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Electroaeroelastic analysis of airfoil-
based wind energy harvesting using
piezoelectric transduction and
electromagnetic induction

Carlos De Marqui Jr1 and Alper Erturk2

Abstract
The concept of transforming aeroelastic vibrations into electricity for low-power generation has received growing atten-
tion in the last few years. The goal is to convert airflow energy into electricity for powering small electronic components
employed in wireless applications. The potential applications for aeroelastic energy harvesting range from aircraft struc-
tures to several engineering problems involving wireless electronic components located in high wind areas. The use of a
typical airfoil section is a convenient approach to create instabilities and persistent oscillations in aeroelastic energy har-
vesting. This article analyzes two airfoil-based aeroelastic energy harvesters using (a) piezoelectric transduction and
(b) electromagnetic induction. An airfoil with two degrees of freedom is investigated by adding piezoelectric and electro-
magnetic couplings to the plunge degree of freedom in two separate cases. The governing dimensionless electroaeroelas-
tic equations are given in each case with a resistive load in the electrical domain for predicting the power output at the
flutter boundary. The effects of several dimensionless system parameters on the dimensionless electrical power output
as well as the dimensionless linear flutter speed are investigated for piezoelectric and electromagnetic energy harvesting
from airflow-induced vibrations. The simulations presented in this study can be employed for designing and optimizing
airfoil-based wind energy harvesters.
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Introduction

The research field of energy harvesting has received
growing attention in both academia and industry
(Anton and Sodano, 2007; Beeby et al., 2006; Cook-
Chennault et al., 2008) over the last decade. The moti-
vation in this field is due to the reduced power require-
ment of small electronic components, such as the
wireless sensor networks used in monitoring applica-
tions, with the purpose of powering such devices using
the vibrational energy available in their environment.
By means of self-sustained wireless electronic compo-
nents that use harvested ambient energy, the mainte-
nance requirement for periodic battery replacement
and the chemical waste of conventional batteries can be
minimized.

Most of the existing research under the topic of
mechanical energy harvesting has focused on trans-
forming direct vibration input into electricity by using
the electromagnetic (Amirtharajah and Chandrakasan,
1998; Elvin and Elvin, 2011; Glynne-Jones et al., 2004),

electrostatic (Mitcheson et al., 2004; Roundy et al.,
2003; Tvedt et al., 2010) and piezoelectric (Erturk and
Inman, 2009; Jeon et al., 2005; Roundy and Wright,
2004) transduction mechanisms. Another form of
energy available in the vicinity of sensor nodes and
remotely operating engineering systems is due to air-
flow. As an alternative to miniaturized windmill config-
urations (Myers et al., 2007; Priya et al., 2005;
Rancourt et al., 2007; Xu et al., 2010), researchers have
recently considered exploiting aeroelastic vibrations for
converting wind energy into electricity using scalable
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configurations. An early experimental effort of generat-
ing electricity from thin curved airfoils with macrofiber
composite (MFC) piezoelectric structures under airflow
excitation was presented by Erturk et al. (2008). For the
piezoaeroelastic problem of harvesting energy from air-
flow excitation of a cantilevered plate with embedded
piezoceramics, De Marqui et al. (2010a, 2010b) pre-
sented finite-element models based on the vortex-lattice
method (De Marqui et al., 2010a) and the doublet-
lattice method (De Marqui et al., 2010b) of aeroelasti-
city (Bisplinghoff and Ashley, 1962; Dowell et al., 1978;
Fung, 1969; Hodges and Pierce, 2002). Time-domain
simulations (De Marqui et al., 2010a) were given for a
cantilevered plate with embedded piezoceramics for
various airflow speeds below the linear flutter speed
and at the flutter boundary. Frequency-domain simula-
tions (De Marqui et al., 2010b) considering resistive
and resistive-inductive circuits were also presented
focusing on the linear response at the flutter boundary.
Bryant and Garcia (2009a, 2009b) studied the aeroelas-
tic energy harvesting problem for a typical section using
the finite state theory of Peters et al. (1995). Erturk et
al. (2010) presented an experimentally validated
lumped-parameter model for a wing section (airfoil)
with piezoceramics attached onto plunge stiffness mem-
bers using Theodorsen’s (1935) unsteady aerodynamic
model. Piezoelectric power generation at the flutter
boundary, including the minor shift in the linear flutter
speed, has also been discussed (Erturk et al., 2010). In
addition to these recent efforts, we note that the ‘‘wing-
mill’’ concept was investigated previously for rather
large-scale configurations as an alternative to conven-
tional windmills and wind turbines (Jones and Platzer,
1999; Ly and Chasteau, 1981; McKinney and
DeLaurier, 1981).

As an alternative to airfoil-based and cantilevered
wing-based configurations, St Clair et al. (2010) pre-
sented a design that uses a piezoelectric beam embedded
within a cavity under airflow along with experimental
results. Vortex-induced oscillations of piezoelectric can-
tilevers located behind bluff bodies were investigated by
Robbins et al. (2006), Pobering et al. (2009), and
Akaydin et al. (2010) through experimental and numer-
ical simulations. Tang et al. (2009) presented a rigorous
analysis of the energy transfer from the fluid to the
structure for self-excited vibrations due to axial flow
over a cantilever. Piezoelectric energy harvesting from
limit cycle oscillations under axial flow over a cantilever
beam has been recently discussed by Dunnmon et al.
(2011), Kwon (2010) considered a T-shaped cantilever
beam that causes vortex street formation over the canti-
lever in response to axial flow.

More recently, researchers have focused on non-
linear aspects (Dowell et al., 2003) of aeroelastic energy
harvesting using piezoelectric transduction and airfoil
configurations. Abdelkefi et al. (2011) considered non-
linear plunge and pitch stiffness components (in

polynomial forms) and theoretically investigated their
effects on the harvested energy and the nonlinear aeroe-
lastic behavior. Sousa et al. (2011) considered free play
nonlinearity for the pitch stiffness and experimentally
validated its effect on the harvested piezoelectric energy.
The case of combined nonlinearities (free play and
cubic hardening stiffness) was also numerically investi-
gated by the same authors (Sousa et al., 2011). The free
play nonlinearity has been shown to reduce the cut-in
speed of persistent oscillations, while the hardening
stiffness of the cubic form has been observed to make
the persistent oscillations bounded at acceptable ampli-
tudes over a wide range of airflow speeds.

Very few research groups investigated electromag-
netic transduction for airflow energy harvesting
although electromagnetic induction can be very effec-
tive for large displacements at low frequencies
(Amirtharajah and Chandrakasan, 1998; Elvin and
Elvin, 2011; Glynne-Jones et al., 2004). Zhu et al.
(2010) experimentally investigated an electromagnetic
energy harvester that oscillates behind a bluff body,
while Jung and Lee (2011) studied electromagnetic
energy harvesting from wake galloping. In the present
article, two airfoil-based aeroelastic energy harvesting
concepts, employing piezoelectric transduction and
electromagnetic induction, are analyzed based on fully
coupled electroaeroelastic modeling. The electromecha-
nical coupling (due to piezoelectric transduction and
electromagnetic induction) is coupled to the plunge
degree of freedom in both cases. The governing dimen-
sionless electroaeroelastic equations are given in each
case considering a resistive load in the electrical
domain. The effects of several dimensionless system
parameters on the dimensionless electrical power out-
put as well as the dimensionless linear flutter speed are
investigated for the linear aeroelastic problem at the
flutter boundary.

Aeroelastic typical section for wind energy
harvesting

Conventional aeroelastic typical section

Figure 1 shows the schematic of a linear two-degree-of-
freedom (2-DOF) typical section. The plunge and pitch
displacement variables are denoted by h and a, respec-
tively. The plunge displacement is measured at the elas-
tic axis, that is, at point P (positive downward), and
the pitch angle is measured about the elastic axis (posi-
tive clockwise). In addition, b is the semichord of the
airfoil section, xa is the dimensionless chord-wise offset
of the elastic axis from the centroid (C), kh is the stiff-
ness per length in the plunge DOF, ka is the stiffness
per length in the pitch DOF, dh is the damping coeffi-
cient per length in the plunge DOF, da is the damping
coefficient per length in the pitch DOF, and U is the
airflow speed.
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The governing linear aeroelastic equations are
(Bisplinghoff and Ashley, 1962; Dowell et al., 1978;
Fung, 1969; Hodges and Pierce, 2002)

m+með Þ€h+mbxa€a+ dh
_h+ khh= � L ð1Þ

mbxa
€h+ Ia€a+ da _a+ kaa=M ð2Þ

where m is the airfoil mass per length (in the span direc-
tion), me is the fixture mass (connecting the airfoil to the
plunge springs) per length, M is the aerodynamic moment,
L is the aerodynamic lift, and the over-dot represents dif-
ferentiation with respect to time (t). In the cases investi-
gated in this study, the unsteady aerodynamic loads (lift
and moment terms in equations (1) and (2)) due to arbi-
trary motions are obtained from Jones’ (1938) approxima-
tion to Wagner’s (1925) indicial function, which is
equivalent to the generalized Theodorsen function
(Bisplinghoff and Ashley, 1962; Theodorsen, 1935). The
fixture mass (me) is defined for the case when the system
slightly deviates from the ideal typical section depicted in
Figure 1 due to the masses of the shaft, spring mass, and
other attachments in real experiments (Sousa et al., 2011),
while it is zero in the ideal representation of Figure 1.

Aeroelastic typical section with piezoelectric
transduction

Schematic of an electroaeroelastic section for piezoelec-
tric energy harvesting from airflow excitation is shown
in Figure 2. Aeroelastic vibrations of the cantilever

(plunge spring) strain the piezoelectric patches dynami-
cally and produces the electrical output. Therefore,
piezoelectric coupling is added to the plunge DOF of
the typical section, and the resultant of the electrodes is
connected to a resistive load. After this modification,
the linear piezoaeroelastic equations are obtained as

m+með Þ€h+mbxa€a+ dh
_h+ khh� u

l
v= � L ð3Þ

mbxa
€h+ Ia€a+ da _a+ kaa=M ð4Þ

Cp _v+
v

Rl

+ u _h= 0 ð5Þ

where l is the span length, Rl is the load resistance in
the electrical domain, v is the voltage across the resis-
tive load, Cp is the equivalent capacitance of the piezo-
ceramic layers, and u is the electromechanical coupling.

Equations (3) to (5) can be written in dimensionless
form as

b�h00+ xaa00+ zh
�h0+ �h� k�v= � Lh ð6Þ

xa
�h00+�r2

aa00+ zaa0+ g2�r2
aa=Ma ð7Þ

h�v0+
�v

ll

+ k�h0= 0 ð8Þ

where b=(m+me)=m, �h= h=b is the dimensionless
plunge displacement, zh = dh=mvh is the plunge damp-
ing ratio, za = da=mb2vh is the pitch damping ratio,
�ra = ra=b is the dimensionless ratio of gyration,
�v= v=v� (where v�= 1V is the reference voltage for
normalization), k= uv�=lmbv2

h is the dimensionless
electromechanical coupling, h=Cpv�

2

=mb2lv2
h is the

dimensionless equivalent capacitance, ll =Rlmb2

lv3
h=v�

2

is the dimensionless load resistance, g =va=vh

is the frequency ratio, v2
h = kh=m is the square of the

plunge natural frequency, and v2
a = ka=Ia is the square

of the pitch natural frequency. The dimensionless aero-
dynamic loads are Lh = L=mbv2

h and Ma =M=mb2v2
h.

The prime (#) denotes the differentiation with respect
to the dimensionless time t =vht.

The piezoaeroelastic equations can be represented in
the state-space form proposed (for the aeroelastic prob-
lem) by Edwards et al. (1979) by introducing the effect of
electromechanical coupling. Therefore, the voltage output
should be considered as an additional state variable. Two
augmented aerodynamic states (xa = f x1 x2 gt, where
the superscript t stands for the transpose) are included in
the state-space representation of the piezoaeroelastic prob-
lem. The state-space piezoaeroelastic equations in the
matrix form are

I 0 0 0

0 ~M 0 0

0 0 I 0

0 0 0 h

2
664

3
775

x0

x00

x0a
�v0

8>><
>>:

9>>=
>>;

=

0 I 0 0

�~K �~B D Y1

E1 E2 F 0

0 Y2 0 1
ll

2
664

3
775

x

x0

xa

�v

8>><
>>:

9>>=
>>;
ð9Þ

Figure 1. Aeroelastic typical section under airflow excitation.

Figure 2. Electroaeroelastic typical section with piezoelectric
coupling on the plunge DOF and an external electrical load
(piezoelectric patches are attached to the plunge spring).
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where Y1 = f 0 k gt, Y2 = f 0 k g, x= fa �h gt,
and I is the 232 identity matrix. The mass, stiffness,
and damping-related matrices in equation (9) are

~M=M� rb2

m
Mnc ð10Þ

~K=K� rb2

m

U

b

� �2

Knc +
1

2
RS1

� �
ð11Þ

~B=B� rb2

m

U

b

� �
Bnc +

1

2
RS2

� �
ð12Þ

where M is the structural mass matrix; B is the struc-
tural damping matrix; K is the structural stiffness
matrix; r is the air density; and Mnc, Bnc, and Knc are
noncirculatory aerodynamic matrices related to inertia,
damping, and stiffness. These matrices as well as the
aerodynamic matrices D, E1, E2, F, R, S1, and S2 can
be found in Edwards et al. (1979).

Equation (9) can be also represented as

_~x=A~x ð13Þ

where

A=

0 I 0 0

� ~M
�1 ~K � ~M

�1 ~B ~M
�1
D ~M

�1
Y1

E1 E2 F 0

0 1
h

� �
Y2 0 1

h

� �
1
ll

� �

2
6664

3
7775 ð14Þ

~x= x x0 xa �vf gt ð15Þ

Aeroelastic typical section with electromagnetic
induction

Electromagnetic energy harvesting from airflow excita-
tion can be realized by employing the electroaeroelastic
typical section configuration as shown in Figure 3. The
magnet is attached to the cantilever (plunge spring),
and it oscillates relative to the coil to produce electricity
in response to aeroelastic vibrations. Therefore, electro-
magnetic induction is added to the plunge DOF along
with a resistive load in the electrical domain of the

problem. The linear electromagnetically coupled elec-
troaeroelastic equations are then

m+með Þ€h+mbxa€a+ dh
_h+ khh� Bl

l
I = � L ð16Þ

mbxa
€h+ Ia€a+ da _a+ kaa=M ð17Þ

Lc
_I + Rc +Rlð ÞI +Bl

_h= 0 ð18Þ

where l is the span length, Rl is the load resistance in
the electrical domain, Rc is the internal resistance of the
inductor coil, I is the induced electrical current, Lc is
the coil inductance, and Bl is the electromagnetic cou-
pling. Note that the electrical equation is kept in its
general form as in Amirtharajah and Chandrakasan
(1998) and Elvin and Elvin (2011) to account for the
inherent coil inductance and resistance.

Equations (16) to (18) can be written in dimension-
less form as

b�h00+ xaa00+ zh
�h0+ �h� x�I = � Lh ð19Þ

xa
�h00+�r2

aa00+ zaa0+ g2�r2
aa=Ma ð20Þ

u�I 0+ lc
�I + ll

�I + x�h0= 0 ð21Þ

where b=(m+me)=m is the dimensionless mass ratio,
�h= h=b is the dimensionless plunge displacement,
zh = dh=mvh is the plunge damping ratio,
za = da=mb2vh is the pitch damping ratio, �ra = ra=b is
the dimensionless ratio of gyration, �I = I=I� is the
dimensionless induced current (I� is the reference cur-
rent for normalization: I�= 1A for simplicity),
x =BlI

�=lmbv2
h is the dimensionless electromagnetic

coupling, u= LcI�2=lmb2v2
h is the dimensionless coil

inductance, lc =RcI�2=lmb2v3
h is the dimensionless

internal resistance of the coil, ll =RlI
�2=lmb2v3

h is the
dimensionless load resistance, g =va=vh is the fre-
quency ratio, v2

h = kh=m is the square of the plunge
natural frequency and v2

a = ka=Ia is the square of the
pitch natural frequency. As in the case of piezoelectric
coupling, the dimensionless aerodynamic loads are
Lh =L=mbv2

h and Ma =M=mb2v2
h while a prime (#)

denotes differentiation with respect to the dimension-
less time t =vht.

The linear equations can be represented in the state-
space form by considering the dimensionless electric
current (�I) as an additional state variable. The two aug-
mented aerodynamic states, xa = f x1 x2 gt, are
included in the following state-space representation of
the problem
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Figure 3. Electroaeroelastic typical section with
electromagnetic coupling on the plunge DOF and an external
electrical load (magnet is attached to the plunge spring).
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where X1 = f 0 x gt, X2 = f 0 �x g, x= fa �h gt,
Z =(lc + ll), and I is the 232 identity matrix. The
mass, stiffness, and damping-related matrices are
defined as in equations (10) to (12).

Case studies

This section presents two case studies using the electro-
aeroelastic models described in this article. The effects
of several dimensionless system parameters on the
dimensionless electrical power as well as the dimension-
less linear flutter speed are investigated in the case of a
typical section with piezoelectric transduction and a
typical section with electromagnetic induction. In both
cases, the flutter speed of each set of dimensionless
parameters (electromechanical coupling, capacitance,
and load resistance) is obtained by checking the real
part of the eigenvalues of the state matrix with increas-
ing airflow speed. The power output is obtained from
the time histories at the flutter speed of each set of
dimensionless parameters. The dimensionless properties
of the typical section are shown in Table 1 (these are
the fixed system parameters employed in the following
simulations), and they represent the experimental setup
used by Sousa et al. (2011).

Typical section with piezoelectric transduction

In the first case study, the effects of dimensionless elec-
tromechanical coupling, dimensionless load resistance,
and dimensionless equivalent capacitance on the dimen-
sionless electrical power as well as the dimensionless lin-
ear flutter speed of the piezoelectrically coupled typical
section are investigated. The original electroelastic
parameters belong to the experimental setup used by
Sousa et al. (2011), where two piezoceramics (QP10n)
were added to the plunge springs of an experimental
typical section. The parallel connection gives an equiva-
lent capacitance of 120 nF (yielding h= 3:66310�9),
and the calculated electromechanical coupling is 1.55
mV/N (yielding k= 5:90310�6). In this case study, the
simulations are performed for dimensionless para-
meters ranging from 0.5 to 1.5 times the original values
(h= 3:66310�9 and k= 5:90310�6). Also, a set of
load resistance values ranging from near short-circuit
(100 O) to open-circuit (1 MO) conditions is considered.

The variation of dimensionless flutter speed
(U�=U=vhb) with dimensionless load resistance (ll)
and electromechanical coupling (k) is displayed in
Figure 4 for fixed dimensionless capacitance
(h= 3:66310�9). The linear flutter speed increases
with increasing dimensionless coupling for all values of
load resistance. Moreover, a finite optimum load (that
gives the largest flutter speed) is obtained for each
dimensionless electromechanical coupling.

Figure 5 shows the variation of dimensionless electri-
cal power output (P�=�v2=ll) with dimensionless load
resistance and electromechanical coupling obtained at
each dimensionless flutter speed of Figure 4 for a fixed
value of dimensionless capacitance. The electrical
power output increases with increasing dimensionless
electromechanical coupling for any dimensionless load
resistance. The presence of an optimum load resistance
(that gives the maximum power output) for all values of
electromechanical coupling can be observed in Figure
5. Note that the optimum load varies with changing
dimensionless coupling.

Figure 6 shows the variation of dimensionless flutter
speed with dimensionless load resistance and dimen-
sionless capacitance. The value of electromechanical
coupling is k= 5:90310�6 in this figure. The linear
flutter speed decreases with increasing dimensionless
capacitance for all values of load resistance (except for
very low values of dimensionless load resistances).

Figure 5. Variation of the dimensionless power output with
dimensionless load resistance and electromechanical coupling
(for fixed dimensionless capacitance: h= 3:66310�9).

Figure 4. Variation of the dimensionless flutter speed with
dimensionless load resistance and electromechanical coupling
(for fixed dimensionless capacitance: h= 3:66310�9).

Table 1. Properties of the aeroelastic energy harvester.

b 2.5940
xa 0.25
�ra 0.5467
g 0.5090
zh 0.0535
za 0.1102
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Moreover, a finite optimum load that gives the largest
flutter speed is obtained for each dimensionless
capacitance.

Figure 7 shows the variation of dimensionless elec-
trical power output with dimensionless load resistance
and capacitance obtained at each dimensionless flutter
speed of Figure 6 for fixed electromechanical coupling
(k= 5:90310�6). The electrical power output decreases
with increasing dimensionless capacitance for any
dimensionless load resistance (except for very low val-
ues of dimensionless load resistance). The presence of
an optimum load resistance (that gives the maximum
power output) can be observed in Figure 7 for all val-
ues of dimensionless capacitance. The optimum load
varies with changing dimensionless capacitance.

Typical section with electromagnetic induction

In the second case study, the effects of dimensionless
electromechanical coupling, dimensionless load resis-
tance, and dimensionless coil inductance on the dimen-
sionless electrical power as well as the dimensionless
linear flutter speed are investigated. The dimensionless
properties of the typical section (fixed system para-
meters) are shown in Table 1. A coil with an inductance
of 428 mH (yielding u= 0:0130) and internal resistance

of 175 O (yielding lc = 0:1022) is considered. The mag-
nets are attached to the plunge springs, and the dimen-
sionless electromechanical coupling is x = 0:0457. In
this case study, the simulations are performed for
dimensionless parameters ranging from 0.5 to 1.5 of
the original values (u= 0:0130 and x = 0:0457), while
the dimensionless load resistance range covers interval
of short-circuit to open-circuit conditions.

The variation of dimensionless flutter speed with
dimensionless load resistance and electromechanical
coupling is displayed in Figure 8. The linear flutter
speed increases with increasing dimensionless coupling
for all values of load resistance. Moreover, the flutter
speed decreases with increasing load resistance for any
dimensionless coupling (since the short-circuit stiffness
is larger than the open-circuit stiffness due to electro-
magnetic coupling in the presence of finite coil induc-
tance (Amirtharajah and Chandrakasan, 1998; Elvin
and Elvin, 2011), and this is the opposite of the piezo-
electric transduction case (De Marqui et al., 2010a;
Erturk and Inman, 2009)). Note that the dimensionless
coil inductance used in Figure 8 is u= 0:0130. Further
simulations (not shown here) reveal that the variation
of the flutter speed depends on the presence of internal
coil resistance. For instance, when the internal coil
resistance is neglected (lc = 0) in this particular case
study, a finite and nonzero optimum load that gives the
largest flutter speed is obtained, analogous to the piezo-
electric coupling case.

Figure 9 shows the variation of dimensionless elec-
trical power output (P�=�I2ll) with dimensionless load
resistance and electromechanical coupling obtained at
each dimensionless flutter speed of Figure 8 (note that
the dimensionless load axis in Figure 8 is reversed for
clarity). The electrical power output increases with
increasing dimensionless electromechanical coupling
for any dimensionless load resistance. The presence of
an optimum load resistance (that gives the maximum
power output) for all values of electromechanical cou-
pling can be observed in Figure 9. The optimum load
slightly varies with changing dimensionless coupling.
The optimum value of ll is close to lc for the range of

Figure 7. Variation of the dimensionless power output with
dimensionless load resistance and equivalent capacitance (for
fixed dimensionless electromechanical coupling:
k= 5:90310�6).

Figure 6. Variation of the dimensionless flutter speed with
dimensionless load resistance and capacitance (for fixed
dimensionless electromechanical coupling: k= 5:90310�6).

Figure 8. Variation of the dimensionless flutter speed with
dimensionless load resistance and electromechanical coupling
(for fixed dimensionless coil inductance: u= 0:0130).
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dimensionless coupling values considered. That is, the
optimal load resistance of the maximum power is
around the internal resistance in agreement with the
maximum power transfer theorem (Agarwal and Lang,
2005).

Figure 10 shows the variation of dimensionless flut-
ter speed with dimensionless load resistance and coil
inductance. The value of electromechanical coupling is
x = 0:0457 in this figure. The flutter speed decreases
with increasing load resistance, as discussed with Figure
8. The dimensionless flutter speed does not change sig-
nificantly with dimensionless inductance for any value
of load resistance. The last simulation (Figure 11) of

the linear configuration displays the variation of the
dimensionless power output with dimensionless load
resistance and coil inductance for each flutter speed of
Figure 10. As in the case of flutter speed, the electrical
power output is insensitive to the dimensionless induc-
tance. An optimum load that gives maximum power
output is obtained at each inductance level, and this
optimum load slightly varies with changing dimension-
less inductance.

Conclusion

Airfoil-based aeroelastic energy harvester configura-
tions using piezoelectric transduction and electromag-
netic induction are modeled and analyzed. A
two-dimensional airfoil with plunge and pitch DOF is
considered by adding piezoelectric and electromagnetic
couplings to the plunge DOF in two separate cases.
The governing dimensionless electroaeroelastic equa-
tions are given in each case with a resistive load in the
electrical domain. The effects of dimensionless system
parameters on the electroaeroelastic behavior (dimen-
sionless electrical power output and dimensionless lin-
ear flutter speed) of each harvester are discussed. In the
first case (piezoelectric transduction), the optimal val-
ues of load resistance that give the largest flutter speed,
as well as the maximum power output, are obtained for
the range of dimensionless equivalent capacitance and
dimensionless electromechanical coupling. In the sec-
ond case (electromagnetic induction), the electroaeroe-
lastic behavior of the harvester is shown to be strongly
dependent on the presence of the internal coil resis-
tance. The dimensionless flutter speed decreases with
increasing load resistance for any dimensionless induc-
tance or electromechanical coupling. Although not
shown in this article, when the internal coil resistance is
neglected, a finite optimum load resistance of the maxi-
mum flutter speed is obtained. Optimal values of load
resistance that give the maximum power output are
obtained for the range of dimensionless inductance and
dimensionless electromechanical coupling considered in
this study. In all cases, it is observed that the maximum
power is obtained for an electrical load around the
internal coil resistance in agreement with the maximum
power transfer theorem.
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Wagner H (1925) Über die Entstehung des dynamischen Auf-
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