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Abstract
The inverted flag configuration is inspired by biological structures (e.g. leaves on a tree branch),
showing rich dynamics associated with instabilities at lower flow speeds than the regular flag
configuration. In the biological counterpart, the arrangement of leaves and twigs on foliage creates
a complex interacting environment that promotes certain dynamic fluttering modes. While
enabling a large amplitude response for reduced flow speeds is advantageous in emerging fields
such as energy harvesting, still, little is known about the consequence of such interactions. In this
work, we numerically study the canonical bio-inspired problem of the flow-structural interaction
of a 2D inverted flag behind a cylindrical bluff body, mimicking a leaf behind a tree branch, to
investigate its distinct fluttering regimes. The separation distance between the cylinder and flag is
gradually modified to determine the effective distance beyond which small-amplitude or
large-amplitude flapping occurs for different flow velocities. It is shown that the flag exhibits a
periodic large amplitude−low frequency response mode when the cylinder is placed at a sufficiently
large distance in front of the flag. At smaller distances, when the flag is within the immediate wake
of the cylinder, the flag undergoes a high frequency−small amplitude response. Finally, the flag’s
piezoelectric power harvesting capability is investigated numerically and experimentally for
varying geometrical and electrical parameters associated with these two conditions. Two separate
optimal response modes with the highest energy output have also been identified.

1. Introduction

The dynamics of a flag in uniform flow have
been studied through various experimental [1, 2],
numerical [3–7], and analytical [8, 9] techniques.
Flag fluttering has also been employed to explore a
wide range of biological and engineering applications
including fish locomotion [10–13], wing fluttering
[14], and energy harvesting [15, 16]. The dynam-
ics of a flag in uniform flow can be categorized
into two canonical configurations: (a)—‘regular flag’
defined as the configuration with a fixed leading
edge and a free to flap trailing edge and (b)—
‘inverted flag’ configuration which is fixed at the
trailing edge and has a free-to-move leading edge.
When subjected to uniform flow, the flow-induced
flapping of flags can be classified into three groups
[17]: (a)—instability induced excitation (inverted

flag configuration), (b)—movement-induced excita-
tion (regular flag configuration), (c)—extraneously
induced excitation (flag behind a bluff body). The
periodic vortex shedding from the deflected posi-
tion of an inverted flag is the primary factor that
drives its sustained flapping dynamics [2, 6, 12]. In
contrast, the regular flag dynamics are self-excited
due to the dynamic feedback between the flag iner-
tia forces, elastic deflection and fluid forces [18, 19].
For flags behind bluff bodies, vortices shed from the
upstream bluff body have a critical effect on the flag
dynamics [20].

The response of the inverted flag configuration
is distinct from the regular flag. Previous studies
have shown that inverted flags become unstable at a
much lower critical velocity than regular flags [20]
while flags behind a bluff body lose their stability
at an even lower critical velocity [21]. Inverted flags
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Figure 1. The concept of a bio-inspired piezotree. To understand the energy conversion of many closely packed piezoleaves and
branches, one can consider an infinite piezoelectric farm with a piezoelectric flag behind a bluff body as a building block.

exhibit multiple response modes due to their inter-
action with flow [4, 22] and their response is highly
correlated with the leading-edge vortex separation
dynamics [23]. When placed in the wake of a bluff
body, the interaction of the bluff body wake and the
flag initiates distinct response modes. This includes,
but is not limited to, stationary responsemode (either
undeflected at small flow velocity or deflected at lar-
ger flow velocity), small amplitude flapping, and large
amplitude flapping modes [21]. These modes gen-
erally emerge from the balance between the fluid
dynamic forces from the vortex generated from the
upstream bluff body, the self-induced flow field, and
the internal bending stiffness of the flag, all intercon-
nected based on the flag instability behavior in uni-
form and perturbed flow conditions.

The dynamic instability of a flag behind a rigid
bluff body has recently drawn research interest due
to its potential advantages for energy harvesting
and bio-inspired locomotion. Allen and Smits [24]
observed that the vortices shed by an upstream rect-
angular plate induce periodic flapping flag motion
and can yield the lock-in between the vortex shed-
ding and flapping frequencies. Likewise, vortices shed
behind cylindrical bluff bodies can generate different
flappingmodes in flexible structures. Aquatic animals
often leverage vortex shedding from a front bluff body
or another live fish to reduce energy expenditure [25,
26]. Fish are shown to coordinate their movement
with shed vortices to improve swimming efficiency
[27]. The importance of vortices in fish locomotion is
also emphasized in the study of Beal et al [28], where it
was observed that a dead fish continues to swimwhen
it is behind a vortex generating cylinder. At a suffi-
ciently large distance from the cylinder, shed vortices
can enhance the thrust and flapping efficiency, while
at short distances, the vortices negatively influence the
propulsion [29]. Pan et al [30] observed that the sep-
aration distance and Reynolds number can play a role
in the flapping dynamics of flags behind a cylinder.

The fluttering motion of leaves is another bio-
logical example where the system’s response is
influenced by its aerodynamic interaction with the

surrounding branches [31]. Tree branches can act as
an upstream vortex generator, amplifying the flut-
tering behavior of leaves irrespective of variations in
wind velocity. On a smaller scale, to understand the
rich fluid-structure interaction (FSI) encompassing
such systems, the flapping of a flag has been used as an
idealized system for studying leaf fluttering dynamics
[2, 32].

The performance of the above and many other
biological systems are directly linked to their ability
to adjust to the surrounding flow. Thus, it is crit-
ical to identify their different FSI regimes to encode
these interactions into bio-inspired energy harvest-
ing and locomotion applications. One such applic-
ation considered in this paper is the bio-inspired
piezoleaf structure. Here a flexible piezoelectric thin
plate (hereafter generally referred to as a piezoelectric
flag mimicking a tree leaf) is placed behind a finite-
size bluff body representing a tree branch. The know-
ledge obtained from this study can guide the charac-
terization of a large, closely packed piezofarm. Also,
it can eventually lead the way to a bio-inspired design
of a piezotree wherein energy is harvested from a self-
similar fractal structure similar to a biological tree.
The concept and sequences of its building blocks are
shown in figure 1.

It is well-documented that the flow-induced
vibration of flexible plates/flags can be leveraged for
energy harvesting from ambient flow [33–35]. Piezo-
electric materials are often employed to transform
mechanical energy into electrical energy [36]. One
such design is the leaf-inspired piezoelectric wind
harvester, in which piezoelectric materials are con-
nected to a flexible plate. Oh et al [35] proposed
a tree-inspired design concept to harvest energy by
embedding polyvinylidene fluoride (PVDF) on leaves
on a tree. Subsequently, Nguyen et al [37], and Fang
et al [38] showed that the ‘artificial leaf ’ concept
can be employed to capture CO2 directly and con-
vert it into electricity. The idea of piezoleaves can
be extended to concurrently and robustly harvest
energy from irregular wind and solar power [33, 34].
While an individual piezoleaf can provide enough
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electrical power to drive small sensors & electronic
devices, a blue-sky concept is a ‘tree’ with thou-
sands of rationally arranged piezoleaves. These closely
spaced piezoleaves incorporate solar cells and har-
vest energy from the wind as well as the sun to reach
a much higher energy production limit. The pre-
cursor to such innovation is a better understanding of
piezoleaf vibration and energy harvesting in the prox-
imity of other objects.

Piezoelectric flags are shown to be suitable energy
harvesters for low energy devices [39–42]. Latif et al
[43] showed that maximum energy could be har-
vested for regular flags when the flag is positioned
outside the flow suction regime close to the cylin-
der. Also, Akaydin et al [39] observed that max-
imum power is harvested when the vortex shedding
frequency of the cylinder matches the natural fre-
quency of the piezoelectric flag. Shoele and Mittal
[15] showed that the inverted flag configuration in a
uniform flow ismore efficient than the regular flag for
piezoelectric energy harvesting due to its high flap-
ping amplitude. The amount of power harvested by a
piezoelectric energy harvester is also closely intercon-
nected to the flapping frequency and the oscillation
amplitude; both are strongly correlated with the flow
field around the flag, especially when the flag is placed
near a bluff body with a strong unsteady wake. For
example, one can consider an inverted piezoelectric
flag oscillating behind a cylinder, where the flag can
undergo two vibration modes: high frequency-low
amplitude oscillation in the wake or low frequency-
large amplitude fluid-elastic fluttering due to leading-
edge stall [44]. It is still unknown if the optimal
energy can be harvested when the inverted piezoelec-
tric flags undergo small amplitude-high-frequency
flapping or when they undergo a large amplitude-low
frequency flapping motion outside the wake region.

In this study, we first investigate the mechanisms
contributing to the dynamic response of piezoelectric
inverted flags subjected to vortex shedding from a cyl-
indrical bluff body. Distinct geometrical properties of
the cylindrical bluff body, separation distance (S/L),
and the non-dimensional flow speed (U∗) are var-
ied to obtain the flag’s response modes. Then differ-
ent electrical properties of the piezoelectric flag will
be explored numerically and experimentally to pre-
dict the responsemode associated with themaximum
power captured.

2. Numerical formulation and
experimental setup

2.1. Governing equations for
fluid-structure-electrical coupling of inverted flags
The structural dynamics of the 2D inverted
flag without piezoelectricity is governed by the
momentum equation written in the flag curvilinear
coordinate system (0⩽ s⩽ L) as Huang and Sung
[45], and Shoele and Mittal [15]:

ms
∂ 2X

∂t2
=

∂

∂s

(
σ
∂X

∂s

)
− ∂ 2

∂s2

(
κb

∂ 2X

∂s2

)
− F, (1)

wherems is the excessive mass of the flag per unit area
(ρs − ρ)hs with hs being the cross-sectional thickness
of the flag and ρs the flag material density. ρ is the
density of the fluid, U is the flow velocity, L is the
length of the flag, and kb is the flag’s flexural rigid-
ity. σ is the tension in the flag, and F is the force in the
Lagrangian frame exerted on the flag by the fluid. The
flag is assumed to be inextensible, and the in-plane
tension force σ is determined based on the inextens-
ibility condition of Xs ·Xs = 1.

We assume that the flag surfaces are covered with
infinitesimal piezoelectric patches of very small dis-
crete lengths compared to L [42]. Also, the electric
circuit is closely coupled with the inverted flag dur-
ing deformation. The electric voltage of the patches
is modified as a result of the charge transfer between
the flag surfaces during the stretching or compres-
sion of the patches. The piezoelectric patches cover
the entire surface of the flag. We denote the elec-
tric voltage between the coupled positive electrode of
each discrete patch as V(s, t), and the charge per unit
length as Q. These electrical quantities are related to
the deformation of the flag [15, 42] according to

Q(s, t) = cV + χ κ, (2)

∂Q

∂t
=−gV, κ=

∂ 2X

∂s2
· n, (3)

M(s, t) =−κbκ + χ V, (4)

where c is the linear capacitance of the piezoelec-
tric element, g is the linear conductivity coefficient
between the surfaces of the patches equal to the
inverse of the effective resistance between them. The
notation κ is used for the mean curvature at s, χ
is the coupling coefficient related to the material
properties of the piezoelectric patches and M(s, t)
denotes the total internal restoring moment. The
Euler–Bernoulli assumption for a slender piezoelec-
tric flag is used to identify the shear force along the
length as [46]:

∂M
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=−κb

∂

∂s
(κ)+χ

∂V

∂s
. (5)

Here, the first term is the associated with the
elastic bending force in equation (1) and the second
term is electromechanical coupling force. Finally,
the combined non-dimensional structural–electrical
equation from (1)–(5) can be written as,

∂ 2X

∂t2
=

∂

∂s

(
σ
∂X

∂s

)
− ∂ 2

∂s2

(
M∗

U∗ 2

∂ 2X

∂s2

)

+
α
√
M∗

U∗

[
∂

∂s

(
∂V

∂s
n

)]
−M∗F, (6)
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β
∂V

∂t
=−V− αβ

√
M∗

U∗
∂

∂t
(κ). (7)

where similar notations are used for non-dimensional
variables as their corresponding dimensional
quantities.

The non-dimensional parameters that character-
ize the coupled structural–electrical equations are
listed as:

M∗ =
ρL

ms
, U∗ = UL

√
ρL

κb
, α=

χ
√
κbc

, β =
cU

gL
.

(8)

whereU∗ andM∗ quantify the relative importance of
the flexibility and inertia of the inverted flag, respect-
ively, while α, and β are the electromechanical coup-
ling and electrical tuning coefficients. The Lagrangian
force F [47, 48] is modeled as the feedback forcing
term,

F= αf

ˆ t

0
(Us −Uf)dτ +βf(Us −Uf), (9)

where U f is the interpolated fluid velocity at the sur-
face of the flag, Us =

dX
dt is the flag velocity, while αf

and βf are coefficients used to satisfy the stability cri-
terion, αf∆t2/∆s= 0.4 and βf = αf∆t reported in
[48]. A smooth four-points delta kernel function is
then used to interpolate the Lagrangian fluid velocity
at the flag surface from the Eulerian fluid velocity in
the bulk region [49],

Uf(s, t) =

ˆ
Vf

u(x, t)δ(X(s, t)− x)dx, (10)

where u is the non-dimensional flow velocity. Sim-
ilarly, the Eulerian fluid body force (feedback force
density for the FSI) is calculated from the flag’s Lag-
rangian force as,

f(x, t) =

ˆ
S
F(s, t)δ(X(s, t)− x)ds. (11)

The non-dimensional Navier–Stokes momentum
and continuity equations for incompressible fluids
are the governing equations for the fluid flow and are
expressed as:[

∂u

∂t
+u ·∇u

]
= −∇p+

1

Re
∇2u+ f, (12)

∇·u= 0 (13)

p is the dynamic pressure, Re= ρUL/µ is the Reyn-
olds number with µ being the dynamic viscosity.

Following Michelin and Doaré [42], and Shoele
andMittal [15], themean piezoelectric power harves-
ted is calculated from the instantaneous power of the
coupled piezo-patches and normalized with the kin-
etic energy flux around the flag, ρU3L, as

PPIEZO =
P

ρU3L
=

1

β

ˆ 1

0
V2ds. (14)

The inverted flag has the following boundary con-
ditions: the fixed boundary is imposed at the trailing
edge, and the free boundary condition is implemen-
ted at the leading edge. The details of numerical
implementation for solving the fluid, structural and
electrical equations are described in Shoele andMittal
[15]. The Reynolds number used for the simula-
tion is 600. The mass ratio (M∗) is fixed at five fol-
lowing a sensitivity study to ensure that the model
can approximate the response of a submerged piezo-
plate in the water tunnel experiments conducted here
(section 2.2). Also, the upstream cylindrical bluff
body is kept stationary in this study. The compu-
tational domain size shown in figure 2(a) is fixed
at 0⩽ x⩽ 25L,−10L⩽ y⩽ 10L identified from the
domain sensitivity tests. The cylinder is discretized
with πD/∆sD points, where∆sD = 0.0045, while the
flag is properly discretized with 147 points, and the
fluid grid with 1180× 792 points in x and y direc-
tions. This grid size is sufficient for convergence as
shown in figure 2(b) where different grid sizes (∆x=
0.01,0.008,0.00625), are tested for U∗ = 2.1, while
the ratio of fluid grid size (∆x) and structural grid
size (∆s) is kept constant at ∆s/∆x= 0.8 following
the optimal relation given in [48]. A uniform velo-
city is assumed at the inlet, and a convective outflow
boundary condition is assumed at the outlet. A Neu-
mannboundary condition is imposed for the pressure
on all boundaries. The fluid grid spacing of 0.006 25
is used for this study. All simulations are performed
until all transient responses pass and only after this
period, the simulation outputs are used for the calcu-
lation of results shown in section 3.

2.2. Experimental setup
A flexible piezoelectric bimorph beam is fabric-
ated for the experimental portion of the study. The
bimorph is comprised of a tempered stainless-steel
substrate (of thickness 76µm), with each side host-
ing a 110µm PVDF film bonded in vacuum using a
thin 10µm layer of a high shear strength epoxy (3M
ScotchWeldTM DP460). The vacuum bonding pro-
cess is described in more detail in [50]. The PVDF
film covers the entire area of the steel substrate,
with an overhang length of 75mm and a width of
51mm in the cantilever configuration. The steel sub-
strate provides a robust series connection for the
two PVDF layers, producing an effective capacitance
of Cp = 2.9 nF. The piezoelectric material is water-
proofed with multiple thin layers of a flexible rub-
ber coating (Plasti Dip), yielding an average water-
proofing thickness of 240µm for each side. Once the
sample is waterproofed, it is fixed to a 3D-printed
hydrodynamic two-part polylactic acid (PLA) clamp.
The clamped bimorph is seen in figure 3(a) with a
representative clamp cross section, and an illustration
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Figure 2. Inverted piezoelectric flag behind a cylindrical bluff body with incoming fluid flow.

Figure 3. (a) The cantilevered bimorph sample, (b) a visualization of the bimorph with the thickness of each layer indicated, and
(c) the experimental setup featuring an upstream bluff body and the mounted bimorph sample.

of the through-thickness components of the bimorph
is shown in figure 3(b).

The experiments are performed in a water tun-
nel manufactered by ELD Inc. with the setup seen in

figure 3(c) at room temperature (20 ◦C). The water
tunnel hosts a square test section measuring 152mm
in directions perpendicular to flow, and 457mm
in the flow direction. The setup features a cylinder
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placed at a specified distance upstream from the
sample. The considered cylinder diameters are 15mm
and 28.5mm corresponding to D/L= 0.20 and 0.38,
respectively. The voltage from the bimorph is read
across a load resistance connected in series. The res-
istance values are set with an adjustable resistance box
and range from 1MΩ up to 100MΩ for a range of
flow speeds between 0.16m s−1 and 0.50m s−1 and
Re= 14000 using a high impedance (>1GΩ) DAQ
(NI 9215). The transverse vibration velocity of the
beam is recorded simultaneously at a location 14mm
from the base with a PDV-100 laser Doppler vibro-
meter. The flow speed is incremented in fine steps of
0.008m s−1 with a 20 s dwell at each speed using an
automated script that controls the motor frequency.
The average power output is then calculated using the
known voltage and load resistance values.

3. Results

The flag behind a cylindrical bluff body shows three
response modes when Re= 600: (1)—stationary
mode, (2)—small amplitude flapping mode (SAF),
and (3)—large-amplitude flapping mode (LAF).
These modes strongly depend on the separation dis-
tance (S/L) of the flag and cylinder, the diameter of
the cylinder (D/L), and the non-dimensional velo-
city (U∗). When the flag is very close to the cyl-
indrical bluff body (S= 0.4L), here atU∗ = 2.1 (cor-
responding to a self-oscillatory mode of the flag in
uniform incoming flow), it exhibits either the sta-
tionary or the SAF modes. As shown in figure 4(a),
for small cylindrical diameters D/L⩽ 0.25, the flag
remains stationary with zero amplitude. Here, the
flag is trapped within the wake of the cylinder, and
the flow remains attached to the cylinder and flag,
as shown in figures 5(a) and (b) [30]. For larger
cylindrical diameter of 0.30⩽ D/L⩽ 0.4, a coherent
vortex street appears in thewake of the cylinder due to
an increase in the bluff body diameter. This initiates
the forcedmotion of the flag and results in SAFwithin
the wake, shown in figure 5(c). In this case, two effects
contribute to the flag oscillation: the periodic force
from the vortex street and flow-induced stiffness due
to themotion of the flag in the wake of the cylinder. In
particular, there is a finite region immediately behind
the cylinder with low pressure and a large pressure
gradient in the cross-flow direction. As the flag oscil-
lates across this region, there is an extra flow-induced
stiffness that limits the vibration amplitude of the flag
and prevents the amplification of SAF to LAF other-
wise happening at a larger S/L range. It is observed
that the flapping amplitude is influenced by the vortex
shedding from the bluff body. Also, the vortex force
increases with increasingD/L in this region, as shown
in figure 4(a).

When the flag is placed farther from the cylin-
der (S= 0.8L), it exhibits all three response modes
when Re= 600 depending on the size of the bluff

body diameter. When U∗ = 2.1, for narrow cylin-
ders, D/L⩽ 0.2, vortices are now periodically shed
between the cylinder and the inverted flag as shown
in figure 5(d). This is different from what is observed
when S= 0.4L for the same configuration, suggesting
that beyond an optimal separation distance, the flag
has a limited effect on the vortex shedding of the cyl-
inder and regular Kármán vortex street from the bluff
body occurs. Here, the energetic vortices kick start the
flag’s excitation, and the flag exhibits LAF mainly due
to its inherent interaction with the flow. The cylin-
der acts as a triggering front body which essentially
cause the flag to start vibrating at smaller U∗ value.
Beyond this region, at D/L= 0.25, the flag reverts to
the stationarymode as the bending stiffness of the flag
dominates the fluid inertia, as shown in figure 5(e). At
0.30⩽ D/L⩽ 0.4, even if the flag is stiffer, stronger
regular vortex pairs are present in the approaching
flow to the flag and this induces SAFmode within the
wake of the cylinder. The flapping amplitude becomes
larger with an increase in the cylinder diameter, as
shown in figures 4(a) and 5(f).

At the farthest distance from the bluff body (S=
1.4L) when Re= 600 and U∗ = 2.1, LAF occurs for
all the bluff body diameters (D/L) as shown in
figure 4(a).Here, the flag is outside the near body low-
pressure region and the main mode of the interaction
is the leading-edge vortex separation of the inverted
flag in the perturbed flow. For all cases, periodic vor-
tex shedding from the cylinder initiates LAF motion
and the subsequent flag dynamics is mainly due to its
interaction with the flow as shown in figures 5(g)–(i).
The flapping amplitude reduces slightly at 0.20⩽
D/L⩽ 0.3 as the approaching flow velocity to the
flag reduces and the bending stiffness slightly domin-
ates.When 0.35⩽ D/L⩽ 0.4, the flapping amplitude
increases again as more energetic vortices are shed
from wider bluff body diameter.

High flapping amplitude does not correspond to
high frequency, as shown in figure 4(b), and instead,
the reverse trend is the case. The flag experiences its
highest Strouhal number (St= fL/U) at the region
of SAF for S= 0.4L, and 0.8L while the flapping fre-
quency is much lower when the flag undergoes LAF.
Also, it is observed that St (defined based on the flag’s
length) increases with increasing bluff body diameter
for all cases as anticipated. Given that the scaling of
the power capturing of the flag in its first mode of
vibration has a linear relation to the vibration amp-
litude and a quadratic relation to flapping frequency,
both SAF and LAF can be potentially good scenarios
for piezoelectric energy harvesting. This will be dis-
cussed in section in section 3.3.

For allD/L and S/L cases, we investigate the effect
of Re by studying the flapping dynamics of the flag
associated with Re= 1200 at U∗ = 2.1 as shown in
figures 4(a) and (b). It is observed that the flag only
exhibits the SAF and LAF modes, while the station-
ary mode does not occur. The results suggest that
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Figure 4. (a) Peak-to-peak displacement amplitude and (b) Strouhal number of the flag for cylinder diameter D/L= 0.1–0.4,
separation distance S= 0.4L, 0.8L, 1.4L, and U∗ = 2.1 for Re= 600 (solid lines), and Re= 1200 (dashed lines).

Figure 5. Vorticity contours of the inverted flag behind the cylinder at maximum deflected position for diameter D/L= 0.1,0.25,
and 0.4, separation distance S= 0.4L,0.8L, and 1.4L, and non-dimensional velocity U∗ = 2.1.

increasing Re leads to a more energetic interaction
between the vortices in the cylinder’s wake and the
flag, thereby eliminating the attached flow beha-
vior and the stationary mode observed previously.
Also, an increase in Re reduces the distance where
the alternating vortex street forms behind the cylin-
der. For the smallest separation distance (S= 0.4L),
the flag exhibits the LAF or SAF modes depend-
ing on D/L due to the increased flow unsteadiness.
When D/L= 0.1, periodic vortex shedding occurs at
a shorter distance from the cylinder, thus exciting the
flag into the LAF mode. However, as the cylinder dia-
meter increases (D/L= 0.15–0.25), vortex pairs are

alternatively placed on either side of the flag, indu-
cing SAF in the cylinder’s wake. When 0.3⩽ D/L⩽
0.4, the flag reverts to the LAF mode as the bluff
body induces stronger vortices and pressure fluctu-
ation on the flag. For S= 0.8L and S= 1.4L, the
increased flow inertia induces periodic vortex shed-
ding from the cylinder, which excites the flag into
the LAF mode for all D/L with a slightly larger
amplitude as shown in figure 4(a). Also, the same
trend of St is observed for Re= 1200. The highest
St is associated with the SAF mode, while flags that
undergo LAF have a relatively lower St as shown in
figure 4(b).
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Figure 6. Peak-to-peak displacement amplitude of the inverted flag behind the cylinder for (a) S= 0.4L (b) S= 0.8L and
(c) S= 1.4L when U∗ = 1.41−2.58 and cylinder diameter D/L= 0.1−0.4. The stationary mode is depicted with hatched green
lines.

3.1. Effect ofU∗ on the flag’s dynamics
The dynamics of an inverted flag in both uniform
and perturbed flow conditions is highly depend-
ent on U∗ [23]. Here, the non-dimensional velocity
is varied from 1.41⩽ U∗ ⩽ 2.58, while the separa-
tion distance is kept constant at representative values
of S= 0.4L,0.8L,1.4L. The cylinder diameter vary
between 0.1< D/L⩽ 0.4. The inverted flag exhibits
three major modes over a wide range of U∗. When
S= 0.4L, for all U∗ cases, the flag is either trapped
or oscillates within the wake of the cylinder. The flag
dynamics is almost independent of U∗ as shown in
figure 6(a) and instead is a function of vortex shed-
ding by the cylinder. The flag remains stationary for
narrow bluff body diameters (D/L⩽ 0.25) as vor-
tex shedding does not occur. For wider diameters,
0.3⩽ D/L⩽ 0.4, the flag exhibits SAF motion due
to stronger vortices shed from the cylinder. Also, as
U∗ reduces in this range (wide cylinder diameters),
the flapping amplitude gradually reduces due to the
increase in the flag’s internal bending stiffness com-
pared to the fixed fluid dynamic force from the vor-
tex street behind the bluff body. It is also observed that
the flapping amplitude slightly increases with increas-
ing cylinder diameter, as shown in figure 6(a).

When S= 0.8L, the effect of U∗ becomes more
obvious, as shown in figure 6(b). For U∗ < 1.8 and
0.1⩽ D/L⩽ 0.3, the flag remains stationary. Though
vortex shedding occurs between the flag and the
bluff body in this region, the internal bending stiff-
ness of the flag is dominant, thereby preventing the
flag from flapping with either a higher amplitude or
undergoing SAF motion. For wider cylinder diamet-
ers (0.35⩽ D/L⩽ 0.4) in the same U∗ range, the
flag undergoes SAF as more energetic vortices are
shed. When U∗ > 1.8, and D/L⩽ 0.2 the flag kick-
starts SAF and the flapping amplitude increases as
U∗ increases (flow becomes more energetic) until it
begins a periodic LAF motion when U∗ ⩾ 2. When
U∗ > 1.8, for wider cylinder diameters (0.3⩽ D/L⩽
0.4), although the wake is more energetic, vortices are
placed on both sides of the flag, which initiates its SAF

motion as shown in figure 5(f). Here, the flag does
not bifurcate to LAF as the periodic action of the vor-
tex pairs in the wake controls the growth and separ-
ation of the leading-edge vortex of the flag. The flap-
ping amplitude slightly increases with increasing bluff
body diameter and U∗ in this range. For the particu-
lar case ofD/L= 0.25, the flag remains stationary for
all U∗ as previously explained.

When S= 1.4L, vortex shedding occurs between
the flag and the bluff body for all U∗ and D/L cases.
When U∗ < 1.7 and D/L⩽ 0.2, the flag remains sta-
tionary and only starts having SAF for larger cylinder
diameters (0.25⩽ D/L⩽ 0.4). The flapping amp-
litude also increases with increasing D/L as observed
in previous cases. When U∗ > 1.7, the flag first
undergoes SAF before transitioning to LAF at higher
U∗ as shown in figure 6(c). It is also observed that
the flapping amplitude slightly decreaseswhenD/L≈
0.25 for 1.7⩽ U∗ ⩽ 2.1, as previously observed. This
result suggests that with small changes in either
U∗ and/or cylinder size, it would be possible to
actuate either SAF or LAF motions for the desired
application.

3.2. Effect of S/L on the flag’s dynamics
Here, we vary the separation distance between the
flag and bluff body to examine the effective distance
beyond which SAF or LAF motion occurs. Also, the
non-dimensional velocity is varied between 1.41⩽
U∗ ⩽ 2.58, for three bluff body diameters of D/L=
0.15,0.25,0.4. When D/L= 0.15, the flag remains
stationary for U∗ ⩽ 1.8 and all separation distances.
In this case, there is a stable and extended wake
behind the cylinder, which extends the wake shadow-
ing effect to a large distance behind the body. Lim-
ited momentum exchange occurs between the free
stream and the stable wake of the cylinder; there-
fore, the leading edge vortex of the inverted flag does
not strengthen, and there is no vibration. At U∗ >
1.8, the flag remains stationary when S/L< 0.6, bey-
ond which the flag first exhibits SAF motion for the
range of 0.6⩽ S/L< 0.8. For the larger D/L range,
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Figure 7. Peak-to-peak displacement amplitude of the inverted flag behind the cylinder for (a) D/L= 0.15 (b) D/L= 0.25 and
(c) D/L= 0.4 when U∗ = 1.41–2.58 and cylinder diameter D/L= 0.1–0.4. The stationary mode is depicted with hatched green
lines.

vortex shedding from cylinder occurs, and the rows
of similar sign vortices are convected downstream
on both sides of the flag. After this region (S/L⩾
0.8), vortex shedding occurs between the cylindrical
bluff body and the flag and the wake recaptures most
of its kinetic energy due to the action of the vor-
tices. This results in the LAF motion of the flag as
shown in figure 7(a). Overall, it is found that the
effective distance between the bluff body and flag
where LAF occur and vortices are shed between them
is∼S/L= 0.8.

For an intermediate cylinder diameter, D/L=
0.25, for all U∗ and S/L⩽ 0.8 the flag remains sta-
tionary similar to figures 5(b) and (e). In this case, the
cylinder diameter is not wide enough to induce a large
velocity at the leading edge of the flag and create a
leading-edge vortex separation required for SAF. Fur-
thermore, the flag stabilizes the shear layers originat-
ing at the cylinder and prevents the Kármán vortex
street from forming in front of the flag, which other-
wise amplifies the flag oscillation to LAF as observed
at larger separation distances. When S/L⩾ 0.8 and
U∗ > 1.8, periodic vortex shedding now occur with
SAF motion when 0.8⩽ S/L< 1, and LAF when
S/L⩾ 1 and U∗ > 2 as shown in figure 7(b). The
effective separation distance between the bluff body
and the flag where LAF occurs is∼S/L= 1.

When the bluff body is wider, for example,D/L=
0.4, the flag either exhibits SAF or LAF motion
depending on whether the flag is inside or outside
the immediate wake region with low pressure. LAF
motion occurs for a wider range of separation dis-
tance for sufficiently flexible flags (high U∗). In this
case, the wake of the cylinder only triggers the ini-
tiation of leading-edge vortex separation, while the
subsequent vibration of the flag is independent of
the cylinder characteristics. The separation distance
where LAFmotion occurs becomesmuch larger asU∗

reduces as shown in figure 7(c). For other separation
distances, the flag undergoes SAF motion. The sta-
tionarymode does not occur forwide cylindrical bluff
bodies because vortices are strong enough to induce

periodic force on the flag and cause low amplitude
oscillation.

In all of the oscillatory cases, it is found that the
flag has two stable periodic orbits. The first limit cycle
oscillation is from the interaction between the shear
layers and vortex separation at the leading edge. The
small-amplitude oscillation of the flag stabilizes the
shear layer. In this case, the leading edge vortex separ-
ation is in the opposite direction of the flag oscillation
and creates a restoring force on deflecting flag. In the
second limit cycle response, the cylinder only creates
the perturbation necessary for the flag to initiate its
large amplitude fluttering motion. During this con-
dition, the oscillation of the flag is self-driven, caused
by the initiation and strengthening of the leading-
edge vortex. During each cycle, the leading edge vor-
tex separation happens in the direction of the flag
motion, and the oscillation is driven by the interac-
tion between the leading and trailing edge vortices of
the flag.

3.3. Piezoelectric energy harvesting
We now examine the power harvested in the inver-
ted flag when S= 0.8L. Also, two-cylinder diameters
are numerically simulated to show the energy cap-
tured in the low frequency LAF region (D/L= 0.2)
when vortices are shed between the flag and the cyl-
inder and high frequency SAF region in the wake
(D/L= 0.4). Themean piezoelectric power harvested
(PPIEZO) is calculated for varying electromechanical
coupling coefficient α= 0.1–0.5, electrical resistivity
β= 0.1–10, and U∗ = 1.41−2.2.

3.3.1. Low electromechanical coupling (α= 0.1)
When α= 0.1, the piezoelectric patches are loosely
coupled with the flag through its flapping cycle. For
U∗ = 1.41–1.8, when D/L= 0.2, lower piezoelectric
power is harvested as the flag undergoes SAF. At
higher velocity U∗ > 1.8, as the flag undergoes LAF
motion, higher power is harvested. It is observed that
PPIEZO increases with increasing electrical resistivity
up to β= 1, which corresponds to similar resistive
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Figure 8.Mean piezoelectric power (PPIEZO) harvested at low electromechanical coupling (α= 0.1) for (a) D/L= 0.2, and
(b) D/L= 0.4 when U∗ = 1.41–2.2 and separation distance is S= 0.8L.

Figure 9.Mean piezoelectric power (PPIEZO) harvested at medium electromechanical coupling (α= 0.3) for (a) D/L= 0.2, and
(b) D/L= 0.4 when U∗ = 1.41–2.2 and separation distance is S= 0.8L.

and convective timescale of the flow over the flag.
Beyond this, an increase in electrical resistivity has
a limiting effect on the total harvested power, sug-
gesting that β= 1 is the most efficient electrical res-
istivity in the LAF regime. Also, it is observed that
PPIEZO increases with increasing U∗, as the highest
power is obtained at U∗ ⩾ 2.1. When D/L= 0.4,
for all U∗, the flag undergoes a high frequency SAF
motion. Here, PPIEZO also increases with increasing
electrical resistivity before decreasing at higher β val-
ues as shown in figure 8(b). Higher PPIEZO is also
captured as U∗ increases for all β cases. Overall, the
highest power is associated with the large-amplitude
low-frequency region (D/L= 0.2), which indicates
that an increase in amplitude influences the harvested
piezoelectric powermore than an increase in flapping
frequency.

3.3.2. Moderate electromechanical coupling (α = 0.3)
When the piezoelectric patch is closely coupled with
the flag (α= 0.3), higher PPIEZO is harvested for all
parameters with small feedback on the dynamics of

the flag. For D/L= 0.2 and 1.41⩽ U∗ ⩽ 1.9, lower
piezoelectric power is harvested as the internal bend-
ing stiffness effect dominates the fluid force and
the flag undergoes SAF. When U∗ > 1.9, it is also
observed that for all β values, PPIEZO increases as the
flow becomes more energetic and LAF occurs (i.e. as
U∗ increases) as shown in figure 9(a). Also, β follows
the same trend as the previous case with an increasing
value of PPIEZO up to β= 1, and a reduction in power
captured at higher β values. When D/L= 0.4, only
SAF occurs, and PPIEZO increases withU∗. Also, β= 1
is the optimal electrical resistivity following previous
trends as shown in figure 9(b).

3.3.3. High electromechanical coupling (α= 0.5)
Here the piezoelectric patch is tightly coupled with
the flag, thereby modifying the flag dynamics. The
flag only exhibits its response modes atU∗ < 2 for all
electrical parameters. At higher velocity, flag instabil-
ity occurs due to the high mismatch in the stiffness
of the piezo-patch and flag. Here, the PPIEZO follows
the same trend as in previous cases as U∗ > 1.9 and
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Figure 10.Mean piezoelectric power (PPIEZO) harvested at high electromechanical coupling (α= 0.5) for (a) D/L= 0.2, and
(b) D/L= 0.4 when U∗ = 1.41–2 and separation distance is S= 0.8L.

Figure 11. Dimensional experimental results of (a) RMS velocity obtained at a length 19% from the clamp, (b) the average power
harvested, and (c) the dominant frequency present in the voltage data, all plotted with the flow speed and load resistance for
D/L= 0.38 and S= 0.8L.

β= 1 are the most optimal parameter. However, for
both cylinder diameters, a reduction in the overall
harvested power occurs when compared with α= 0.3
as shown in figures 10(a) and (b). This occurs because
an increase in α induces extra stiffness on the flag,
whichmodifies its flapping dynamics and reduces the
flag’s flapping amplitude, thereby reducing the piezo-
electric power harvested. Overall, the highest power is
captured whenα= 0.3 forD/L= 0.2 andD/L= 0.4.

3.4. Comparison with experiments
In order to obtain physical intuition about the beha-
vior of the inverted flag, dimensional experimental
results, including the velocity, the average power, and
the dominant frequency present in the voltage sig-
nal, are plotted against the flow speed and load res-
istance in figures 11(a)–(c), respectively. The PVDF-
based piezoelectric flag used in the experiments
has a low electromechanical coupling of α= 0.1,
making the structural response insensitive to the
load resistance. This is confirmed in figure 11(a),
where the load resistance is observed not to influ-
ence the structural motion. Overall, the trend in

the velocity is non-monotonic with flow speed, with
two local maxima observed near U = 0.38m s−1 and
U = 0.50m s−1. The maximum at U = 0.38m s−1

corresponds to the SAF regimewhere the vortex shed-
ding frequency from the cylinder matches the struc-
tural resonance frequency. Further increments in flow
speed yield a decreasing structural velocity due to the
vortex shedding frequency increasing above the struc-
tural resonance up to U = 0.45m s−1. Past this flow
speed, the dynamics of the system transition from
SAF to LAF, causing the structural oscillation velo-
city to increase again withU. The twomaxima corres-
ponding to the SAF and LAF regimes are also distinct
in the average power in figure 11(b), with respect-
ive average power outputs of 14µW and 45µW. Note
that, in the SAF regime, the structural response fre-
quency is governed by the vortex shedding frequency
that increases monotonically with flow speed, as seen
in figure 11(c) for low U. When the flag begins LAF
motion near U = 0.45m s−1, the structural response
is no longer dominated by the vortex shedding fre-
quency; instead, the flag undergoes a low frequency
and a high amplitude deflection that extends bey-
ond the wake of the cylinder. These differences in
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Figure 12. Experimental piezoelectric power (Poweravg) harvested at low electromechanical coupling (α= 0.1) for (a) D/L= 0.2,
and (b) D/L= 0.38 when U∗ = 0.68–2.07 and separation distance is S= 0.8L.

the structural response frequency cause the optimum
load resistance in figure 11(b) to shift from roughly
20MΩ for U = 0.38m s−1 to above 100MΩ for U=
0.50m s−1 per the first order optimal circuit load
expression Ropt = 1/(ωCp) [36].

The experimental average power is also shown in
figures 12(a) and (b) forD/L= 0.20 andD/L= 0.38,
respectively, with the dimensionless quantities U∗

andβ. Note that experimentallyU∗ is incremented by
changing the physical flow speed while β is adjusted
by changing the load resistance. Because β depends
on both load resistance and flow speed, the non-
dimensional experimental results for PPIEZO yield a
curved surface. The power output here contains the
same optima as observed in the analogous dimen-
sional figure in figure 11(b)—a local optimum power
output is present at a relatively low U∗ in SAF (near
1.0 for D/L= 0.20 and 1.4 for D/L= 0.38), whereas
higher power is observed near U∗ = 2 in LAF for
both cylinder diameters. In the SAF case, the vibra-
tion of the beam is constrained within the wake of
the cylinder akin to figure 5(f), for example—for the
wider cylinder case of D/L= 0.38, the beam’s deflec-
tion levels are larger, which leads to higher power out-
put than the D/L= 0.20 case. The average power in
LAF is similar for both cylinders.

The numerical results for the case with low elec-
tromechanical coupling in figure 8 are qualitatively
similar to the experimental results in figure 12; for
each case, the highest power output is observed near
U∗ = 2 and β= 1. Certain dissimilarities are also
present due to differences in the experimental and
numerical setups. For example, the maximum exper-
imental power for both D/L= 0.20 and D/L= 0.38
is of similar magnitude, whereas numerically, the
flag behind the narrow cylinder (D/L= 0.20) has a
much higher maximum power than its wide cylinder
counterpart. This is because LAF was not observed
numerically for wider cylindrical bluff bodies (e.g.

D/L= 0.4) at S= 0.8L and Re= 600, where the flag
flaps within the wake of the cylinder. The differ-
ence in the response mode at this D/L and S/L is
due to the higher Reynolds number of the exper-
iment. It is shown in section 3 (figure 4(a)) that
at U∗ = 2.1 and S= 0.8L, an increase in Re causes
more energetic interactions between the shed vor-
tices and the flag, which induces LAFmotion for flags
behind wider cylinders. The higher experimental Re
andmore intense vortex shedding by the cylinder res-
ult in higher flapping amplitude of the flag for wider
D/L values than those observed numerically, ulti-
mately leading to similar maximum power for both
D/L= 0.20 and D/L= 0.38 experimentally. Overall,
the highest piezoelectric power is harvested when the
flag undergoes large-amplitude flapping motion for
U∗ above 2 and β near unity, which is consistent both
experimentally and numerically.

4. Conclusion

We studied the dynamics of a flag behind a cyl-
indrical bluff body and observed that its flap-
ping modes strongly depend on the separation dis-
tance between the flag and the cylinder, the non-
dimensional reduced velocity, and the cylinder dia-
meter. For a small separation distance, the flag is
trapped in the cylinder wake when Re= 600. Also,
when the cylinder diameter is small, the cylinder
wake remains steady, and the flag stays in its sta-
tionary mode. As the cylinder diameter increases, the
vortex pair sheds farther from the cylinder on both
sides of the flag, inducing a small-amplitude high-
frequency flapping motion. The flapping amplitude
also increases as cylinder diameter increases in this
range. Large-amplitude flapping occurs when the flag
is set farther downstream, and the periodic Kármán
vortices are shed between the flag and the cylinder for
smaller cylinder diameters.U∗ has a more significant
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effect in this regime as the periodic large-amplitude
flapping of the flag is only obtained at higher reduced
velocities. As the cylinder diameter increases, the flag
reverts to the small amplitude high-frequency vibra-
tionmodewithin the cylinderwake extent. At a higher
separation distance, the flag flaps with a large amp-
litude for a wider range of velocities. When Re=
1200, the flag does not exhibit the stationary mode
for all cylinder diameters and separation distance due
to increased flow inertia. Only a small or large amp-
litude flapping motion is obtained here.

The harvested piezoelectric power depends on the
flag’s responsemodes. Experiments using a piezoelec-
tric flag with low electromechanical coupling showed
trends similar to the corresponding numerical res-
ults. It is observed both experimentally and numer-
ically that higher power is harvested when the flag
undergoes large amplitude low-frequency vibrations
than small-amplitude high-frequency vibrations in
the cylinder wake. This suggests that the amplitude
is a more crucial factor than the flapping frequency
in enhancing piezoelectric power harvesting. It is also
found that α= 0.3 is the most efficient electromech-
anical coupling. Beyond that, a higher coupling coef-
ficient induces extra stiffness, modifying the flag’s
flapping amplitude and reducing the harvested piezo-
electric power. Also, the harvested power increases
with increasing U∗ numerically. It is found that
β= 1 is the most efficient electrical resistance for all
cases wherein the resistive timescale is approximately
similar to the convective timescale of the flow over
the flag.

It is worth mentioning that while the flag’s large
amplitude vibration is directly associated with amore
significant power capture, this dynamic mode might
not be optimal for a piezofarm wherein multiple
piezoelectric plates are closely placed next to each
other, as discussed in the introduction. In a farm
setup, the distribution of power capturing between
rows of the farm should be adjusted such that some
frontal flags flap with a small amplitude to allow the
energetic flow penetrates inside the farm while sim-
ultaneously maximizing the overall harvested energy.
Then, combining small and large amplitude vibra-
tion modes can be more effective in reaching an
optimal arrangement. The optimum electrical, struc-
tural, and geometrical parameters identified in this
study (single piezoleaf-branch interaction) can be
leveraged toward forming a surrogate model for the
design and quantification of a piezofarm with mul-
tiple closely packed piezoelectric flags and cylinders
for optimal power production from the whole group.
Eventually, the identified response modes can be
leveraged into a more complex yet sustainable energy
harvesting concept of a piezotree with a collection of
many leaves and branches to harvestmaximumpiezo-
electric power near roads and inside densely popu-
lated areas built environments [51, 52].
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