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A B S T R A C T   

We experimentally investigate and characterize high order Lamb wave modes in a dry human skull. Specifically, 
we show that the diploë supports distinct wave modes in the sub-1.0 MHz frequency regime, and we employ 
these modes for the estimation of equivalent mechanical properties of cortical and trabecular bones. These modes 
are efficiently generated in a parietal region by direct contact excitation with a wedge beam transducer, and are 
recorded via infrared laser vibrometry. Frequency/wavenumber data are estimated using a matrix pencil method 
applied to wavefield measurements recorded on the outer cortical surface. The semi-analytical finite element 
model of an equivalent three-layered plate provides the platform for the identification of wave modes based on 
their through-the-thickness profiles, and supports the estimation of equivalent mechanical properties in 
conjunction with an optimization algorithm developed for this purpose. The results presented herein illustrate 
how high order Lamb waves can be used to gain understanding of the wave properties of a human skull and to 
estimate the orthotropic and equivalent isotropic mechanical properties of cortical and trabecular bones.   

1. Introduction 

Recently, guided ultrasonic waves (GUWs) have emerged as a viable 
tool to complement transcranial focused ultrasound (tFUS) for brain 
imaging and therapy, especially at the brain periphery or skull-brain 
interface [1]. While tFUS applications are inherently limited to central 
regions of the brain and suffer from major drawbacks such as bone 
heating and inefficient transmission [2–7], GUWs can exploit the 
waveguide-like nature of the cranial bone to efficiently focus ultrasound 
waves into the brain by mode conversion [1]. Moreover, the ability of 
GUWs to carry mechanical energy for long distances may be considered 
for the inspection of different areas of the cranial vault or to reach both 
the near and far field regions of the brain. Thus, effective employment of 
GUWs may increase the medical possibilities offered by ultrasound im-
aging and possibly create new treatment options for a variety of 
neurological conditions. 

Guided waves are highly dispersive [8–13], with a nonlinear 
frequency-wavenumber relation for each of the infinite number of 
modes supported by the waveguide. Thus, the effective use of GUWs for 
imaging and/or material characterization strongly relies on the a priori 
knowledge of the dispersion properties of the medium under 

consideration. In recent years, different studies have investigated the 
dispersion properties of long [14–16] and cranial [17–21] bones. Near- 
field guided waves have been first experimentally observed by Estrada 
et al. in rodent [22,23,20] and human [19,20] skulls. In these works, 
water-immersed skull samples were excited with short laser pulses on 
their outer surface, while their near-field optoacoustically-induced 
response was measured using needle hydrophones that closely map the 
skull’s inner surface. The experimental near-field dispersion diagrams 
were then interpreted with the aid of multi-layered plate waveguide 
models, which were used to determine the corresponding numerical 
Lamb wave dispersion spectra. By using the above methodology, it was 
demonstrated that quasi-Rayleigh guided modes can propagate within 
the cortical tables of a human skull in the 0.2–1.5 MHz regime [19]. 
However, although high order modes were also excited in the skull 
sample, their individual identification was made difficult by experi-
mental setup limitations and by the strong scattering occuring within the 
diploë. These limitations suggest that such effects still need to be 
explored. A different approach was presented in Adams et al. [17,18], 
where the group velocity dispersion curves of leaky Lamb modes were 
numerically computed in a water-immersed skull by means of a concave 
phased array transducer. Using a three-layered cylindrical waveguide as 
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supporting mathematical model, the authors demonstrated numerically 
that the concave array setup could be used to generate and detect several 
flexural modes. More recently, experimental and numerical in-
vestigations of guided waves in a 3D-printed bone phantom generated 
from CT scan images of a human skull were presented in Gao et al. [21]. 
Although high order Lamb modes were observed, the bone phantom did 
not include the diploë and the materials were limited to homogeneous 
isotropic polymers. 

To the best of our knowledge, experimental detection of distinct high 
order cranial Lamb modes and their characterization still offers 
numerous opportunities to improve the understanding of wave motion 
in the skull, and to explore potential opportunities offered in terms of 
mechanical characterization and the potential development of imaging 
tools. For example, generating and controlling high order guided waves 
in the skull can provide fundamental insights on the dynamic behavior 
of the diploë in different frequency regimes. To fill existing gaps, this 
work aims at developing experimental and numerical procedures for the 
identification of high order Lamb wave modes in the human skull. High 
order cranial Lamb waves are investigated in the upper parietal region of 
a dry human skull by means of ultrasonic tests and semi-analytical finite 
element (SAFE) analyses. The experimental dispersion spectrum of the 
parietal region is retrieved from time-velocity arrays recorded with an 
infrared scanning laser Doppler vibrometer and analyzed with a matrix 
pencil method. The different high order Lamb modes in the spectrum are 
then identified by matching the corresponding dispersion curves with 
those obtained from the SAFE model. In addition, the mechanical 
properties of the parietal bone are identified as part of a numerical-to- 
experimental mode matching process. 

2. Methods 

2.1. Experimental setup 

The study is conducted on the upper left parietal region of a dry 
human skull specimen from a 49-year old Caucasian male of unknown 
medical history. The geometry of the skull was captured through 
computerized tomography (CT) scan in order to inform models devel-
oped as part of this work. CT scans with 0.625 mm coronal sections were 
performed using the Philips Gemini 64TF imaging system of the CU 
Anschutz C-TRIC PET/CT Imaging Center (USA). The reconstructed CT- 
scanned model of the specimen is shown in Fig. 1(a) along with the 
investigated parietal region. The latter corresponds to a square surface 

of 41 mm × 41 mm side length and does not include any major diploic 
channel, as can be noted from the coronal and sagittal sections of Fig. 1 
(b) and (c), respectively. 

To obtain velocity time histories at different locations of the inves-
tigated parietal region, the skull was instrumented with an angle beam 
transducer (Olympus C543-SM, 5 MHz, 0.25 in) mounted on a 60◦

wedge as indicated in Fig. 2. The wedge location and orientation was 
selected to allow the propagation of Lamb waves away from the tem-
poral region, where the overall thickness undergoes large variations and 
the diploë is almost absent (Fig. 1(b)). Lamb waves were generated in 
the parietal bone by means of a 2.5 cycle toneburst centered at 500 kHz. 
The corresponding 3D velocity array A(x, y, t) was recorded on a regular 
grid of 0.3106 mm with a Polytec PSV-500 Xtra infrared scanning laser 
Doppler Vibrometer (SLDV). At each point of the measurement grid, 
velocity waveforms of 1.60 ms duration were acquired at a sampling 
frequency of sf = 3.125 MHz with a 500 Hz repetition rate and 2% pre- 
triggering. A snapshot of the velocity field recorded at the time instant 
t = 51.2 μs can be observed in Fig. 2. From the surface velocity mea-
surement, the interpolated dashed line in Fig. 2 was found to show the 
best signal-to-noise ratio (SNR) and its corresponding velocity array v(tn,
sm), shown in Fig. 3(a), was used for the dispersion analysis discussed in 
the remainder of this work. In this array, tn = (n − 1)/sf , 
(n = 1,…,N = 5000), defines the n-th time sample while sm =

(m − 1)Δs, (m = 1,…,M = 150), indicates the m-th interpolated spatial 
location along the line scan, in which Δs = 0.2879 mm corresponds to 
the spatial step between interpolated points along the line. The 
frequency-wavenumber (f − κ) spectrum of the array, indicated with 
v̂(f , κ) and obtained from a 2D fast Fourier transform (2DFFT) of v(t,s), is 
shown in Fig. 3(b). The extraction of the different dispersion branches in 
this spectrum is described in detail in the next section. 

2.2. Dispersion curves using the matrix pencil method 

The frequency-wavenumber dispersion curves of an expected num-
ber of Lamb modes Q in the array v(tn, sm) are retrieved with a modified 
matrix pencil method (MPM) [24–26]. This method allows the direct 
evaluation of the complex wavenumbers κ(f0) at a given frequency f0 
while simultaneously suppressing noise effects. The first step of the 
method consists in forming the Hankel matrix 

Fig. 1. (a) Schematic of the experimental setup showing the CT-scanned 3D model of the dry skull with coronal and sagittal sections. (b) Coronal section with 
scanned surface and average thickness of outer cortical, trabecular and inner cortical layers. (c) Sagittal section with scanned surface. 
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X(f0) =

⎡

⎢
⎢
⎢
⎢
⎣

v̂(f0, s1) . v̂(f0, sP+1)

v̂(f0, s2) . v̂(f0, sP+2)

. . .

v̂(f0, sM− P) . v̂(f0, sM)

⎤

⎥
⎥
⎥
⎥
⎦
, (1)  

where P is the pencil parameter satisfying the condition Q⩽P⩽M − Q, and 
v̂(f0, sm) is the time Fourier transform of A(t, sm) evaluated at the loca-
tion sm and frequency f0. In this work, the optimal value of the pencil 
parameter was found to be P = 40. Such value was determined in an 
iterative fashion by performing several analyses in the range P ∈ [20,
100]. To improve the SNR in X(f0), the singular value decomposition 
(SVD) X = UΣVH [27] is performed, where U and V are complex unitary 
matrices and Σ = diag(σ1, σ2,…) is a diagonal matrix containing the 
non-negative singular values of X in descending order. By performing a 
rank test and retaining only the first R dominant singular values of X(f0), 
two rank-reduced matrices are reconstructed from the parent Hankel 
matrix as X1(f0) = UΣ1VH

1 and X2(f0) = UΣ1VH
2 , where Σ1 = diag(σ1,… 

, σR),V1 = V(2 : P + 1, 1 : R) and V2 = V(1 : P,1 : R). To compute the 
spatial wavenumbers κ(f0), a set of backward exponential estimates λ<r 
(r = 1,…,R) and forward exponential estimates λ>r are first obtained 
from the two eigenvalue problems 
(
X+

1 X2 − λ<r I
)
e<r = 0,

(
X+

1 X2 − λ>r I
)
e>r = 0, (2)  

where (⋅)+ indicates the Moore–Penrose generalized inverse, I denotes 
the identity matrix, and the eigenvectors e<r and e>r contain the wave 
amplitude at the different spatial locations. From the eigensolutions of 
Eq. (2), two sets of backward and forward complex wavenumbers are 
computed as κ<r

(
f0
)
= − lnλ<r /(iΔs) and κ>r

(
f0
)
= lnλ>r /(iΔs), respec-

tively. The rth Lamb wavenumber κr(f0) is retained from the backward 
and forward sets if (|κ<r

(
f0
)
| − |κ>r

(
f0
)
|)/|κ>r

(
f0
)
|⩽tolr, where tolr indicates 

the residual tolerance (here assumed equal to 0.001). The full frequency- 
wavenumber dispersion diagram of the array v(tn, sm) is finally obtained 
from the application of the described procedure at several discrete fre-
quencies in the high-energy frequency spectrum of the applied 

toneburst, i.e. f0 ∈ [200 kHz,800 kHz]. 

2.3. Mode matching using the semi-analytical finite element method 

Numerical modeling is conducted in order to identify each mode in the 
experimental dispersion spectrum based on their thickness displacement 
profile. Such information is useful in establishing whether or not the 
different Lamb modes are mainly confined within the cortical tables (as 
observed in [19]) and, consequently, to determine the role of the diploë in 
supporting guided wave motion in various frequency regimes. 

The task of classifying the observed experimental Lamb modes was 
carried out by numerically modeling the parietal bone as a three-layered 
flat plate and calculating its dispersion characteristics with the semi- 
analytical finite element (SAFE) method developed in [11]. The 
through-thickness profile of each experimental Lamb mode was then 
estimated by matching it with its numerical counterpart. The general 
form of the SAFE dispersion equation is 
{

κ2K3(h, p) + iκK2(h, p) + K1(h, p) − ω2M(h,p)
}

Q= 0, (3)  

where ω = 2πf is the angular frequency, while M(h) and Ki(h,p) (i = 1,
2, 3) are mass and stiffness operators calculated as in [11]. Also, p in-
dicates a set of material parameters for the layered plate waveguide, and 
h =

∑3
i=1hi denotes its total thickness, where hi is the thickness of the i- 

th layer. The values of hi were determined from the coronal CT scan 
section of Fig. 1(b) by averaging the distances between the external 
cortical surfaces and the internal trabecular-cortical interfaces. The 
averaging was performed over a minimum of ten different locations 
spanning the scanned region. This resulted in an average thickness h1 =

1.348 mm for the outer cortical table, h2 = 3.163 mm for the diploë and 
h3 = 1.267 mm for the inner cortical table. 

2.4. Material properties identification 

The mechanical properties were found as part of the mode identifi-
cation procedure. Following the study in [28], the outer and inner 

Fig. 2. Snapshot of the surface velocity field recorded with the infrared scanning laser Doppler Vibrometer at time t = 51.2 μs and interpolated line scan used in the 
analysis of Section 2.2. The local frame of reference 123 is used in the definition of the orthotropic material properties of Table 1 and the displacement profiles of 
Fig. 4(b). 
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cortical tables were assumed to have identical elastic orthotropic 
properties, while an equivalent isotropic behavior was assumed for the 
diploë. The full set of mechanical parameters is denoted as p = a∘m. In 
this set, m = {mc,md}

T collects the nominal density and elastic param-
eters (Young’s modulus, shear modulus and Poisson’s ratio) for the 
cortical tables in the vector mc = {ρ,E1,E2,E3,G13, ν12, ν13, ν23}

T
∈ R8 

and for the diploë in the vector md = {ρ, E, ν}T
∈ R3, while a =

{a1, a2,…, a11}
T
,ai ∈ [0,1], denotes a vector of unknown Na = 11 unitary 

coefficients used to scale the nominal values m. The subscripts 1, 2 and 3 
for the orthotropic material properties in mc refer to the local frame of 
reference defined on the interpolated scan line as shown in Fig. 2. 

The set of coefficients a that realizes the best fit between the nu-
merical and experimental dispersion curves was obtained from the 
application of the multiplicative regularized Gauss–Newton method 
described in [29]. This method reconstructs a as an iterative sequence 
ak+1 = ak +δak until a convergence criteria is met. At the k-th iteration, 
the update δak is computed from the constrained trust region quadratic 
problem 

min
δak∈R11

[0,1] − {0}

{

(∇aℱ(ak))
Tδak +

1
2

δaT
k ∇

2
aℱ(ak)δak

}

,

subjected to l − ak⩽δak⩽u − ak,

and the trust region constraint ‖δak‖∞⩽Δk,

(4)  

where l and u denote physically admissible lower and upper bounds for 
the material parameters, Δk indicates the maximum size of the trust 
region hyperbox in RNa

[0,1] and 

ℱ(ak) = N − 1
ω ‖r(ak)‖

2
2

(
N − 1

a Δ− 1
k− 1‖(ak − ak− 1)‖

2
2 + 1

)
, (5)  

is a multiplicative regularized functional in which 

r(ak) =

{

.,
ω2

i (ak, κj)

ω̃2
i (κj)

− 1, ..
}T

(6)  

represents the data misfit to be minimized. In Eq. (6), ω̃2
i (κ) (i = 1,…,

Nω) indicates the angular frequency of the i-th experimental Lamb mode 
evaluated at κ while ωi(ak, κ) denotes its corresponding numerical 
counterpart obtained from Eq. (3) and solving the corresponding 
eigenvalue problem for the current solution p(ak) = ak∘m. Additional 
details on the calculation of Δk as well as the gradient ∇aℱ(ak) and 
Hessian ∇2

aℱ(ak) can be found in A and [29]. Once the optimal set a* has 
been computed from Eq. (4), the full dispersion curves and corre-
sponding displacement profiles are respectively obtained as the eigen-
solutions {κ(ω, p(a*)),Q(ω,p(a*))} of Eq. (3) for any given ω. These 
solutions can be used to classify the different Lamb modes in the 
experimental dispersion spectrum, as discussed in the next section. 

3. Results and discussion 

The numerical dispersion curves obtained from the SAFE analysis are 
superimposed to the 2D FFT spectrum of the interpolated scan line in 
Fig. 3(b) and to the MPM results in Fig. 4(a). The numerically estimated 
dispersion curves for the three-layered flat plate modes agree well with 
the experimental ones. The latter indicate the presence of six distinct 
Lamb modes, which have been labeled as m1,m2,m3,m4,m5 and m8. The 
through-thickness profiles of the in-plane and out-of-plane displacement 
components (corresponding to the directions 1 and 3 of the local frame 
of reference of Fig. 2) for these modes are shown in Fig. 4(b). The clearly 
discernible dispersion branches of modes m3,m4,m5 and m8 illustrate 
that the diploë supports high order modes characterized by more than 
one through-thickness wavelength. This is one of the key results of this 
study. This is particularly evident for modes m4,m5 and m6. It is also 
interesting to note that, similar to the observations in homogeneous 
plates, the modes m2,m3,m4,m5 and m8 possess properties of quasi- 
symmetry and antisymmetry in terms of displacement distribution 
with respect to the center of the diploë. Although not shown in Fig. 4(b), 
this property was also verified for the mode m1 outside the 200 − 400 
kHz frequency range. Within this range, however, the quasi-symmetric 
properties are lost. The results of Fig. 4(a) indicate that, in the investi-
gated frequency range, high order Lamb modes can be generated in the 
whole cranial bone section via direct-contact excitation. 

The cranial bone material properties identified using the experi-
mental high order Lamb modes and the analysis of Section 2.4 are listed 
in Table 1. Of particular interest are the values obtained for the cortical 
layers, which show E1 ≈ E2 and ν13 ≈ ν23. These values reveal a marked 
transversely isotropic behavior, and confirm the observations in [28], 
where cortical bone samples were tested using ultrasound trans-
missibility techniques. For comparison, the orthotropic material pa-
rameters of the parietal region P2 in [28], which approximately 
corresponding to the parietal region investigated in this work, have also 
been reported in Table 1. This comparison highlights lower values of the 
identified density and Young’s modulus and higher values of the 

Fig. 3. (a) Surface velocity array v(t, s) for the scan line of Fig. (2) and (b) 
corresponding 2D FFT spectrum v̂(f , k) with superimposed numerical disper-
sion curves. 
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Poisson’s ratio for the investigated dry skull with respect to the average 
values calculated for the region P2 on 15 different skulls in [28]. Besides 
individual specimen-related variations, these differences may be asso-
ciated to the degassing procedure used in [28]. The degassing procedure 
is not expected to cause significant changes in shear modulus G13 be-
tween a dry and degassed skull, which is confirmed by the similar values 
listed in Table 1. The identified mechanical parameters for the diploë 
indicate a slightly lower density and a higher Young’s modulus when 
compared to those in [19,30], whereas the Poisson’s ratio is approxi-
mately the same (see Table 1). These results may be associated to the 
large ranges of variation previously observed in the compressive 
strength of the parietal diploë [31]. Another possible cause is a stiffening 
effect induced by the two cortical tables [32,33]. 

Overall, the results discussed in this Section may potentially open 
new venues in GUW-based characterization of the cranial bone and 
marrow. In addition, procedures similar to that presented in this work 
have already been successfully applied to the characterization of long 
bones in presence of soft tissue [14–16]. From a physical standpoint, the 
inclusion of an external coupling medium (such as water) and a soft 
tissue layer in the waveguide model of the cranial bone is expected to 
result in additional Lamb wave modes due to the effects of increased 
thickness, acoustic impedance mismatch and energy radiation. Such 
effects could potentially be investigated in water loaded setups by means 
of contact [34] and non-contact excitation [19], as well as in clinical 
settings by contact ultrasonic transducer arrays [14]. 

4. Conclusions 

This work demonstrates that high order guided wave modes can be 
effectively generated and recorded in the upper parietal region of a dry 
human skull. The modes can be employed to identify the orthotropic and 
equivalent isotropic material properties of the cortical tables and diploë, 
respectively. This is illustrated by extracting dispersion spectra for 

cranial Lamb waves, which are analyzed by means of a matrix pencil 
method. The experimental dispersion curves were classified by con-
ducting comparisons with the modes predicted in a three-layered plate 
waveguide, whereby thicknesses are estimated from CT scan images, 
while their material properties are reconstructed through a semi- 
analytical finite element (SAFE) model coupled with a regularized 
Gauss–Newton algorithm. In the computed dispersion spectrum, high 
order modes can be clearly detected at frequencies lower than 800 kHz. 
These modes are observed to possess properties of quasi-symmetry and 
antisymmetry with respect to the mid thickness, which is consistent with 
the behavior of a plate-like structure. These results indicate that, in the 
low and mid frequency regime, the diploë can effectively sustain a 
guided wave motion. In agreement with previously published studies, 
the identified material properties also indicate that the cortical tables 
behave as a transversely isotropic material. Potential implications of the 
obtained results include the possibility of using GUWs for the non- 
invasive inspection of the cranial marrow by leveraging Lamb modes 
with high sensitivity to small changes on the marrow’s acoustic 
impedance. Furthermore, GUWs could potentially be employed in 
conjunction with tomographic reconstruction algorithms for the imag-
ing and inspection of cranial sutures. 
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Fig. 4. (a) Experimental (MPM) versus numerical (SAFE) dispersion curves and (b) through-thickness displacement profiles for the identified Lamb modes at 
different frequencies. The directions 1 (in plane) and 3 (out of plane) coincide with those of Fig. 2. 

Table 1 
Identified mechanical parameters for the cortical and trabecular layers and comparison with data available in literature.  

Layer Reference 
ρ  E1  E2  E3  G13  ν12  ν13  ν23  

(kg/m3) (GPa) (GPa) (GPa) (GPa) – – – 

Cortical (orthotropic) present (dry) 1569 13.50 13.29 11.57 5.71 0.617 0.479 0.465 
[28], location P2 (degassed) 1845 20.00 15.40 13.90 5.10 0.300 0.250 0.230 

Trabecular (isotropic) present (dry) 903 4.24 4.24 4.24 1.52 0.396 0.396 0.396 
[19,30] (dry) 1055 2.00 2.00 2.00 0.72 0.380 0.380 0.380  
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Appendix A 

Following the analysis in [29], the gradient ∇aℱ(ak) and Hessian ∇2
aℱ(ak) in Eq. (4) are expressed as 

∇aℱ(ak) = β
( ⃦
⃦ak − ak− 1‖

2
2 + Δk− 1

)
JT(ak)r(ak)

+β‖r(ak)‖
2
2(ak − ak− 1), (A.1)  

∇2
aℱ(ak) = β

( ⃦
⃦ak − ak− 1‖

2
2 + Δk− 1

)
JT(ak)J(ak)

+β‖r(ak)‖
2
2I

+2β[JT(ak)r(ak)] ⊗ (ak − ak− 1)

+2β(ak − ak− 1) ⊗ [JT(ak)r(ak)],

(A.2)  

in which r(ak) is given in Eq. (6), β = 2/(NωNaΔk− 1), while J(ak) = [∂r(a)/∂a]a=ak 
represents the Jacobian of the residual r(ak). The (i,j)-th component 

of J(ak) corresponds to the derivative of the i-th frequency ωi(ak, κ), i = 1, …, Nω, at a fixed wavenumber κ calculated with respect to the j-th 
dimensionless parameter aj, j = 1,…,Na. Using Eqs. (3) and (6), one obtains 

[J(ak)]ij =
1

ω̃2
i (κ)

QH(ak)
[
Sj(a)

]

a=ak
Q(ak)

QH(ak)M(ak)Q(ak)
, (A.3)  

in which 

Sj(a)=
∂
(
κ2K3(a) + iκK2(a) + K1(a) − ω2

i (k)M(a)
)

∂aj
. (A.4)  

In the previous equations, the maximum size of the trust region at the k-th iteration is calculated from the quadratic formula 

Δk =
− d2 + (d2

2 − 4d1d3)
1/2

2d1
, (A.5)  

in which 

d1 = N2
a, (A.6)  

d2 = 2sgn(ak − ak− 1)
T
(ak − ak− 1), (A.7)  

d3 = ‖ak − ak− 1‖
2
2 − 2NaΔk− 1, (A.8)  

where sgn(⋅) denotes the signum function. Once Eqs. (A.1)-(A.5) have been evaluated at the k-th iteration, an update ak+1 = ak +δak can be obtained by 
calculating δak from (4) using the trust region reflective (TRR) method described in [29,35,36]. 
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