equations (27)
and (28) reduce to the single-mode equations (12) and (13).

4. Summary and conclusions

Piezoelectric transduction has received much attention for
vibration-based energy harvesting over the past five years.
The community working on piezoelectric energy harvesting
includes researchers from mechanical, electrical, materials
and civil engineering areas, and this community has been
growing very rapidly. Several papers have appeared on
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modeling and applications of piezoelectric energy harvesters.
Basically, a cantilevered beam with one or two piezoceramic
layers mounted on a vibrating host structure is investigated
as a typical piezoelectric energy harvester. Different authors
from various engineering disciplines have presented their
work on electromechanical modeling of these piezoelectric
energy harvesters in the literature. Certain issues have been
observed in some of the existing models, and some modeling
errors have been repeated and propagated by different research
groups. Hence, the motivation of this paper is to address
these modeling problems and provide the necessary corrections
for the existing and the future members of this community
requiring the use of mathematical models for piezoelectric
energy harvesters.

Here the existing problems are investigated under two
topics as issues in SDOF modeling and issues in distributed
parameter modeling, and clarifications are provided, with
improved models and examples. The problems in SDOF
modeling concern modeling of piezoelectric coupling and
deficiencies of the existing SDOF piezoelectric energy
harvester relations. Single-mode relations obtained from a
recently proposed distributed parameter solution are presented
as an alternative to the existing SDOF relations.

Predicting the electromechanical behavior of piezoelectric
energy harvesters accurately requires deriving a distributed
parameter model. Therefore, several researchers have
attempted to obtain a distributed parameter solution based
on Euler–Bernoulli beam theory and the fundamentals of
piezoelectricity. In addition to the analytical solution attempts,
approximate solution techniques in the sense of Rayleigh–
Ritz discretization have appeared in the literature. The
problems associated with the existing distributed parameter
models include ignoring the effects of modal expansion and
the resonance phenomenon, not modeling the piezoelectric
coupling in the mechanical equation or its treatment as simple
viscous damping, misrepresentation of the mechanical forcing
term due to base excitation, and use of the static sensing
and actuation equations and of the static deflection pattern in
a dynamic problem. Some of these issues have resulted in
fundamentally incorrect conclusions in the respective papers.
For instance, the exclusion of resonance results in an incorrect
electrical power frequency response, whereas leaving out the
piezoelectric coupling in the beam equation fails to predict
the resonance frequency variation with load resistance (as the
system moves from short circuit to open circuit conditions)
and yields inaccurate values for the optimum load resistance.
These issues are addressed and clarified here for researchers
interested in mathematical modeling of piezoelectric energy
harvesters.

As is typical in the development of most new technologies,
engineers rightfully start with primitive models to investigate
new possibilities. As the disciplines mature, higher fidelity
models are required in order to capture important subtleties and
physical phenomena. Unfortunately, older more simplistic and
even incorrect models are often propagated in the literature.
The goal of this paper is to clarify the current state of modeling
in piezoelectric-based energy harvesting.
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