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Accurate identification of contact dynamics is very crucial in predicting the dynamic behavior and

chatter stability of spindle–tool assemblies in machining centers. It is well known that the stability lobe

diagrams used for predicting regenerative chatter vibrations can be obtained from the tool point

frequency response function (FRF) of the system. As previously shown by the authors, contact dynamics

at the spindle–holder and holder–tool interfaces as well as the dynamics of bearings affect the tool

point FRF considerably. Contact stiffness and damping values alter the frequencies and peak values of

dominant vibration modes, respectively. Fast and accurate identification of contact dynamics in

spindle–tool assemblies has become an important issue in the recent years. In this paper, a new method

for identifying contact dynamics in spindle–holder–tool assemblies from experimental measurements

is presented. The elastic receptance coupling equations are employed in a simple manner and closed-

form expressions are obtained for the stiffness and damping parameters of the joint of interest.

Although this study focuses on the contact dynamics at the spindle–holder and holder–tool interfaces of

the assembly, the identification approach proposed in this paper might as well be used for identifying

the dynamical parameters of bearings, spindle–holder interface and as well as other critical joints. After

presenting the mathematical theory, an analytical case study is given for demonstration of the

identification approach. Experimental verification is provided for identification of the dynamical

contact parameters at the holder–tool interface of a spindle–holder–tool assembly.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Self-excited vibration of machine tools during the cutting
process (the so-called regenerative chatter) is caused by the cutting
tool–work piece dynamic interaction and results in process
instability, poor surface finish and reduced material removal rate.
Modeling of chatter mechanism for minimizing its catastrophic
consequences has been studied in detail for the last 50 years [1–5].
It is well known that the regeneration effect is due to the phase
between two vibration waves during the subsequent cuts on a
surface [6], and this phase is minimized for certain cutting speeds.
Stability lobe diagrams provide stable depth of cut–spindle speed
combinations and they have been used for predicting chatter
stability for decades. The literature includes both numerical [3] and
analytical [4,5] approaches for generating stability lobe diagrams of
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spindle–tool assemblies. Regardless of the approach used, a
common point of the models used for generation of stability lobe
diagrams is the requirement of the tool point frequency response
function (FRF) of the assembly. Although experimental modal
analysis by simple impact testing is the typical technique employed
for obtaining the tool point FRF [6], recently, researchers have
attempted to obtain the tool point FRF semi-analytically to
minimize experimentation and save time in practical applications.
Schmitz et al. [7–9] implemented the well-known receptance
coupling theory of structural dynamics [10–12] in order to couple
the experimentally obtained dynamics of spindle–holder assembly
and the analytically obtained tool dynamics by using the contact
dynamics at the holder–tool interface. The aim was to make only
one experiment at the holder tip and then to obtain the tool point
FRF of the assembly for different tool overhang lengths through the
receptance coupling equations [7–9]. Provided that the dynamical
contact parameters at the holder–tool interface are known
accurately, this semi-analytical approach can provide accurate
results and save considerable time.

Several improvements were made to the approach proposed by
Schmitz et al. [7–9] in the last 5 years. Park et al. [13] included the
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Fig. 1. Components of spindle–holder–tool assembly and the complex stiffness

matrices of spindle–holder and holder–tool interfaces.
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rotational degree-of-freedom at the tool holder–tool joint. Kivanc
and Budak [14] modeled the tool as a two-segment beam
considering the changing area moment of inertia for more
accurate results. They [14] also studied the effects of the contact
length and the clamping torque on the holder–tool contact
stiffness and damping properties. Duncan and Schmitz [15]
improved the use of receptance coupling approach to handle
different holder types by extending it to the coupling of holder
segments. It should be underlined again that the accuracy of these
models strongly depends on the accurate identification of
dynamical contact parameters at the holder–tool interface.
Accurate modeling and identification of contact mechanics has
been an important problem in several engineering applications,
and its nature has been investigated by scientists and engineers
for decades [16]. Expectedly, it has also been subject to research in
machine tool engineering where some researchers investigated
the spindle–holder interface dynamics for analyzing and improv-
ing structural stability [17–21]. Recently, Schmitz et al. [22]
introduced off-diagonal elements to the diagonal joint stiffness
matrix used in their early work [7–9] to account for the
translations imposed by moments and rotations caused by forces.
More recently, Ahmadi and Ahmadian [23] considered the
holder–tool interface as a distributed elastic layer to model the
change in the normal contact pressure along the joint interface.

Ertürk et al. [24] proposed an experimentally verified [25,26]
analytical model for predicting the tool point FRF by combining
the receptance coupling and structural modification techniques
where all components of the spindle–holder–tool assembly were
modeled analytically with the Timoshenko beam theory. They
[24] formed the individual system components (spindle, holder
and tool) by rigid receptance coupling of free–free Timoshenko
beams and included the dynamics of bearings to the spindle by
structural modification with an efficient dynamic coupling
algorithm. Then, these three main components of the system
were combined by elastic receptance coupling with the information
of contact dynamics at the spindle–holder and holder–tool. The
analytical model proposed for the prediction of tool point FRF [24]
was shown to be very efficient in predicting chatter stability [26]
when it is combined with the analytical stability lobe diagram
model presented by Budak and Altintas [4,5]. The influence of
bearing and interface dynamics on the tool point FRF was also
studied [27] by using the analytical model proposed. It was
observed that the variations in the dynamical contact parameters
at the spindle–holder and holder–tool interfaces as well as
bearing dynamics have a strong effect on the resulting tool point
FRF of the system. For a typical system, it was identified that the
dynamical contact parameters (stiffness and damping) at the
spindle–holder and holder–tool interfaces affect the dominant
elastic modes of the tool point FRF [27]. Variations of the
translational contact stiffness were found to be affecting the
frequencies of the elastic modes, whereas the variations in
the translational contact damping altered the peak values of
these respective modes. Furthermore, for a typical assembly, an
uncoupled trend was observed between the effects of the contact
dynamics at the spindle–holder and holder–tool interfaces such
that the dynamics of the former interface controlled the spindle
bending mode of the assembly, whereas that of the latter interface
controlled the tool mode of the assembly (which were the first
and the second elastic modes of the assembly used by Ertürk et al.
[27], respectively). From this observation, the important sugges-
tion made was identifying the dynamical contact parameters of an
interface from the respective vibration mode(s) they control.
Considering the fact that the earlier work [7–9] used the nonlinear
least square error minimization for identifying the contact
parameters, the approach suggested by Ertürk et al. [27] was very
practical to implement and time saving for two reasons. First,
there is no need to use the entire frequency band of the
experimental FRF, since a simple effect analysis made by
perturbation of the contact parameters in the model yields the
frequency range(s) where one should identify those parameters.
Indeed, theoretically, it is meaningless to identify a damping
parameter by minimizing the error in the analytical (or semi-
analytical) FRF at the structural stiffness/mass controlled off-

resonance frequencies. Secondly, due to the nonlinearity of the
least square error minimization approach, it is not uncommon to
obtain more than one solution set of the contact parameters since
the numerical solution may converge to the results for a local
minimum. The approach suggested [27] avoids both of these
problems and reduces the time required for identifying the
dynamical contact parameters not only at the holder–tool inter-
face but also at the spindle–holder interface as well as the
dynamical parameters of bearings.

In this paper, a new approach for identification of dynamical
contact parameters in spindle–holder–tool assemblies is pre-
sented. The elastic receptance coupling equations [24] used for
coupling the system components are rearranged to give the
complex stiffness matrix of the joint (interface) of interest (e.g.,
spindle–holder or holder–tool joint). After expressing the fully
populated complex stiffness matrix at the joint of interest in
terms of the analytical and experimental receptance matrices, the
contact stiffness and damping parameters are extracted by
utilizing the conclusions of our previous work [27] summarized
in the previous paragraph. The identification approach suggested
is first used in a case study for analytical demonstration. Then, it is
verified experimentally for a spindle–holder–tool assembly with a
focus on the holder–tool interface. Although the approach
presented in this paper concentrates on the contact dynamics at
the spindle–holder and holder–tool interfaces, it can also be used
to identify the bearing dynamics and the dynamics of the other
critical joints of a machine tool assembly.
2. Theory

2.1. Mathematical background

A typical spindle–holder–tool assembly and its components are
shown in Fig. 1. In the analytical model proposed by Ertürk et al. [24],
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2 If the tool is to be modeled as a two-segment beam, it is a straightforward

practice to couple the analytical equations of two free–free beams of different

diameters and lengths [24].
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the individual receptance matrices of the assembly are obtained
by rigid receptance coupling of free–free Timoshenko beams and
the bearing dynamics is added to the spindle by structural
modification. After obtaining the end-point receptance matrices
of spindle (S), holder (H) and tool (T), they are assembled through
the complex stiffness matrices of the spindle–holder and
holder–tool interfaces, which are denoted in Fig. 1 by [Ksh] and
[Kht], respectively. This way, the point receptance matrix of
the entire assembly at the tool tip is obtained. For instance, the
following equations represent the elastic coupling of the spindle
and the holder FRFs to obtain the end-point receptances of
the spindle–holder subassembly:

½SH11� ¼ ½H11� � ½H12�½½H22� þ ½Ksh�
�1 þ ½S11��

�1½H21� (1)

½SH12� ¼ ½H12�½½H22� þ ½Ksh�
�1 þ ½S11��

�1½S12� (2)

½SH21� ¼ ½S21�½½H22� þ ½Ksh�
�1 þ ½S11��

�1½H21� (3)

½SH22� ¼ ½S22� � ½S21�½½H22� þ ½Ksh�
�1 þ ½S11��

�1½S12� (4)

Then, the point receptance matrix of the assembly at the tool tip
is obtained from

½SHT11� ¼ ½T11� � ½T12�½½T22� þ ½Kht�
�1 þ ½SH11��

�1½T21� (5)

whose first element is the so-called tool point FRF, which is
required for generating the stability lobe diagrams.

The elements of these matrices and their derivations by modal
analysis can be found in the relevant work [24,28]. In the
following, these elastic receptance coupling equations are rear-
ranged for obtaining closed-form expressions to predict the
complex stiffness matrices of holder–tool and spindle–holder
interfaces. Thus the dynamical contact parameters, i.e. stiffness
and damping parameters, of these interfaces can be extracted in
closed form.

2.2. Identification of contact dynamics at the holder–tool interface

The end-point receptance matrix of the assembly given by
Eq. (5) can be rearranged to give Eq. (6) for the complex stiffness
matrix of the holder–tool interface:

½Kht� ¼ ½½½T12�
�1½½T11� � ½SHT11��½T21�

�1��1 � ½T22� � ½SH11��
�1 (6)

Here, the complex stiffness matrix given by Eq. (6) was defined
in the elastic receptance coupling equations [24] as

½Kht� ¼
kht

y þ iocht
y 0

0 kht
y þ iocht

y

2
4

3
5 (7)

where no coupling exists between the linear displacements and
moments as well as between the angular displacements and
forces at the interface (since the off-diagonal elements are zero).
Schmitz et al. [23] replaced this classical form of the joint stiffness
matrix with the following fully populated matrix to account for
the linear displacements imposed by moments and angular
displacements caused by forces (and this is what is considered
in the remaining part of this paper):

½Kht� ¼

kht
yf þ iocht

yf kht
ym þ iocht

ym

kht
yf þ iocht

yf kht
ym þ iocht

ym

2
4

3
5 (8)

where kht
yf is the linear displacement-to-force stiffness, cht

yf is the
linear displacement-to-force damping, kht

ym is the linear displace-
ment-to-moment stiffness, cht

ym is the linear displacement-to-
moment damping, kht

yf is the angular displacement-to-force
stiffness, cht

yf is the angular displacement-to-force damping, kht
ym

is the angular displacement-to-moment stiffness and cht
ym is the
angular displacement-to-moment damping of the holder–tool
interface, o is the excitation frequency and i is the unit imaginary
number. Hence, the fully populated form of the complex stiffness
matrix of the holder–tool interface includes the dynamics
information of the linear displacement-to-moment and angular
displacement-to-force coupling at the interface. Although the off-
diagonal stiffness and damping terms in Eq. (8) are represented by
different terms to handle experimental inaccuracies, one should
expect kht

ym ffi kht
yf and cht

ym ffi cht
yf so that the linear receptance

coupling formulation is in agreement with the Betti–Maxwell
reciprocity theorem of linear elasticity [29]. The joint stiffness
matrix, in agreement with this theorem, is defined to be
symmetric in the relevant literature of structural coupling with
elastic joints (see, for instance, Liu and Ewins [12]). Otherwise, the
forward receptance coupling formulation given by Eq. (5) may yield
an asymmetric tool point receptance matrix even for symmetric
subsystem matrices, violating the aforementioned theorem. Thus,
theoretically, Eq. (8) has six independent elements that represent
the dynamical contact information of the holder–tool joint.
However, considering the possibility of experimental inaccuracies,
it is reasonable to define eight parameters. Once the identification
process is complete, one can check if kht

ym ffi kht
yf and cht

ym ffi cht
yf are

satisfied. A possible disagreement of these off-diagonal para-
meters might be due to experimental inaccuracies (e.g., due to
finite-difference approximation of the linear displacement-to-
moment and angular displacement-to-force FRFs) or it might as
well be due to the failure of linear contact dynamics assumption.

It is clear from Eq. (6) that the receptance matrices of the
cutting tool (with free–free boundary conditions), and the tip-
point receptance matrix of the spindle–holder subassembly
(without the part of the cutting tool outside the holder) as well
as the tip-point receptance matrix of the complete assembly are
required for obtaining the complex stiffness matrix of holder–tool
interface. The receptance matrices of the cutting tool in free–free
boundary conditions, which are denoted by [T11], [T12], [T21] and
[T22], can be obtained analytically as follows [24]:

½T11� ¼
Ht

11 Lt
11

Nt
11 Pt

11

2
4

3
5; ½T12� ¼

Ht
12 Lt

12

Nt
12 Pt

12

2
4

3
5

½T21� ¼
Ht

21 Lt
21

Nt
21 Pt

21

2
4

3
5; ½T22� ¼

Ht
22 Lt

22

Nt
22 Pt

22

2
4

3
5 (9)

where the receptance functions in the above matrices are defined
by the following equations and superscript t stands for the tool:

Hmn ¼
wm

f n

; Nmn ¼
ym

f n

; Lmn ¼
wm

mn
; Pmn ¼

ym

mn
(10)

In Eq. (9), w is the transverse displacement, y is the bending
slope, f is the transverse force, m is the bending moment and the
subscripts stand for the points of interest over the length of the
tool. For instance, if the tool is to be modeled as a uniform beam,
the elements of its point receptance matrix [T11] are2

Ht
11 ¼

�1

rALo2
þ
�3

rALo2
þ
X1

r¼1

frðLÞfrðLÞ

ð1þ igÞo2
r �o2

(11)

Nt
11 ¼

�6

rAL2o2
þ
X1

r¼1

f0rðLÞfrðLÞ

ð1þ igÞo2
r �o2

(12)
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Table 1
Dynamical contact parameters at the holder–tool interface in the analytical case

study

Linear displacement-to-force stiffness (N/m) 4.19�107

Linear displacement-to-force damping (N s/m) 54

Linear displacement-to-moment stiffness (N m/m) 2.06�106

Linear displacement-to-moment damping (N m s/m) 22.2

Angular displacement-to-force stiffness (N/rad) 2.06�106

Angular displacement-to-force damping (N s/rad) 22.2

Angular displacement-to-moment stiffness (N m/rad) 6.5�104

Angular displacement-to-moment damping (N m s/rad) 1

O. Özs-ahin et al. / International Journal of Machine Tools & Manufacture 49 (2009) 25–3528
Lt
11 ¼

�6

rAL2o2
þ
X1

r¼1

frðLÞf
0

rðLÞ

ð1þ igÞo2
r �o2

(13)

Pt
11 ¼

�12

rAL3o2
þ
X1

r¼1

f0rðLÞf
0

rðLÞ

ð1þ igÞo2
r �o2

(14)

where r is the density, A is the cross-sectional area, L is the length
and g is the loss factor of the tool. Furthermore, or is the rth
natural frequency, fr(x) is the rth mode shape for transverse
displacement of the tool and f0rðxÞ is the derivative of fr(x) with
respect to the axial independent displacement variable x. It should
be clarified at this point that, since there is no shear deformation
at the end points of the free–free cutting tool (i.e., at x ¼ 0 and L),
the bending slope at these points are identical to the total slope
[28]. Thus, for simplicity, f0rðLÞ is used in the receptance functions
given here as well as in Ref. [23] rather than using cr(L), where
cr(x) is the exact bending slope eigenfunction [28].

The tool point receptance matrix [SHT11] of the spindle–
holder–tool assembly required in Eq. (6) should be obtained
experimentally. The first element Hsht

11 of this matrix can be
obtained simply by performing an impact test at the tool tip of the
assembly. Although obtaining the remaining receptances Lsht

11 , Nsht
11

and Psht
11 is not simple, one can employ a first-order or a second-

order finite-difference solution for approximating these FRFs [30].
In the proposed method by Duarte and Ewins [30], if the first-
order approximation is used, measurements are taken from two
locations; however in the second-order approximation measure-
ments are taken from three distinct locations. Most crucial part of
the approximation method is that the accuracy of the method is
highly dependent on the order of the approximation and spacing
between measurement points. As expressed by Duarte and Ewins
[30], higher-order approximation requires smaller spacing be-
tween measurement points for the angular displacement-to-force
FRFs and requires larger spacing for the angular displacement-to-
moment FRFs. Therefore, for the four receptance matrices that
define matrix [SHT11], one should carefully perform the experi-
mental measurements on the cutting tool of the assembly so that
Hsht

11 , Lsht
11 , Nsht

11 and Psht
11 are obtained by a suitable approximation

method and [SHT11] can be constructed. It is also required to
obtain the receptance matrix [SH11] of the spindle–holder
subassembly (without the cutting tool outside the holder)
experimentally. The procedure of obtaining the elements of this
matrix is similar to that used for generating [SHT11].

Having obtained all the receptance matrices at the right-hand
side of Eq. (6) analytically and experimentally, one can obtain the
complex stiffness matrix of the holder–tool joint, elements of
which give the stiffness and damping parameters of the
holder–tool interface: kht

yf , cht
yf , kht

ym, cht
ym, kht

yf , cht
yf , kht

ym, kht
ym.

2.3. Identification of contact dynamics at the spindle–holder

interface

A similar approach can be used for identifying the spindle–
holder interface dynamics; however, now there are two ways of
approaching to the problem. One can consider the interface either
for the spindle–holder (SH) subassembly (without the tool outside
the holder) or for the spindle–holder–tool (SHT) assembly (where
the interface is defined between the spindle (S) and the
holder–tool (HT) subassemblies).

For the first case where the cutting tool is not connected to the
assembly, Eq. (1) applies for the elastic coupling of spindle and
holder and it can be rearranged to give the complex stiffness
matrix of spindle–holder interface as

½Ksh� ¼ ½½½H12�
�1½½H11� � ½SH11��½H21�

�1��1 � ½H22� � ½S11��
�1 (15)
where

½Ksh� ¼

ksh
yf þ iocsh

yf ksh
ym þ iocsh

ym

ksh
yf þ iocsh

yf ksh
ym þ iocsh

ym

2
4

3
5 (16)

is the fully populated complex stiffness matrix of the spindle–
holder interface. The elements in Eq. (16) are analogous to those of
the complex stiffness matrix of the holder–tool interface given by
Eq. (8). Furthermore, the discussion regarding the off-diagonal
elements in Eq. (8) is also valid for the off-diagonal elements in
Eq. (16).

Alternatively, one can consider the coupling between the
spindle (S) and holder–tool (HT) subassemblies for which the
following elastic receptance coupling equation can be written as

½SHT11� ¼ ½HT11� � ½HT12�½½HT22� þ ½Ksh�
�1 þ ½S11��

�1½HT21� (17)

and it can be rearranged to yield

½Ksh� ¼ ½½½HT12�
�1½½HT11� � ½SHT11��½HT21�

�1��1

� ½HT22� � ½S11���1 (18)

which is as defined by Eq. (16).
Among these two approaches of obtaining the interface

dynamics at the spindle–holder interface, the former one given
by Eq. (15) can be preferable where the cutting tool is not
connected. This allows obtaining the receptance matrices [H11],
[H12], [H21] and [H22] of the free–free holder analytically as the
free–free receptances [T11], [T12], [T21] and [T22] of the cutting tool
were obtained in the previous section. Then, the end-point
receptance matrices [SHT11] and [S11] should be obtained by using
the finite-difference approximation, which was employed for
obtaining [SHT11] and [SH11] in the previous section. In the second
approach for obtaining [Ksh] suggested by Eq. (17), it is required to
obtain the end-point receptance matrices of holder–tool (HT)
subassembly, which might be a more involved problem since this
subassembly already has an interface to be identified by the
approach suggested in the previous section. Nevertheless, after
obtaining [Kht] by following the procedure given in the previous
section, one can couple the dynamics of the holder (H) and tool (T)
to obtain the end-point receptances of the holder–tool (HT)
subassembly and use in Eq. (17) along with the finite-difference
approximations of [SHT11] and [S11] to obtain [Ksh].
3. Analytical case study

In this section, an analytical case study for the identification
approach described is provided. For convenience and in order to
check the agreement of the resulting trends with our previous
work on interface dynamics [27], the assembly that was used in
references [24,27] is used here for the analytical case study (with
different contact parameters). The dynamical contact parameters
of the assembly at the holder–tool interface are given in Table 1. In
order to maintain the symmetry based on the discussion given in



ARTICLE IN PRESS
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Section 2.2, the off-diagonal terms of the complex stiffness matrix
are taken to be equal.

The tool point FRF of the assembly is obtained by using the
analytical model [24] as shown in Fig. 2a, and this is the first
element of the assembly matrix [SHT11] as mentioned previously.
The analytical model also allows obtaining the tip-point receptance
of the spindle–holder subassembly (without the tool outside the
holder) as depicted in Fig. 2b, which is the first element of [SH11].
The remaining 22 FRFs required for constructing the right-hand
side of Eq. (6) can be obtained analytically in the same manner and
the complex stiffness matrix [Kht] can be obtained. Then, the linear
displacement-to-force, linear displacement-to-moment, angular
displacement-to-force and angular displacement-to-moment com-
plex stiffness functions of the holder–tool interface are the
elements of [Kht], which are kht

yf +iocht
yf , kht

ym+iocht
ym, kht

yf +iocht
yf and

kht
ym+iocht

ym, respectively. Consequently, the real parts of these
expressions directly give the stiffnesses, whereas the imaginary
parts give the damping coefficients when they are divided by the
frequency. As can be seen from Fig. 3a and b, the dynamical contact
parameters of the holder–tool interface are, expectedly, exactly
the same as the values entered as inputs to the analytical model
(Table 1). It should be noted that the stiffness and damping
parameters identified in Fig. 3 do not change with frequency. This is
an expected result since the assumed frequency-independent
(i.e., constant) contact parameters given in Table 1 were used to
obtain the tool point FRF from Eq. (5). Thus, the same contact
parameters are identified through Eq. (6) by using the receptance
matrices of the assembly, cutting tool and the spindle–holder
subassembly in the backward sense. If one assumed frequency-
Fig. 3. Dynamical parameters at the holder–tool interface obtained from Eq. (6) by usi

damping values.

Fig. 2. (a) Analytically obtained tool point FRF (Hsht
11 ) of the spindle–holder–tool asse

subassembly.
dependent forms for the contact parameters in the forward
coupling equation, the resulting contact parameters identified from
Eq. (6) would come out to be frequency dependent.

Now, the analytical coherence between the elements of the tip-
point receptance matrix [SHT11] of the spindle–holder–tool
assembly and the elements of the spindle–holder subassembly
receptance matrix [SH11] will be distorted for simulating a more
realistic scenario. Random number arrays with mean values of
unity and standard deviations of 5% are generated in MATLABs

and they are multiplied with the FRFs of matrices [SH11] and
[SHT11]. In this way, the analytical coherence between the
elements of these matrices is distorted. The first two elements
of these distorted receptance matrices are displayed in Fig. 4a and
b, respectively. Note that the identification theory implies
obtaining the end-point FRFs of the free–free cutting tool
analytically so the analytical FRFs of matrices [T11], [T12], [T21]
and [T22] are untouched. Then, the stiffness and damping
parameters of holder–tool interface are obtained and linear
displacement-to-force stiffness and linear displacement-to-force
damping are plotted against frequency in Fig. 5a and b. For
the remaining contact parameters, similar deficiencies are
observed as in Fig. 5a and b. Comparing the fully analytical case
and distorted case, it is interesting to observe the deficiency and
the noise generated in the predictions due to the distorted
coherence of the analytical FRFs used in the identification
equation. However, the results in Fig. 5a and b are promising
and they are in perfect agreement with the results of the effect
analysis performed and the parameter identification approach
proposed in Ref. [27].
ng the analytically obtained FRFs; (a) identified stiffness values and (b) identified

mbly and (b) the analytically obtained tip-point FRF (Hsh
11) of the spindle–holder
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Fig. 4. (a) Distorted tip-point FRF (Hsh
11) of the spindle–holder subassembly and (b) distorted tool point FRF (Hsht

11 ) of the spindle–holder–tool assembly.

Fig. 5. Dynamical parameters at the holder–tool interface obtained from Eq. (6) by using the distorted FRFs; (a) linear displacement-to-force stiffness kht
yf and (b) linear

displacement-to-force damping cht
yf .

Fig. 6. Spindle–holder–tool suspended assembly for free–free measurements.

O. Özs-ahin et al. / International Journal of Machine Tools & Manufacture 49 (2009) 25–3530
Although the behavior of the identified parameters with
frequency is not constant in Fig. 5a and b, it is known from the
effect analysis performed [27] for the same assembly that the
contact dynamics at the holder–tool interface controls mainly
the tool mode of the tool point FRF. Hence, rather than considering
the whole frequency band in the noisy plots of Fig. 5a and b, one
should focus on the vicinity of the tool mode frequency and
identify the interface parameters of the holder–tool interface from
that region. Consequently, the translational stiffness and damping
parameters identified in Fig. 5a and b at the frequency of the
second vibration mode are in perfect agreement with those
identified in Fig. 3a and b.

So far, the implementation of the identification approach
proposed in this paper is demonstrated analytically with an
example for extracting the holder–tool interface parameters for
a typical spindle–holder–tool assembly. First, direct analytical
FRFs are used as inputs and then they are distorted to simulate a
more realistic scenario. It is observed that the results are in
agreement with the effect analysis performed and the identifica-
tion approach suggested in a recent work [27]. An experimental
application of the identification approach is given in the follo-
wing section.
4. Experimental verification for identification of contact
dynamics at the holder–tool interface

In this section in addition to the analytical case study, an
experimental case study for the identification approach described
is provided. Experiments were performed with BT 40 type holder,
in which a carbide tool of 16 mm diameter and 123 mm length is
inserted with an overhang length of 49 mm, and is assembled to
the free spindle. Spindle-holder–tool assembly is shown in Fig. 6.
Experiments were performed with a laser vibrometer. By using
the laser measurement technique, the mass loading effect of the
accelerometers is avoided and accuracy of the method is improved
since the method is highly sensitive to the measurement errors
and noise in the measured data.

The tip-point receptance of the spindle–holder subassembly
(without the tool part outside the holder) is obtained (by
performing an impact test) as shown in Fig. 7a, and this is the
first element of the assembly matrix [SH11]. The tool point FRF of
the assembly is obtained by performing impact test as shown in
Fig. 7b, and this is the first element of the assembly matrix [SHT11]
as mentioned previously. As observed in Section 3, the noise in the
measured data highly affects the identification method. Therefore,
the experimentally obtained FRFs are filtered with the Savitzky–
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Fig. 7. (a) Experimentally obtained tip-point FRF (Hsh
11) of the spindle–holder subassembly and filtered tip-point FRF of the spindle holder subassembly and (b)

experimentally obtained tool point FRF (Hsht
11 ) of the spindle–holder–tool assembly and filtered tip-point FRF of the spindle–holder–tool assembly.

Fig. 8. (a) Approximately obtained tip-point FRF (Lsh
11) of the spindle–holder subassembly, (b) approximately obtained tip-point FRF (Nsh

11) of the spindle–holder

subassembly and (c) approximately obtained tip-point FRF (Psh
11) of the spindle–holder subassembly.
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Golay filter [31]. The filtered tip-point FRF of the spindle–holder
subassembly and filtered tool point FRF of the spindle–holder–
tool assembly are given in Fig. 7a and b, respectively, along with
the original FRFs.

In order to obtain angular displacement or moment-related
FRFs of [SH11] and [SHT11], second-order approximation is used
given by Duarte and Ewins [30] with spacing 35 and 40 mm
between measurement points for the holder–spindle subassembly
and spindle–holder–tool assembly, respectively. The resulting
FRFs of the [SH11] and [SHT11] matrices are shown in Figs. 8 and 9,
respectively. It is important to note that the accuracy of the
method depends on the spacing between measurement points
and the order of the approximation method [30]. As expressed by
Duarte and Ewins [30], increasing the approximation order
requires smaller spacing (between the measurement points) for
the angular displacement-to-force FRFs, whereas it requires larger
spacing for the angular displacement-to-moment FRFs. Although
the effect of spacing between the measurement points was not
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Fig. 9. (a) Approximately obtained tool point FRF (Lsht
11 ) of the spindle–holder–tool assembly, (b) approximately obtained tool point FRF (Nsht

11 ) of the spindle–holder–tool

assembly and (c) approximately obtained tool point FRF (Psht
11 ) of the spindle–holder–tool assembly.

Fig. 10. Tool point FRF with changing tool length outside the holder.
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tested systematically, it has been observed in this work that the
measurement spacing had an impact on the identified parameters.
Here, a practical value of 35 mm for the spindle–holder sub-
assembly and 40 mm for the spindle–holder–tool assembly are
taken for the measurement spacing values, which compromises
measurement time and accuracy is selected based on initial
measurements. Optimizing the measurement spacing for an
acceptable accuracy and time may be an interesting subject for
future research. As an alternative, one can use rotary sensors to
eliminate this problem at the expense of increased sensor cost.

The receptance matrices of the cutting tool in free–free
boundary conditions, which are denoted by [T11], [T12], [T21] and
[T22], are obtained analytically. After obtaining the FRFs required
for constructing the right-hand side of Eq. (6), the complex
stiffness matrix [Kht] is obtained from Eq. (6). Then, the linear
displacement-to-force, linear displacement-to-moment, angular
displacement-to-force and angular displacement-to-moment
complex stiffness functions of the holder–tool interface are
obtained (which are, respectively, kht

yf +iocht
yf , kht

ym+iocht
ym, kht

yf +iocht
yf

and kht
ym+iocht

ym).
It is known from the typical spindle–holder–tool assembly

investigated by Ertürk et al. [27] that the holder–tool connection
parameters mainly affect the tool-dominant vibration mode.
Hence, it is reasonable to identify the holder–tool contact
parameters from this mode. As seen from Fig. 7b, the tool point
FRF of the assembly shown in Fig. 6 has four distinct modes in the
frequency range of interest. Therefore, in order to identify the
tool-dominant mode, the assembly tool point FRF is measured for
different overhang lengths of the tool. The three different
overhang lengths taken are 82, 88 and 94 mm. For these three
configurations, it is observed that the third mode is mainly
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Fig. 11. Identified stiffness values at the holder–tool interface obtained from Eq. (6) by using the filtered experimental FRFs (a) linear displacement-to-force stiffness, (b)

linear displacement-to-moment stiffness, (c) angular displacement-to-force stiffness and (d) angular displacement-to-moment stiffness.
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affected by the tool overhang length as shown in Fig. 10. Therefore,
the third vibration mode in the tool point FRF is the tool mode
and the holder–tool contact dynamics can be identified from
this mode.

For a tool overhang length of 49 mm, the identified linear/
angular displacement-to-force/moment stiffness FRFs are shown
in Fig. 11a–d, whereas the identified damping FRFs are given in
Fig. 12a–d. Detailed view of the identified linear displacement-to-
force stiffness values with the tool point FRF is also given in
Fig. 13. Note that, since the holder–tool connection parameters are
to be identified at the frequency of the tool-dominant mode
(see Fig. 10), one can read the contact parameters of the
holder–tool interface as presented in Table 2. Note that the
L and N FRFs are taken to be identical in Figs. 8 and 9
for convenience (with the assumption of reciprocity), and six
distinct values have been identified.

In order to show the accuracy of the identification method,
the experimentally obtained spindle–holder subassembly
receptance matrix [SH11] is coupled with analytically obtained
tool FRFs through the forward coupling equation, Eq. (5). In
coupling of the spindle–holder and tool subsystems, instead of
using frequency-dependent contact parameters (depicted in
Figs. 11 and 12), the constant values identified from the respective
dominant mode of the holder–tool interface (Table 2) are
used. Fig. 14 shows the experimentally obtained tool point FRF
along with the one obtained from the receptance coupling
equation (Eq. (5)) where the holder–tool interface stiffness
matrix is constructed with the parameters identified in
Table 2. It can be seen from Fig. 13 that the identification
method presented in this paper works very successfully.
5. Conclusions

Recent literature on modeling and analysis of spindle–tool
assemblies has shown the importance of contact dynamics
for accurate prediction of chatter stability. In particular, the
contact dynamics at the spindle–holder and holder–tool
interfaces have a strong impact on the tool point frequency
response. The stiffness and damping parameters of these critical
interfaces affect the prediction of chatter frequencies and depth
of cut limits, respectively. In this paper, a new approach is
presented for identification of dynamical contact parameters in
spindle–holder–tool assemblies. The elastic receptance
coupling equations previously used for coupling the system
components (spindle, holder and tool) are rearranged to give the
complex stiffness matrix at the holder–tool and spindle–holder
interfaces in a closed-form manner. First, an analytical demon-
stration of the identification approach is presented for a given
assembly. Then, the analytical data are distorted with random
noise and the coherence between the analytical FRFs is reduced. It
is observed that the method is highly sensitive to noise in the
FRF data, although it is still possible to identify the correct
dynamical contact parameters from the relevant vibration
modes. This sensitivity is expected to be mainly due to
matrix inversions involved in the method. This experience
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Fig. 13. Identified linear displacement-to-force stiffness values at the holder–tool

interface obtained from Eq. (6) by using the filtered experimental FRFs.

Table 2
Identified dynamical contact parameters at the holder–tool interface in the

experimental case study

Linear displacement-to-force stiffness (N/m) 5.1581�107

Linear displacement-to-force damping (N s/m) 4017

Linear displacement-to-moment stiffness (N m/m) 2.5013�106

Linear displacement-to-moment damping (N m s/m) 155.58

Angular displacement-to-force stiffness (N/rad) 2.5013�106

Angular displacement-to-force damping (N s/rad) 155.58

Angular displacement-to-moment stiffness (N m/rad) 1.2631�105

Angular displacement-to-moment damping (N m s/rad) 5.8882

Fig. 12. Identified stiffness values at the holder–tool interface obtained from Eq. (6) by using the filtered experimental FRFs (a) linear displacement-to-force damping, (b)

linear displacement-to-moment damping, (c) angular displacement-to-force damping and (d) angular displacement-to-moment damping.
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highlights the importance of filtering the noise in the
experimental FRFs before using them in the identification.

The identification approach proposed in this paper is
also experimentally verified by using it in a spindle–holder–tool
assembly (with a focus on the holder–tool interface). Due to
the aforementioned sensitivity of the formulation, the measured
FRFs are minimized by employing the Savitzky–Golay filter.
The accuracy of the identification approach also depends on the
accuracy of the experimentally obtained rotation and moment-
related FRFs. The rotation and moment-related FRFs are approxi-
mated by using the measured translational FRFs in an existing
method from the literature of experimental modal analysis. In the
experimental verification, attention is given to the holder–tool
interface of the assembly and it is shown that the contact
parameters of this interface can be identified successfully from
the relevant vibration mode it controls. Although the identifica-
tion approach presented in this paper considered the contact
dynamics at the spindle–holder and holder–tool interfaces of the
assembly, the method can be extended to identify bearing
dynamics and the dynamics of the other critical joints in a similar
manner.
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Fig. 14. Experimentally obtained tool point FRF and the tool point FRF obtained by

receptance coupling with the identified contact parameters.
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[24] A. Ertürk, H.N. Özgüven, E. Budak, Analytical modeling of spindle–tool
dynamics on machine tools using Timoshenko beam model and receptance
coupling for the prediction of tool point FRF, International Journal of Machine
Tools and Manufacture 46 (2006) 1901–1912.
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