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A B S T R A C T

We investigate the role of leaky guided waves in transcranial ultrasound transmission in temporal and parietal
bones at large incidence angles. Our numerical and experimental results show that the dispersion characteristics
of the fundamental leaky guided wave mode with longitudinal polarization can be leveraged to estimate the
critical angle above which efficient shear mode conversion takes place, and below which major transmission
drops can be expected. Simulations that employ a numerical propagator matrix and a Semi-Analytical approach
establish the transcranial dispersion characteristics and transmission coefficients at different incident angles.
Experimental transmission tests conducted at 500 kHz and radiation tests performed in the 200–800 kHz range
confirm the numerical findings in terms of transmitted peak pressure and frequency-radiation angle spectra,
based on which the connection between critical angles, dispersion and transmission is demonstrated. Our
results support the identification of transcranial ultrasound strategies that leverage shear mode conversion,
which is less sensitive to phase aberrations compared to normal incidence ultrasound. These findings can
also enable higher transmission rates in cranial bones with low porosity by leveraging dispersion information
extracted through signal processing, without requiring measurement of geometric and mechanical properties
of the cranial bone.
1. Introduction

In transcranial ultrasound operating with acoustic beams transmit-
ted at normal incidence, the heterogeneous morphological and mechan-
ical nature of the cranial bone is known to induce increasing refraction
and phase aberration effects with increasing frequency. These effects
reduce the efficiency of acoustic wave transmission and, due to large
beam distortions occurring in the intracranial region, limit the spatial
resolution achievable in imaging and brain stimulation [1]. Past stud-
ies [2–4] have demonstrated that these limitations can be mitigated by
leveraging the conversion between longitudinal and shear bulk wave
modes occurring at the bone–fluid interfaces. The use of shear mode
conversion is attractive because the acoustic impedance mismatch be-
tween brain tissue, water and cranial bone is lower when the latter is
sonicated at an incident angle higher than the first Snell’s critical angle,
which leads to lower distortions of the transmitted beam with respect
to the normal incident case. This approach was employed for example
in [2], where the transmission properties of a temporal bone for inci-
dent angles of up to 70◦ were investigated to demonstrate that, beyond
the first Snell’s critical angle, a reduction of the measured intracranial
peak pressure was accompanied by a lower distortion of the trans-
mitted acoustic beam. Other studies employed shear-to-longitudinal
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mode conversion on parietal bones for the treatment of near-skull brain
tissue [5], to characterize the so called ‘‘stripe artifact’’ in transcranial
ultrasound through the temporal window [4], and to demonstrate that
transmission data could be used to determine the acoustic properties of
the cranial bone [3,6]. The latter are of paramount importance in the
determination of Snell’s critical angle and studies involving transcranial
focused ultrasound (tFUS) [7–9], transducer modeling [1,10,11], as
well as acoustic brain mapping [12] and imaging [13]. However, the
skull acoustic properties are well known to display a large variability
across different regions of the skull [14], and their estimation often
requires in vivo complex procedures [15]. In addition, none of the works
cited above consider a third mode conversion mechanism, namely
the bulk-to-guided wave mode conversion. This mechanism plays a
major role in transcranial ultrasound transmission, since guided waves
generated within the sonicated cranial bone region at oblique incidence
can re-radiate energy in the brain more or less efficiently in relation
to the orientation of the acoustic beam. However, the evaluation of
the radiation properties of leaky guided waves strongly depends on
the accurate knowledge of the geometric and mechanical properties of
the cranial bone, which makes their study and direct application rather
difficult.
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Table 1
Mechanical properties of the temporal and parietal bones.
Bone Geometric and mechanical properties

𝑡 𝜌 𝐸 𝜈 𝛼𝐿 𝛼𝑆 𝑐𝐿 𝑐𝑆
(mm) (kg/m3) (GPa) – (Np/(m MHz)) (Np/(m MHz)) (m/s) (m/s)

Temporal 3.47 1989 21.7 0.22 500.00 500.00 3529 2115

Parietal
Outer cortical 1.38 1944 14.7 0.25 160.00 320.00 3012 1739
Trabecular 7.52 1211 5.70 0.35 240.00 360.00 2749 1320
Inner cortical 1.55 1944 14.7 0.25 160.00 320.00 3012 1739
F

This work investigates the interplay between the conversion of
uided wave modes and its role in transcranial ultrasound transmis-
ion in temporal and parietal bones. A first study investigating this
henomenon was conducted in [16], where it was numerically and ex-
erimentally demonstrated that angled transducers leveraging guided
ave mode conversion can improve the transmission efficiency over the
ormal incidence case. Recently, cranial guided waves have emerged
s a complementary tool to classic ultrasound for the study of the
ispersive [17–19], mechanical [20] and radiation characteristics [21]
f the human skull. Here, we demonstrate that frequency-dependent
adiation properties of cranial leaky guided waves can be used to
stimate the range of incident angles in which efficient shear mode
onversion occurs. Specifically, we show that the first Snell’s critical
ngle can be estimated with good accuracy by the radiation angle of
eaky modes that exhibit a prevalent through-thickness longitudinal dis-
lacement polarization. In transmission tests performed on a temporal
nd a parietal bone, we observe that above this angle the transmitted
coustic beam suffers of lower distortions. For the temporal bone, we
lso observe that the transmission efficiency slightly increases with
espect to the normal incident configuration, which indicates that the
rior knowledge of this angle can be beneficial in experimental and
linical settings. The main advantage of using leaky guided waves in
stimating this angle is that only simple signal processing procedures
re needed to measure their dispersion properties. Therefore, the ap-
roach presented herein can potentially be employed in experimental
r clinical settings to reduce the distortion of the transmitted acoustic
eam in the intracranial region without any prior knowledge of the
eometric and mechanical properties of the cranial bone.

. Cranial bones

The analyses described in this work have been performed on the
emporal bone of Fig. 1(a) and the parietal bone of Fig. 1(b), which
ere excised from two different human skulls from 60-year-old males
f unknown medical history. The microcomputed tomographic (𝜇CT)

scan images of the two bones were obtained using a Scanco Medical
𝜇CT 50 scanner at 49.6 μm resolution, and were used to extract the
average thickness of the cortical and trabecular layers necessary for
the numerical analyses of Section 3. We note that although both bones
measure approximately 94 mm in length, their total thickness varies
from approximately 3.5 mm for the temporal bone to 11.00 mm for
the parietal one. The mechanical properties of the bones are listed in
Table 1. It is noted that these properties are only representative of the
bone macroscopic mechanical behavior, which in turn implies that the
operative wavelengths are not too small in comparison to the thickness
of the bone layers. If the analyses are performed at high operative fre-
quencies (very small wavelengths), other mechanical properties should
be used that are more representative of the mechanical behavior of
the bone at the microscopic level. Following [22], the mass density
𝜌 (kg/m3) of the cortical and trabecular layers were calculated by
relating their corresponding volumes and Hounsfield Unit (HU) recon-
structed from 𝜇CT images to the total measured mass (see Appendix A
for additional details). The Young’s modulus 𝐸 (GPa) and Poisson’s
ratio (𝜈) were obtained through experimental modal data using the
approach and set up documented in [20,22], while the longitudinal
2

and shear wave attenuation 𝛼𝐿 and 𝛼𝑆 (Np/(m MHz)) were obtained by
fitting the transmission data obtained in Section 4.1. These properties
are employed in Section 3 to numerically study the relation between
transcranial transmission and guided wave mode conversion. However,
it will be ultimately shown in Section 4.3 that such relation can be
established in terms of dispersion properties of leaky guided modes,
which can be obtained experimentally without any prior knowledge
about the mechanical properties of the bone.

3. Numerical transmission analysis

This section describes the computational tools used in the transcra-
nial ultrasound transmission analysis, namely the matrix propagator
method and the Semi-Analytical Finite Element (SAFE) method. Both
methods are based on the common assumption that propagating waves
in water–bone–water systems as in Fig. 1(c) have the same wavenumber
projection along the direction formed by the layers of the cranial
bone (𝑥-direction in Fig. 1(d)). In the matrix propagator method,
this assumption is used to determine the directions along which bulk
waves are progressively reflected and transmitted within each layer
according to the generalized Snell’s law, while in the SAFE method
it enables the study of the dispersion properties of leaky guided wave
modes [20,21]. The outputs from the two methods are, respectively, the
transmission curves for varying incident angles at a given frequency
and the frequency-dependent radiation angles of leaky guided wave
modes propagating within the cranial bone. These will be used in
Section 3.3 to interpret the experimental results of Section 4 in terms
of relation between transcranial ultrasound transmission and mode
conversion at the skull–fluid interface.

3.1. Transcranial ultrasound transmission estimation using the method of
matrix propagator

To compute the frequency transmission curves for the water-cranial
bone–water systems of Fig. 1(d), we consider the Brekhovskikh’s
method [23] with the corrections made in [24], based on which the
cranial bone is idealized as the multilayered flat plate of Fig. 1(e). This
is formed by different flat layers with parallel interfaces and infinite
lateral extent. The two external layers are in contact with two water
half spaces (density 𝜌𝑓 = 1000 kg/m3, phase speed 𝑐𝑓 = 1480 m∕s) that
simulate the intracranial (brain) and extracranial (coupling medium)
regions. The effects of the local curvature of the cranial bone on the
transmitted acoustic beam are neglected since, in typical experimental
settings, the local radius of curvature is generally much larger than the
width of the acoustic beam impinging on the outer surface of the skull.
The transmission coefficients are derived for the elasto-acoustic system
sketched in Fig. 1(e), where the water half spaces and the three cranial
layers, i.e. outer cortical, trabecular (diploë) and inner cortical, are
labeled progressively as 𝑙 = 1,… , 5 along the 𝑧-direction (see Fig. 1(e)).
The interface between two layers are labeled in a similar manner as
𝑛 = 1,… , 4. All the solid layers are assumed to be homogeneous and
viscoelastic with material properties listed in Table 1. The thickness
𝑡(𝑙) of each cranial layer was determined from the 𝜇CT images in
igs. 1(a) and (b) by averaging the local thickness 𝑡𝑝 (see Fig. 1(d))

of the sonicated area of the cranial bone at a minimum of twenty
locations. The total averaged thickness of the bone at such location

∑ (𝑙)
is indicated as 𝐻 = 𝑙 𝑡 .
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Fig. 1. (a) 𝜇CT scans of the (a) temporal and (b) parietal bone. (c) Transmission and wave guiding mechanisms in the cranial bone. (d) Detail of the cranial bone with the bulk
and guided wave wavenumbers highlighted. (e) Equivalent system with parallel homogeneous viscoelastic layers used in the transmission and radiation calculations.
Following the analysis in [24], the amplitudes of the transmitted
and reflected waves in the lower and upper water half spaces are
computed for an incident monochromatic wave with radial frequency
𝜔 and a time-dependence of the form exp (−𝑖𝜔𝑡) impinging on the outer
cortical layer from the upper water half space at a given incident angle
𝜗𝑖. In this work, 𝜗𝑖 is the main parameter used to determine the best
transducer orientation for optimal transcranial ultrasound delivery.
Since the generalized Snell’s law is assumed to hold at any solid–solid
and solid–liquid interface, the horizontal wavenumber 𝑘𝑥 = 𝑘𝑓 sin 𝜗𝑖 =
𝑘(𝑙)𝐿,𝑆 sin 𝜗(𝑙)𝐿,𝑆 is conserved within any layer and at any coordinate 𝑧.
Here, 𝑘𝑓 = 𝜔∕𝑐𝑓 is the fluid wavenumber in the upper water half
space, while 𝑘(𝑙)𝐿,𝑆 = 𝜔∕𝑐(𝑙)𝐿,𝑆 are the complex bulk wavenumbers of the
longitudinal and shear bulk waves propagating within the 𝑙th layer at
an angle sin 𝜗(𝑙)𝐿,𝑆 measured with respect to the 𝑧-direction. The complex
longitudinal and shear phase speeds 𝑐(𝑙)𝐿,𝑆 are computed as indicated
in Appendix B. The conservation of 𝑘𝑥 within each layer is used to
derive the transmission (𝑇 (𝜗𝑖, 𝜔)) and reflection (𝑅(𝜗𝑖, 𝜔)) coefficient
by relating the particle velocity 𝐯(𝑙)(𝜗𝑖, 𝜔) = {𝑣(𝑙)𝑥 , 𝑣

(𝑙)
𝑧 }T and impedance

𝐙(𝑙)(𝜗𝑖, 𝜔) = {𝑍(𝑙)
𝑥 , 𝑍

(𝑙)
𝑧 }T (with 𝑍(𝑙)

𝑥,𝑧 = 𝜌𝑐(𝑙−1)𝑆,𝐿 ) at the interface between
two adjacent layers 𝑙 and 𝑙−1. For the equivalent fluid-loaded parietal
bone system of Fig. 1(e), the recursive application of this procedure for
all layers results in the following matrix relation [24]
{

𝐯(4)(𝜗𝑖, 𝑓 )
𝐙(4)(𝜗𝑖, 𝑓 )

}

= 𝐀(𝜗𝑖, 𝑓 )
{

𝐯(1)(𝜗𝑖, 𝑓 )
𝐙(1)(𝜗𝑖, 𝑓 )

}

, (1)

where 𝐀 =
∏𝑙−1

2 𝐒(𝑙) = 𝐒(4)𝐒(3)𝐒(2) denotes the global matrix propagator
for the three-layered parietal bone, in which the sixteen analytical
coefficients 𝐒(𝑙)(𝜗𝑖, 𝜔) = [𝑠(𝑙)𝑖𝑗 (𝜗𝑖, 𝜔)] (𝑖, 𝑗 = 1,… , 4) for the 𝑙th layer are
given in Appendix B. The transmission and reflection coefficients in the
lower and upper water half space can be expressed as a function of the
coefficients 𝐴𝑖𝑗 (𝜗𝑖, 𝜔) (𝑖, 𝑗 = 1,… , 4), and read as [24]

𝑇 (𝜗𝑖, 𝑓 ) =
2𝑍(1)

(𝑀22 +𝑍(1)𝑀23)𝑍(5) +𝑀32 +𝑍(1)𝑀33
, (2)

𝑅(𝜗𝑖, 𝑓 ) =
𝑀32 +𝑍(1)𝑀33 − (𝑀22 +𝑍(1)𝑀23)𝑍(5)

𝑀32 +𝑍(1)𝑀33 + (𝑀22 +𝑍(1)𝑀23)𝑍(5)
, (3)

in which

𝑀22 = 𝐴22 − 𝐴21𝐴42𝐴
−1
41 , 𝑀23 = 𝐴23 − 𝐴21𝐴43𝐴

−1
41 , (4)

𝑀32 = 𝐴32 − 𝐴31𝐴42𝐴
−1
41 , 𝑀33 = 𝐴33 − 𝐴31𝐴43𝐴

−1
41 . (5)

For the case of the temporal bone, the matrix propagator reduces
to 𝐀 = 𝐒(2), with the layers 1 and 3 being the lower and upper water
half spaces, respectively. Eq. (2) allows to compute the transmission
coefficient 𝑇 (𝜗𝑖, 𝑓 ) for the water–bone–water system for any given
incident angle 𝜗𝑖 and frequency 𝑓 . It should be noted that since
each layer is modeled as a continuous and homogeneous plate, the
3

scattering effects induced by porosity are not explicitly accounted for,
and they are rather included in the model by considering equivalent
viscoelastic material coefficients evaluated from experimental data.
While the above assumption does not pose significant limitations on the
applicability of the method to temporal bones at frequencies below 2.0
MHz, for parietal bones the method can potentially lead to inaccurate
results at frequencies for which the wavelength of the shear waves
within the diploë are substantially smaller than the average size of
the trabeculae. In addition, the matrix propagator method is known
to suffer of low accuracy at very low values of the frequency-thickness
product, for which wavelengths are usually expected to be much larger
than the thickness of the layers. These constraints limit the applicability
of this approach to operative frequencies larger than 200 kHz and
lower than 1.0 MHz for the parietal bone. At higher frequencies, the
wavenumber 𝑘𝑥 is no longer expected to be conserved within each
layer, and surface modes confined within the cortical bones are likely
to form as observed in [18,20].

3.2. Cranial leaky guided wave dispersion using SAFE

Although the transmission analysis described in Section 3.1 is based
on the conservation of the horizontal wavenumber 𝑘𝑥 within each layer,
it does not explicitly show the effect of leaky guided wave modes in the
transmission coefficients. As already demonstrated in [18,19,21,25,26],
cranial leaky guided waves can form and propagate within the cranial
layer in certain frequency–wavenumber (𝑓, 𝑘𝑥) ranges. However, since
the frequency and radiation angle are two independent quantities when
the mechanical and acoustical characteristics of the fluid-loaded bone
are fixed, the solutions for 𝑘𝑥(𝑓 ) when 𝑓 is a real valued parameter
(time-transient guided waves) differ from the solutions 𝑓 (𝑘𝑥) when
𝑘𝑥 is a real valued parameter (steady leaky guided waves) [27]. In
principle, these solutions can be extracted from the determinant of
the propagator matrix 𝐀(𝜗𝑖, 𝑓 ), although this operation results in a
nonlinear eigenvalue problem that involves the definition of specific
Riemann sheets in the complex plane Re(𝑘𝑥(𝑓 )), Im(𝑘𝑥(𝑓 )) on which
physical solutions lie (see [28–31] for more details). This computational
issue can be circumvented as described in Appendix C, where transfor-
mation techniques based on a Semi-Analytical Finite Element (SAFE)
approach [21,32] are described that allow to transform a nonlinear
eigenvalue problem into a linear polynomial one for both the 𝑘𝑥(𝑓 )
and 𝑓 (𝑘𝑥) formulations. The output of both formulations is an eigenset
(𝑓𝑘, 𝑘𝑥,𝑘,Φ𝑘), where 𝑘 denotes the 𝑘th guided wave mode supported by
the cranial bone and Φ𝑘 indicates its corresponding through-thickness
displacement profile. From the computed eigensets, the radiation angle
of the 𝑘th guided wave mode at a given frequency is obtained from
the generalized Snell’s law 𝜗𝑘 = sin−1

[

Re(𝑘𝑥,𝑘)∕𝑘𝑓
]

. As demonstrated
in [27], the loci of transmission maxima in the 𝑓−𝜗 spectrum computed
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Fig. 2. Numerical maps of the transmission coefficient |𝑇 (𝜗𝑖 , 𝑓 )| for the temporal bone of Fig. 1(a) with superimposed 𝑓 (𝑘𝑥) dispersion curves for the (a) elastic and (b) viscoelastic
case, and with superimposed 𝑘𝑥(𝑓 ) dispersion curves the (c) elastic and (d) viscoelastic case. The 𝑓 (𝑘𝑥) curves are generally associated with loci of maximum transmission, while
the 𝑘𝑥(𝑓 ) curves of 𝑆0 (red) and 𝐴0 (blue) modes approximate the first (𝜗𝐿,𝑐𝑟) and second (𝜗𝑆,𝑐𝑟) critical angle, respectively.
using the matrix propagator approach of Section 3.1 correspond to
the dispersion curves obtained from the 𝑓 (𝑘𝑥) formulation for a one
layer plate, such as the temporal bone. This is because the 𝑓 (𝑘𝑥)
formulation assumes that guided waves generated within the sonicated
area of the bone vary in time and not in space when following a
phase front, i.e. their spatial attenuation is null. In a physical setup,
this condition can only be attained when the excitation signal is lim-
ited in time and the transducer width-to-bone thickness ratio is very
large, which approximately corresponds to the assumption of incident
monochromatic waves made in Section 3.1. When the source is more
localized in space and the excitation signal is harmonic, time-steady
leaky guided waves are generated and the 𝑘𝑥(𝑓 ) formulation is more
appropriate. However, in this case some modifications would need to
be introduced in the computation of the transmission coefficients as
described in [33–35], where the finite width of the source is taken into
account. Nonetheless, in this work the assumptions made in Section 3.1
were still found to provide reasonably accurate results. In addition, in
the next Section it will be shown that the coincidence between loci
of transmission maxima and the dispersion curves generated using the
𝑓 (𝑘𝑥) formulation is still lost for the parietal bone at small radiation
angles (large wavelengths), and that the 𝑘𝑥(𝑓 ) formulation can be more
useful in identifying the critical angles and regions of optimal shear
mode conversion for both bones when large material attenuation values
are taken into account.
4

3.3. Transcranial ultrasound transmission analysis

In the following, we analyze qualitatively the relation between
transcranial ultrasound transmission efficiency and leaky guided wave
modes for the temporal and parietal bones by using the numerical
methods of Sections 3.1 and 3.2. The numerical transmission and
dispersion analyses are performed by considering the geometric and
mechanical properties listed in Table 1. In order to evaluate the effects
of attenuation, we also differentiate between the ideal case in which
the cranial bone is perfectly elastic and the more realistic viscoelastic
case.

3.3.1. Temporal bone
The elastic and viscoelastic results for the temporal bone are shown

in Fig. 2. Since in this case the bone can be idealized as a single-
layered, homogeneous plate, the Cremer’s coincidence principle [27,
36,37] applies, based on which total transmission of sound through a
perfectly elastic plate, i.e. |𝑇 |2 = 1 and |𝑅|2 = 0, is achieved when
the fluid impedance 𝑍𝑓 = 𝜌𝑓 𝑐𝑓 is substantially lower than the plate
impedance 𝑍𝐿 = 𝜌𝑐𝐿. Considering typical values of the mechanical
parameters of water-loaded temporal bones (𝜌 ∈ [1500, 2500] kg∕m3,
𝑐𝐿 ∈ [2500, 3500] m∕s [2–4]), this condition usually holds with good
approximation in the elastic regime, and therefore nearly total trans-
mission can be expected when 𝜗𝑖(𝑓 ) ≈ 𝜗𝑘(𝑓 ) (𝑘 = 1, 2, ..). This scenario
can be observed in Fig. 2(a), where dispersion curves obtained from
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the 𝑓 (𝑘𝑥) and 𝑘𝑥(𝑓 ) formulations are overlapped with the transmis-
sion maps computed from Eq. (2) for the elastic case. The dispersion
curves are color coded depending on their through-thickness displace-
ment polarization, and classified between longitudinally polarized and
transversally polarized modes. The two fundamental symmetric and
antisymmetric modes whose dispersion curves can be tracked back
to the axis of null frequency are denoted in Fig. 2 as 𝑆0 and 𝐴0,
espectively. For the temporal bone, the through-thickness profile of
ongitudinally polarized modes is symmetric with respect to the mid
urface of the plate itself, while transversally polarized modes ex-
ibit an antisymmetric profile. The polarization factor 𝑃𝐹𝑘(𝑓 ) used
o encode the curves is computed as indicated in Appendix C. From
ig. 2(a), it can be observed that the loci of curves (𝜗𝑖, 𝑓 ) determined
y transmission maxima correspond, according to Cremer’s coincidence
ondition and the analysis in [27], to the radiation dispersion curves
btained from the 𝑓 (𝑘𝑥) formulation. However, this coincidence is not
erified everywhere when the dispersion curves obtained using the
𝑥(𝑓 ) formulation (Fig. 2(c)) are considered. Therefore, the experimen-
al measurement of time-transient leaky guided waves (𝑓 (𝑘𝑥)) instead
f standing leaky guided waves (𝑘𝑥(𝑓 )) would allow to evaluate the
egions of the spectrum 𝑓 − 𝜗𝑖 in which high transmission values can
e achieved. However, when moving from the elastic case of Fig. 2(a) to
he viscoelastic case of Fig. 2(b), it can be inferred that the coincidence
etween loci of transmission maxima and dispersion curves is generally
ost. Note that, in this case, at frequencies larger than 400 kHz the
ransmission coefficient drops in the interval 𝜗𝑖 ∈ [15◦, 25◦], and grows
n the 𝜗𝑖 ∈ [25◦, 45◦] interval, where it reaches values similar to those
elative to quasi-normal incidence (𝜗𝑖 ∈ [0◦, 10◦]). Here, it can be

observed that the highest transmission rate at large incident angles
is verified in the range defined by 𝜗𝐿,𝑐𝑟 and 𝜗𝑆,𝑐𝑟 = sin−1[𝑐𝑓∕Re(𝑐𝑆 )]
second critical angle). This behavior is consistent with that observed
n [2], in which the largest drop in transmission for a viscoelastic
emporal bone analyzed at 740 kHz was found to take place at about 5◦
ess than the first critical angle. The two critical angles are indicated in
ig. 2 with a dashed line and can be used to have an indirect measure of
he region of the 𝑓 −𝜗𝑖 spectrum where optimal shear mode conversion
s achieved. To this end, the 𝑓 (𝑘𝑥) formulation cannot provide useful
nformation since there are no dispersion branches that approach these
ngles, with the modes 𝑆0 and 𝐴0 merging in the 400–530 kHz range
nd becoming purely imaginary at frequencies larger than 530 kHz,
sing the 𝑓 (𝑘𝑥) formulation. On the other hand, if the 𝑘𝑥(𝑓 ) formulation
s used, then the two fundamental modes (𝑆0) and antisymmetric (𝐴0)
efine a pair of virtual boundaries that envelopes the region of high
ransmission at oblique incidence, with the first remaining very close
o 𝜗𝐿,𝑐𝑟 across the whole frequency range and the latter approaching
symptotically 𝜗𝑆,𝑐𝑟 at high frequencies.

The qualitative analyses discussed above lead to the main conclu-
ion that transmission via shear mode conversion in temporal bones
an be efficiently achieved in the range 𝜗𝑖 ∈ [𝜗𝐿,𝑐𝑟, 𝜗𝑆,𝑐𝑟]. As observed
n [2,3], operating in this range comes with the added benefit of lower
istortions induced on the transmitted acoustic beam, which is due
o a better impedance match at the water–bone–water interfaces and
onsequently to a lower phase alteration with respect to the normal
ncidence case, in which both longitudinal and shear waves are con-
erted. However, the knowledge of the above interval is strictly related
o the knowledge of the longitudinal and shear wave speed in the
ranial bone, which can vary substantially in different regions of the
ranial vault. Since 𝜗𝐿,𝑐𝑟 ≈ 𝜗𝑆0 and 𝜗𝑆,𝑐𝑟 ≈ 𝜗𝐴0 at moderate to high fre-
uencies, the radiation dispersion curves of the fundamental symmetric
nd antisymmetric guided wave modes can be alternatively used to
etermine such interval. The benefit of using the dispersion curves lies
n the fact that they can be obtained via pure signal processing, thus not
equiring the knowledge of the geometric and mechanical properties of
he cranial bone. This conclusion is verified in Sections 4 and 4.3 by
5

eans of experimental tests.
.3.2. Parietal bone
The transmission properties of the parietal bone can be qualitatively

nalyzed in view of the observations made in Section 3.3.1 for the
emporal bone. The corresponding 𝑓 − 𝜗 spectra are reported in Fig. 3.
nlike the case of the elastic temporal bone, in the elastic parietal
one analyzed with the 𝑓 (𝑘𝑎) formulation (Fig. 3(a)) and the 𝑘𝑥(𝑓 )
ormulation (Fig. 3(c)), the coincidence between transmission maxima
nd dispersion branches is observed only for 𝜗𝑖 > 30◦, where the
hrough-thickness displacement polarization of different leaky guided
ave modes is neither purely longitudinal nor purely transversal. Below

his angle, the different leaky guided modes display a prevalent lon-
itudinal polarization. In the 𝑘𝑥(𝑓 ) elastic and viscoelastic dispersion
pectra of Figs. 3(c, d), the dispersion branches of the longitudinally
olarized modes form a cluster that is closely focused at a radiation
ngle approximately equal to 30◦. This angle can be approximately
dentified as the first critical angle of the parietal bone. The cluster
efining such angle, which is not clearly observed in the 𝑓 (𝑘𝑥) spectra
f Figs. 3(a, b), virtually separates regions of the 𝑓 − 𝜗𝑖 spectrum
haracterized by high and low transmission. In general, the highest
ransmission values are observed at incident angles smaller than that
efined by the cluster, except at frequencies lower than 250 kHz, where
igh transmission rates can be reached for up to 𝜗𝑖 ≈ 45◦. It is
nteresting to note that, in the 550–750 kHz range, normal incidence
eads to transmission values that are significantly smaller than those
chieved at the 𝜗𝑖 ∈ [20◦, 30◦]. In addition, it is also possible to note
he presence of a second cluster of modes in the 𝑘𝑥(𝑓 ) dispersion
pectra that departs near 𝜗 = 75◦ at 200 kHz and reaches a value of
= 65◦ at 800 kHz. This cluster appears to play a significant role only

n the elastic case, where it defines a virtual boundary above which
igh transmission can only be expected for incident beams that are
arrowly focused at incident angles defined by the different dispersion
ranches. In the viscoelastic case, this cluster falls on a region of low
ransmission that holds no interest for practical applications. Therefore,
he experimental measurement of the first cluster in the parietal bone
s sufficient to determine the loci of the spectrum where transmission
rops and lower distortions of the transmitted acoustic beam are likely
o be expected. As can be deducted from Fig. 3(d), the former and the
atter tend to distribute at 5◦–10◦ below and above the first cluster,
espectively.

. Experimental investigation of transmission and radiation

This Section focuses on the experimental detection of the transmis-
ion coefficients and radiation angles of leaky guided waves predicted
sing the numerical approaches of Sections 3.1 and 3.2. The transmis-
ion and radiation experimental tests were performed for the degassed
emporal and parietal bones using the immersed setup shown in Fig. 4.

hile the excitation of bulk and leaky guided waves differs for the two
ypes of tests, the signal acquisition is performed in the same manner
s described in the following. In both tests, the pressure field is scanned
ver a rectangular area by means of a needle hydrophone attached to a
ervomotor-operated stage. The hydrophone (Teledyne Reson TC 4038,
iameter: 4 mm, receiving sensitivity: 50–800 kHz, nominal receiving
ensitivity: −226 ± 3 dB re 1V/𝜇Pa at 500 kHz) has a flat frequency
esponse and is connected through a preamplifier (Stanford Research
ystems SR560) to a digital oscilloscope (HandyScope HS3). As in-
icated in Fig. 4(a), the 2D scan area covered with the hydrophone
easures 120 mm in height (𝑥1-direction) and 100 mm in width (𝑥2-
irection), and is discretized into a grid of 0.25 mm spatial step in each
irection. At each point of the grid, the pressure field is recorded for 500
s with a 10.0 MHz sampling rate. The 2D scan region lies on the plane
hat orthogonally intersects the two cranial bones at approximately half
heir width. Wave diffraction phenomena from the edges of the cranial
one are considered to be negligible since diffracted waves propagate
n the surrounding fluid with semi-circular wavefronts, and therefore
heir amplitude attenuates rapidly due to spherical spreading. In both
ests, bulk and Lamb waves are excited using an ultrasonic immersion
ransducer (Olympus V391-SU, diameter: 28.58 mm, center frequency:
.47 MHz, peak frequency: 0.46 MHz, −6 dB bandwidth: 61.47 %).
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Fig. 3. Numerical maps of the transmission coefficient |𝑇 (𝜗𝑖 , 𝑓 )| for the parietal bone of Fig. 1(b) with superimposed 𝑓 (𝑘𝑥) dispersion curves for the (a) elastic and (b) viscoelastic
case, and with superimposed 𝑘𝑥(𝑓 ) dispersion curves the (c) elastic and (d) viscoelastic case. The 𝑘𝑥(𝑓 ) dispersion curves of guided wave modes with longitudinal through-thickness
polarization (red) form a cluster at about 30◦. Below this angle, the coincidence between dispersion curves and loci of maximum transmission in generally lost.
Fig. 4. Experimental setup with time snapshots of the pressure distribution for the (a) transmission and (b) dispersion tests performed on the temporal bone of Fig. 1(a).
4.1. Transmission tests

In the transmission test (Fig. 4(a)), the transducer was excited with a
50-cycle Gaussian-modulated sine wave of 500 kHz center frequency by
means of a commercial signal generator (HP 33120 A) and a piezoelec-
tric amplifier (Khron-Hite 7500). The transducer was positioned close
to the center of each cranial bone using a 3D printed inclined spacer.
Different spacers were printed for incident angles 𝜗𝑖 varying from 0◦
to 45◦ degrees at steps of 2.5◦. For all the incident angles, the gap
between the cranial bone and the center of the face of the transducer
was approximately 15 mm. This design choice was dictated by the fact
that, at the operative frequency of 500 kHz, the measured focal distance
6

(position of last axial maxima) of the transducer in the free field setup
(Fig. 7(a)) is 63 mm. Therefore, the close proximity between transducer
and cranial bone ensures that the focal point of the transmitted field
is always contained within the 2D scan window (intracranial region).
With the above setup, the experimental peak transmission coefficients
are computed as

𝑇 (𝑝)(𝑓, 𝜗𝑖) =
|

|

|

�̄�(𝑥(𝑝)1 , 𝑥(𝑝)2 , 𝑓 , 𝜗𝑖)
|

|

|

|

|

|

�̄�0(𝑥
(𝑝)
1 , 𝑥(𝑝)2 , 𝑓 )||

|

, (6)

where �̄�(𝑥1, 𝑥2, 𝑓 , 𝜗𝑖) indicates the time Fourier transform of the trans-
mitted pressure field 𝑝(𝑥 , 𝑥 , 𝑡, 𝜗 ) for a given incident angle 𝜗 of
1 2 𝑖 𝑖
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𝑝

Fig. 5. Root Mean Square (RMS) maps of the experimental pressure field 𝑝(𝑥1 , 𝑥2 , 𝑡) for the temporal bone of Fig. 1(a).
the transducer, while (𝑥(𝑝)1 , 𝑥(𝑝)2 ) are the coordinates at which the peak
pressure is observed. If the bone geometry does not induce significant
aberration, then (𝑥(𝑝)1 , 𝑥(𝑝)2 ) correspond to the coordinates of the focal
point in presence of the cranial bone. In this case, it should be noted
that the focal length changes with respect to the free field setup. The
peak pressure at the focal point in the free field is indicated with
̄0(𝑥

(𝑝)
1 , 𝑥(𝑝)2 , 𝑓 ), and is used in Eq. (6) to normalize the transmission

coefficient. The Root Mean Square (RMS) maps of the recorded pressure
fields for the temporal and parietal boned are given in Figs. 5 and 6,
respectively. From these maps, it is possible to quantify the distortion
induced on the transmitted acoustic beam by the cranial bone with re-
spect to the free field case. To do so, two reference parameters are first
extracted from the RMS map of the free field case at 500 kHz (Fig. 7(a)),
namely the reference beam area 𝐴𝑓 and the averaged reference beam
width 𝑊𝑓 . These quantities are computed by first normalizing the
RMS map to unity and then taking the acoustic pressure contours
corresponding to the −6 dB threshold. The reference beam area 𝐴𝑓
is then computed as the area enclosed by such contours, while the
averaged reference beam width 𝑊𝑓 is evaluated as the average width of
the beam contours measured across different interpolated trajectories
(indicated with light dashed lines in Fig. 7(a)). The same operations
are repeated on the RMS maps of Figs. 5 and 6, from which the angle-
dependent beam area 𝐴 (𝜗) and average beam width𝑊 (𝜗) are obtained
7

𝑏 𝑏
in presence of the cranial bones. The interpolation trajectories used
to evaluate 𝐴𝑏(𝜗) and 𝑊𝑏(𝜗) are shown in Figs. 5 and 6 only for the
𝜗 = 0◦ case, and are not repeated in the remaining plots for ease
of visualization. The amount of distortion induced by the bones on
the transmitted acoustic beam with respect to the free field case is
evaluated by means of two metrics, namely the beam area distortion
ratio 𝜓𝐴(𝜗) = 𝐴𝑏(𝜗)∕𝐴𝑓 −1 and the beam width distortion ratio 𝜓𝑊 (𝜗) =
𝑊𝑏(𝜗)∕𝑊𝑓−1. The beam area distortion ratio 𝜓𝐴(𝜗) is shown in Fig. 7(b)
for the temporal (solid line) and parietal bone (dashed line). As it can
be observed this parameter is negative across the range 𝜗 ∈ [0◦, 40◦]
for both bones, thus indicating that the area of the acoustic beam
subtended by the −6 dB threshold is smaller than the corresponding
area in the free field case for both cranial bones. The overall trend,
however, is slightly different for the two bones. Specifically, in the case
of the temporal bone, a slightly lower beam area distortion is observed
with respect to the normal incident case in the range 𝜗 ∈ [25◦, 30◦], as
also confirmed by the behavior of 𝜓𝑊 (𝜗) in Fig. 7(c). On the other hand,
the behavior of 𝜓𝐴(𝜗) and 𝜓𝑊 (𝜗) for the parietal bone indicates a much
lower beam distortion for incident angles larger than 27.5◦, which is
clearly observable in the RMS maps of Fig. 6. Interestingly, the average
width of the transmitted acoustic beam in the 𝜗 ∈ [27.5◦, 37.5◦] range
is also up to 25% smaller than that of the free field case. This behavior
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Fig. 6. Root Mean Square (RMS) maps of the experimental pressure field 𝑝(𝑥1 , 𝑥2 , 𝑡) for the parietal bone of Fig. 1(b).
Fig. 7. (a) Free field RMS map of the acoustic pressure generated by the immersion transducer at 500 kHz. (b) Beam area and (c) beam width distortion ratio with respect to

the free field.
confirms that immersed setups at large incidence angles can potentially
achieve better spatial resolution.

4.2. Radiation tests

In the radiation tests, the transducer was positioned near the edge of
the cranial bones as indicated in Fig. 4(b) and excited with a broadband
8

signal consisting of a 1.5-cycles Gaussian-modulated sine wave with
500 kHz central frequency. With this transducer configuration, different
leaky guided wave modes are excited, whose corresponding radiated
pressure field can be recognized in the time snapshot Fig. 4(b) as they
separate from the main direct wave. Since the acoustic energy carried
by the direct wave is substantially larger than that of the radiated
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Fig. 8. Experimental peak transmission coefficients 𝑇 (𝑝)(𝑓, 𝜗) versus numerical plane wave transmission coefficients 𝑇 (𝑓, 𝜗) for the (a) temporal and (c) parietal bone at 500 kHz.
Experimental versus numerical radiation angle dispersion curves for the (b) temporal and (d) parietal bone in the 200–800 kHz range.
leaky waves, the computation of the frequency-dependent radiation
angles associated to different leaky modes is carried over a sub-window
of the 2D scan region (dotted line in Fig. 4(b)) that excludes the
direct wave. Following the approach of Refs. [21,25], the experimental
frequency-radiation angle (𝑓 − 𝜗) dispersion diagrams are obtained by
first applying a cosine-tapered (Tukey) window in time and space to
the 3D pressure field array 𝑝(𝑥1, 𝑥2, 𝑡) recorded over the sub-window.
This array is then Fourier-transformed from the time-space domain
(𝑥1, 𝑥2, 𝑡) to the frequency–wavenumber domain (𝑘1, 𝑘2, 𝑓 ) . In order
to reduce the Fourier-transformed 3D pressure array 𝑃 (𝑘1, 𝑘2, 𝑓 ) to a
2D array that can be used to evaluated the frequency-radiation angle
(𝑓 − 𝜗) dispersion map of the cranial bone, the change of variable
𝜗 = tan−1[Re(𝑘1(𝑓 ))∕Re(𝑘2(𝑓 ))] is applied at any discrete frequency 𝑓 ,
which contracts the two-dimensional space (𝑘1(𝑓 ), 𝑘2(𝑓 )) to the one-
dimensional space 𝜗(𝑓 ). Repeating this operation for all the discrete
frequencies in the array yields the 2D array 𝑃 (𝜗, 𝑓 ), which is shown in
Figs. 8(b) and 8(d) for the temporal and parietal bone, respectively

4.3. Comparison against numerical results

The transmission curves 𝜗𝑖 − 𝑇 (𝑝)(𝜗𝑖, 𝑓 = 500 kHz) and dispersion
spectra 𝑓 − 𝜗 determined experimentally are shown in Fig. 8. As men-
tioned in Section 2, the transmission curves were first used to calibrate
the attenuation coefficients 𝛼𝐿 and 𝛼𝑆 reported in Table 1, which were
then employed in the transmission and radiation numerical analyses. It
is noted that, since scattering cannot directly be accounted for in the
matrix propagator and Semi-Analytical Finite Element models, its effect
is implicitly accounted for in 𝛼𝐿 and 𝛼𝑆 .

For the case of the temporal bone, the numerical and experimental
transmission curve at 500 kHz are in very good agreement. As it can be
9

noted, in the range 𝜗𝑖 ∈ [𝜗𝐿,𝑐𝑟, 𝜗𝑆,𝑐𝑟] the measured transmission coeffi-
cient is only slightly higher with respect to the normal incidence case. A
global overview of the acoustic energy distribution at different incident
angles in the intracranial region can be obtained from the inspection of
Fig. 5, where the highest RMS values are observed at angles 𝜗𝑖 > 25◦. It
is also worth noting that the transmitted acoustic beam is less distorted
in the range 𝜗𝑖 ∈ [25◦, 35◦] with respect to the range 𝜗𝑖 ∈ [0◦, 5◦]
(normal incidence) due to the more efficient shear mode conversion,
which results in less refraction and therefore less pronounced side
lobes. By looking at the frequency-radiation spectrum of Section 4.3(b),
it clearly appears that the two critical angles are intercepted by the
fundamental modes 𝑆0 and 𝐴0 (shaded areas in gray scale), which are
in turn overlapped by the corresponding numerical dispersion curves.
These results validate the conclusions draw in Section 3.3.1, based on
which the Snell’s critical angles can be approximated sufficiently well
by using the 𝑓 − 𝜗 spectrum derived via pure signal processing, and
that efficient transmission and lower beam distortion can be achieved
within the range defined by these angles. As an additional remark,
the knowledge of the first critical angle can be helpful in determining
the range of incident angles that can be potentially associated to low
transmission. The latter can be expected for up to 10◦ below 𝜗𝐿,𝑐𝑟,
as demonstrated by the dip in the experimental transmission curve
(Fig. 8(a)) and numerical transmission map (Fig. 2(d)).

Similar results can also be observed for the parietal bone. Also
in this case, the numerical and experimental transmission curves are
in good agreement except in the range 𝜗𝑖 ∈ [25◦, 30◦], where the
numerical curve exhibits a sharp dip that is not well captured by
the experimental one. The reason of such discrepancy is mainly due
to the assumptions made in the numerical modeling, where incident
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monochromatic waves are used. A better fit would be achieved by
adopting a more realistic modeling approach such as that in [33–
35], where the effects of the finite width of the incident beam are
considered, although this is beyond scope of this work. The comparison
between the experimental transmission data of Fig. 8(c), the radiation
data of Fig. 8(d) and the RMS plots of Fig. 6 shows that also in this case
the cluster of longitudinally polarized modes (here located at 𝜗𝑖 = 30◦)
an be obtained by pure signal processing and employed to determine
he virtual boundary that separates regions of low transmission (below
he cluster) from regions of lower beam distortion (above the cluster).
n fact, it can be noted from Fig. 6 that the latter is greatly improved
t incident angles above 𝜗𝑖 = 30◦ with respect to the normal incidence
ase, even though the transmitted peak pressure is quite reduced. In
rder to verify if high levels of transmission can be achieved at incident
ngles larger than that determined by the cluster of longitudinally
olarized modes, additional tests should be conducted on parietal bones
ith different sizes and mechanical properties. Some studies have been

ecently proposed in this sense, where the transmitted acoustic power
as been shown to be drastically reduced in bone phantoms with larger
rabecular thickness and level of porosity [38,39], which appears to be
onsistent with the findings of this work.

. Conclusions

We investigated the relation between the transcranial ultrasound
ransmission of a temporal and a parietal bone and its connection to
he mode conversion phenomena that take place at the bone–fluid
nterface for a varying incident angle. The key result of this study
s that the frequency-radiation angle dispersion spectrum of cranial
eaky guided waves can be used to evaluate the range of incident
ngles within which efficient longitudinal-to-shear mode conversion is
chieved at the bone–fluid interface. Leveraging this effect can ulti-
ately lead to lower distortions on the transmitted acoustic beam and,

onsequently, better spatial resolution in the intracranial region. This
inding is demonstrated both experimentally and numerically through
ransmission and dispersion analyses. Specifically, the experimental
ransmission coefficient measured for a temporal and parietal bone
t 500 kHz and for incident angles spanning 0◦–45◦ shows a good
greement with the numerical solution given by a matrix propagator
pproach, which is also used to derive the numerical frequency-incident
ngle transmission map of the two bones in the 200–800 kHz range. The
omparison of these maps with the experimental dispersion data and its
umerical counterpart computed with a Semi-Analytical Finite Element
pproach revealed that the first critical incident angle corresponds to
he radiation angle associated to longitudinally-polarized leaky guided
ave modes. Both experimental and numerical data confirmed that,
bove this angle, lower beam distortions are observed for both bones,
ith the temporal bone also leading to slightly better transmission coef-

icients with respect to the normal incidence case. At 5◦–10◦ below this
ngle, transmission drops are likely to be expected in the sub-1.0 MHz
egime, regardless of the type of cranial bone. Since the dispersion
haracteristics of leaky guided waves can be obtained by pure signal
rocessing procedure, the critical angles for the sonicated skull region
an be estimated without a prior knowledge of the geometric and
echanical properties of the skull bone.

The results presented in this study can be useful in the design
f transcranial ultrasound setups that seek to target confined regions
f the brain, and in setups that leverage inclined dual transducer
onfigurations.
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ppendix A. Bone density measurement

The cortical and trabecular densities 𝜌𝑐 and 𝜌𝑡 of a given skull
egment are calculated using an expression relating the total measured
one mass to the total numerical mass estimated for the reconstructed
ortical bone and trabecular layers, which is in turn performed by
eans of the reconstruction algorithm described in [22]. Since the bone
ensity is linearly proportional to the Hounsfield Units (𝐻𝑈) in the 𝜇CT

scans, the ratio between the cortical and trabecular densities is linearly
related to the corresponding average HU ratio (𝐻𝑈𝑐∕𝐻𝑈𝑑 ) in the bone
regions. As a consequence, the following relations hold:

𝜌𝑐𝑉𝑐 + 𝜌𝑡𝑉𝑡 = 𝑚𝑏, (A.1)

𝜌𝑐∕𝜌𝑡 = 𝐻𝑈𝑐∕𝐻𝑈𝑡, (A.2)

where 𝑉𝑐,𝑡 are the numerically reconstructed cortical and trabecular
volumes, while 𝑚𝑏 is the measured total mass of the bone segment. The
densities 𝜌𝑐 and 𝜌𝑡 are directly obtained by solving Eqs. (A.1) and (A.2).

Appendix B. Analytical coefficients

The analytical expressions of the coefficients 𝑠(𝑙)𝑖𝑗 for the 𝑙th layer
are [24]:

𝑠(𝑙)11 = 𝐺𝑙 cos𝑃𝑙 +
(

1 − 𝐺𝑙
)

cos𝑄𝑙 ,

𝑠(𝑙)12 = i
[(

1 − 𝐺𝑙
)

sin𝑃𝑙∕𝐸𝑙
]

− i𝐹𝑙𝐺𝑙 sin𝑄𝑙 ,

𝑠(𝑙)13 = −
(

1∕𝐻𝑙
) (

cos𝑃𝑙 − cos𝑄𝑙
)

,

𝑠(𝑙)14 = −
(

i∕𝐻𝑙
) [

sin𝑃𝑙∕𝐸 − 𝑙 + 𝐹𝑙 sin𝑄𝑙
]

,

𝑠(𝑙)21 = i𝐸𝑙𝐺𝑙 sin𝑃𝑙 − i
[(

1 − 𝐺𝑙
)

sin𝑄𝑙
]

∕𝐹𝑙 ,

𝑠(𝑙)22 =
(

1 − 𝐺𝑙
)

cos𝑃𝑙 + 𝐺𝑙 cos𝑄𝑙 ,

𝑠(𝑙)23 = −
(

i∕𝐻𝑙
) (

𝐸𝑙 sin𝑃𝑙 + sin𝑄𝑙∕𝐹𝑙
)

,

𝑠(𝑙)24 = 𝑠(𝑙)13,

𝑠(𝑙)31 = −𝐻𝑙𝐺𝑙
(

1 − 𝐺𝑙
) (

cos𝑃𝑙 − cos𝑄𝑙
)

,

𝑠(𝑙)32 = −i𝐻𝑙

{[

(

1 − 𝐺𝑙
)2 sin𝑃𝑙

]

∕𝐸𝑙 + 𝐹𝑙𝐺2
𝑙 sin𝑄𝑙

}

,

𝑠(𝑙)33 = 𝑠(𝑙)22,

𝑠(𝑙)34 = 𝑠(𝑙)12,

𝑠(𝑙)41 = −i𝐻𝑙

{

𝐸𝑙𝐺
2
𝑙 sin𝑃𝑙 +

[

(

1 − 𝐺𝑙
)2 sin𝑄𝑙

]

∕𝐹𝑙
}

,

𝑠(𝑙)42 = 𝑠(𝑙)31,

𝑠(𝑙)43 = 𝑠(𝑙)21,

𝑠(𝑙)44 = 𝑠(𝑙)11,

in which the different quantities are given by

𝑃𝑙 = 𝑘(𝑙)𝑧,𝐿𝑡
(𝑙), 𝑄𝑙 = 𝑘(𝑙)𝑧,𝑆 𝑡

(𝑙), 𝐸𝑙 = 𝑘(𝑙)𝑧,𝐿∕𝑘𝑥, 𝐹𝑙 = 𝑘(𝑙)𝑧,𝑆∕𝑘𝑥,

𝐺𝑙 = 2𝑘2𝑥∕(𝑘
(𝑙)
𝑆 )2, 𝐻𝑙 = 𝜌(𝑙)𝜔∕𝑘𝑥,

where

𝑘(𝑙) = [(𝑘(𝑙))2 − 𝑘2 ]1∕2, 𝑘(𝑙) = [(𝑘(𝑙))2 − 𝑘2 ]1∕2. (B.1)
𝑧,𝐿 𝐿 𝑥 𝑧,𝑆 𝑆 𝑥
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are complex transverse wavenumbers. In Eq. (B.1), the complex
wavenumbers 𝑘(𝑙)𝐿 and 𝑘(𝑙)𝑆 for the longitudinal and shear waves within
he 𝑙th layer are expressed as 𝑘(𝑙)𝐿,𝑆 = 𝜔∕𝑐(𝑙)𝐿,𝑆 , in which 𝑐𝐿,𝑆 are the

corresponding complex phase speeds. The latter are obtained from the
relation

𝑐(𝑙)𝐿,𝑆 =
𝑐(𝑙)𝐿,𝑆

1 + i𝛼(𝑙)𝐿,𝑆𝑐
(𝑙)
𝐿,𝑆∕(2𝜋)

,

n which 𝛼(𝑙)𝐿,𝑆 and 𝑐(𝑙)𝐿,𝑆 denote the attenuation and phase speed of
ongitudinal and shear bulk waves, respectively.

ppendix C. Semi-analytical finite element approach for the 𝒌𝒙(𝒇 )
nd 𝒇 (𝒌𝒙) formulations.

The Semi-Analytical Finite Element (SAFE) approach used to study
he dispersion properties of the cranial bone is similar to that described
n [20,21]. The method consists in assuming a propagation process
ith a space and time dependence of the form exp[i(𝑘𝑥𝑥 − 2𝜋𝑓𝑡)] and
iscretizing the bone along the 𝑧-direction by using a one-dimensional
esh of 𝑛 finite elements. Following [21], a sixth order polynomial

igenvalue problem for the 𝑘𝑥(𝑓 ) formulation can be written in the form

6
∑

𝑗=0
𝛾𝑗 (𝑓 )Γ𝑗 (𝑓 )

]

Φ(𝑓 ) = 𝟎, (C.1)

here Γ𝑗 (𝑓 ) is a dynamic stiffness matrix, Φ(𝑓 ) is an eigenvector
containing the displacement components of the guided wave mode
at any node of the finite element mesh while 𝛾(𝑓 ) is the associated
complex eigenvalue such that 𝑘𝑥(𝑓 ) = 𝑘𝑓 (𝑓 )[𝛾(𝑓 ) + 𝛾−1(𝑓 )]∕2. The
matrix operators in Eq. (C.1) are expressed as

Γ0(𝑓 ) = i𝑘3𝑓 (𝑓 )𝐊3,

Γ1(𝑓 ) = −2𝑘2𝑓 (𝑓 )(𝐊2 −𝐊T
2 ),

Γ2(𝑓 ) = i𝑘3𝑓 (𝑓 )𝐊3 + 4i𝑘𝑓 (𝑓 )
(

𝐊1 − 𝜋2𝑓 2𝐌
)

,

Γ3(𝑓 ) = 32i𝜋2𝑓 2𝜌𝑓𝐐,
Γ4(𝑓 ) = −i𝑘3𝑓 (𝑓 )𝐊3 − 4i𝑘𝑓 (𝑓 )

(

𝐊1 − 𝜋2𝑓 2𝐌
)

,

Γ5(𝑓 ) = 2𝑘2𝑓 (𝑓 )(𝐊2 −𝐊T
2 ),

Γ6(𝑓 ) = −i𝑘3𝑓 (𝑓 )𝐊3,

in which the stiffness, mass and fluid coupling matrices are given by

𝐊1 =

𝑛

A
𝑒=1 ∫𝑙𝑒

[𝝏𝑧𝐍(𝑧)]T𝐂(𝑓, 𝑧)𝝏𝑧𝐍(𝑧)𝑧,

𝐊2 =

𝑛

A
𝑒=1 ∫𝑙𝑒

[𝝏𝑥3𝐍(𝑥3)]
T𝐂(𝑓, 𝑧)𝝏𝑥𝐍(𝑧)𝑧,

𝐊3 =

𝑛

A
𝑒=1 ∫𝑙𝑒

[𝝏𝑥𝐍(𝑥3)]T𝐂(𝑓, 𝑧)𝝏𝑥𝐍(𝑧)𝑧,

𝐌 =

𝑛

A
𝑒=1 ∫𝑙𝑒

[𝐍(𝑧)]T𝜌(𝑧)𝐍(𝑧)𝑧,

𝐐 =

𝑛

A
𝑒=1

[

0 0
0 𝑠

]

,

where A𝑛

𝑒=1 indicates a matrix assembly operation in the direct stiff-
ness sense, 𝑠 = 1 if 𝑒 = 1 or 𝑒 = 𝑛 (𝑠 = 0 otherwise), 𝐍(𝑧) is a matrix
of polynomial shape functions, 𝜌(𝑧) and 𝐂(𝑓, 𝑧) denote the density and
11

fourth order tensor of elastic moduli of the cortical bone, respectively,
while

𝝏𝑧 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0
0 0 0
0 0 𝜕

𝜕𝑧
0 𝜕

𝜕𝑧 0
𝜕
𝜕𝑧 0 0
0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, 𝝏𝑥 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0
0 0 0
0 0 0
0 0 0
0 0 1
0 1 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

are compatibility operators.
When the eigenset [𝛾𝑘(𝑓 ),Φ𝑘(𝑓 )] for the 𝑘th guided wave modes

has been extracted from Eq. (C.1) for a fixed frequency 𝑓 and given
material properties, the angle 𝜗𝑘(𝑓 ) at which the same mode radiates
energy into the surrounding fluid (see Fig. 1(c)) can be extracted from
the generalized Snell’s law using the relation

𝜗𝑘(𝑓 ) = sin−1
[Re[𝑘𝑥,𝑘(𝑓 )]

𝑘𝑓 (𝑓 )

]

= sin−1
[

Re[𝛾𝑘(𝑓 ) + 𝛾−1𝑘 (𝑓 )]
2

]

. (C.2)

In the 𝑓 (𝑘𝑥) formulation, the fundamental relation 𝑘𝑥 = 𝜔∕𝑐𝑝
between angular frequency 𝜔 = 2𝜋𝑓 , wavenumber 𝑘𝑥 and phase
velocity 𝑐𝑝 of a given guided wave mode is used to reduce the dispersion
equation to the standard second order polynomial eigenvalue problem

⎡

⎢

⎢

⎢

⎣

𝜔2(𝑐𝑝)

(

𝐊3

𝑐2𝑝
−𝐌

)

+ i𝜔(𝑐𝑝)
⎛

⎜

⎜

⎜

⎝

𝐊2
𝑐𝑝

+
𝜌𝑓

√

𝑐−2𝑓 − 𝑐−2𝑝
𝐐
⎞

⎟

⎟

⎟

⎠

+𝐊1

⎤

⎥

⎥

⎥

⎦

Φ(𝑐𝑝) = 𝟎,

which can be solved for 𝜔(𝑐𝑝) when 𝑐𝑝 is a real valued fixed parameter.
From the computed eigensets [𝜔𝑘(𝑐𝑝),Φ𝑘(𝑐𝑝)], the corresponding quan-
tities [𝑓𝑘(𝑘𝑥),Φ𝑘(𝑘𝑥)] can be readily derived, from which the radiation
angle can be finally computed as in Eq. (C.2).

The polarization factor 𝑃𝐹𝑘(𝑓 ) used to encode the curves in Figs. 2
and 3 takes values from 0 (longitudinally polarized modes) to 1
(transversally polarized modes), and is post-processed for the 𝑘th leaky
guided wave mode from the corresponding numerical eigenvector Φ𝑘
as

𝑃𝐹𝑘 =
∫ 𝐻0 |Φ𝑘| ⋅ 𝐩T

𝑧𝑑𝑧

∫ 𝐻0 ‖Φ𝑘‖2𝑑𝑧
,

where 𝐩𝑧 is a logical vector that evaluates the degrees of freedom along
the 𝑧-direction.
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