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Abstract
Unlike well-studied locally resonant (LR) metamaterials with a periodic array of identical
resonators, ‘graded’ LR metamaterials consist of an array of resonators with a spatially varying
parameter, yielding wideband wave attenuation and mode trapping/localization, among other
features. In this work, we explore a graded LR piezoelectric metamaterial-based structure (i.e.
metastructure) in which the grading parameter, namely the inductive shunt resonant frequency
of the unit cells, follows a predefined variation pattern in space (e.g. first-order, quadratic, or
fractional). We investigate the effect of such patterns on (i) the vibration attenuation bandwidth,
(ii) the localization of vibration modes, and (iii) the harvested power. To this end, we consider a
piezoelectric bimorph cantilever hosting an array of piezoelectric unit cells with spatially
varying inductive shunts. Fully coupled electromechanical equations describing the
metastructure’s linear transverse displacement and unit cell voltages are given with a modal
analysis framework and solved using the matrix inversion method. The results show that (i) the
first-order grading pattern yields the widest bandgap with 65% increase in the bandwidth
compared to the standard uniform LR pattern, (ii) the localization of vibration modes follows in
shape the corresponding frequency grading pattern, and (iii) the largest power is harvested for
the fractional grading pattern. Furthermore, all of the graded resonator configurations result in
wider bandwidth in energy harvesting as compared to the uniform resonators case. Overall, the
results unveil the fundamental characteristics of this class of graded piezoelectric metastructures
and support the design of such multifunctional piezoelectric metastructures for concurrent
vibration attenuation and energy harvesting.
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1. Introduction

The discovery of locally resonant metamaterials [1] has
inspired researchers over the past two decades to investig-
ate various elastic and acoustic metamaterial configurations
with resonating unit cells. Locally resonantmetamaterials (and
resulting finite metastructures with specified boundary condi-
tions) yield exotic dynamics such as negative effective mass
[2–4], negative effective stiffness [5, 6], or a combination of

both in hybrid configurations [7]. One important feature of
such locally resonant metastructures is the ability to form a
low-frequency bandgap, i.e. frequency range in which wave
propagation is forbidden for wavelengthsmuch longer than the
lattice parameter. In contrast to frequency bandgaps formed
by Bragg scattering (in phononic crystals) which are not prac-
tical for filtering waves in the low-frequency range, locally
resonant bandgaps can be designed to create attenuation at
low frequencies. As a result, locally resonant metastructures
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have been widely explored for vibration attenuation, albeit the
bandgap size is relatively limited by the added mass of the
resonators [4].

Researchers have theoretically and experimentally invest-
igated a number of different strategies to widen the
bandgap of locally resonant metastructures. Some of these
strategies include the use of: (i) multi-degree-of-freedom local
resonators [8] in rods [9], plates [10–12] and beams [13–15]
to create multiple bandgaps; (ii) multiple periodic arrays of
single-degree-of-freedom local resonators [16–18] to create
multiple bandgaps or a single broadband bandgap; (iii) internal
coupling between two neighboring local resonators [19–21]
in which three separate bandgaps can be formed due to the
coupling effect; (iv) Bragg-type and resonance-type bandgap
combination [22–25] to increase the bandwidth; (v) tunable
resonators such as shape memory alloy [26, 27], dielectric
elastometer [28–30], and piezoelectric shunting [14, 31, 32]
to control and widen the bandgap; (vi) non-linear local res-
onators to increase the bandgap width [33–35], and (vii) qua-
siperiodic arrangement of local resonators to create additional,
non-trivial, bandgaps [36].

While many studies have investigated locally resonant
metastructures with a periodic array of identical resonat-
ing elements, more recently a new class of metamateri-
als has emerged by incorporating resonators with gradually
varying properties to achieve enhanced wave manipulation
capabilities. These modified locally resonant metamaterial-
based structures are graded metastructures (the word ‘graded’
refers to the smooth variation of a particular parameter of
the local resonators). Graded metastructures have attracted
increasing attention due to their ability to manipulate waves,
for example, localization of waves over some spatial region
along the structure as well as enabling wideband vibra-
tion attenuation. Specifically, the trapping of waves with
different frequency content at different spatial positions is
often referred to as rainbow trapping following the pion-
eering work in electromagnetics and plasmonics [37, 38],
which was later implemented for acoustic [39] and elastic
waves [40].

Because piezoelectric resonators are easy to implement and
tune [41–44], they also have been used in this context with spa-
tially varying shunts. Thomas et al [45] proposed an optimiz-
ation method to tune the target frequency of each shunt circuit
to achieve a wider bandgap. Recently, Hu et al [46] showed
vibration attenuation improvement in piezoelectric metastruc-
tures with first-order graded local resonators in which the lin-
ear grading of local resonators was achieved by tuning the
corresponding capacitance of individual shunt circuits. Elastic
waves propagating in graded metastructures can be trapped at
some location along the structure, implying that the vibration
energy is also trapped over the same region and with a rel-
atively wider frequency band (compared to uniformly peri-
odic arrangements). As a result, researchers have leveraged
this wave trapping phenomenon to enhance energy harvest-
ing, particularly in the spatial region where waves are trapped,
as done in the papers by De Ponti et al [9, 47] and Chaplain
et al [48].

In the existing literature, graded metamaterials and
metastructures with a first-order graded array of local
resonators have been given most attention, especially in
terms of the vibration attenuation. In the present work, we
explore a graded metastructure in which the graded array of
local resonators follow shunt resonant frequency grading pat-
terns toward understanding the simultaneous effects on the
(i) vibration response, (ii) mode localization, and (iii) energy
harvesting capabilities. Specifically, we study locally reson-
ant electromechanical metastructures hosting a graded array
of shunted piezoelectric elements tuned to slightly different
target frequencies that follow specific spatial distributions (i.e.
the grading parameter is the frequency of shunt circuits). In
section 2, the electromechanical governing equations are sum-
marized based on modal analysis, and select graded frequency
patterns are outlined, namely: (i) fractional, (ii) first-order, and
(iii) high-order (e.g. quadratic) frequency grading patterns. In
section 3, numerical results are presented to reveal the effect
of different graded frequency patterns in the form of beam
tip transmissibility and real power output plots. Finally, in
section 4 we draw some remarks.

2. Theoretical background

Consider a cantilever bimorph piezoelectric beam under har-
monic base excitation covered by S pairs of segmented elec-
trodes with negligible thickness. The bimorph piezoelectric
layers are connected in series and each segmented electrode
pair forms a unit cell that is connected to a parallel resistive-
inductive shunt circuit as shown in figure 1. For uniform loc-
ally resonant piezoelectric metastructures, all unit cells are
connected to identical shunt circuits with resonant frequency
ωt, but for the graded locally resonant piezoelectric metastruc-
ture considered here, the unit cells are connected to different
shunt circuits tuned to gradually varying target frequencies
that follow some predefined pattern as will be shown later. The
composite beam is modeled using the Euler–Bernoulli theory
in which rotary inertia and shear deformation are neglected.
The cantilever beam is assumed to be undamped and modal
damping will be added at a later stage.

The governing electromechanical equations for linear
transverse vibration of the beam under harmonic base excit-
ation and current balance in electrical shunt circuits are [6]

EI
∂4w
∂x4

+m
∂2w
∂t2

− θ
S∑
j=1

vj(t)
d2

dx

× [H(x− xLj )−H(x− xRj )] =−md
2wb
dt2

, (1)

Cp,j
dvj
dt

+Yjvj(t)+ θ

ˆ xRj

xLj

∂3w
∂x2,∂t

= 0, (2)

where j goes from 1 to S, w(x, t) is the transverse vibration of
the beam relative to the transverse base motion wb(t); vj(t) and
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Figure 1. Schematic of a graded multifunctional piezoelectric
metastructure under harmonic base excitation. The piezoelectric
layers in each unit cell are connected in series. The close up shows
the jth unit cell shunted to a resistive-inductive circuit and the little
green arrows show the poling directions.

Y j are, respectively, the voltage and the external load admit-
tance across the jth electrode pair and H(x) is the Heaviside
function. Also, EI is the short-circuit flexural rigidity, m is the
mass per unit length, θ is the electromechanical coupling term,
and Cp,j is the inherent piezoelectric capacitance across the jth
electrode pair, defined as

EI=
2b
3

(
cs
h3s
8
+ c̄E11

[(
hp+

hs
2

)3

− h3s
8

])
, (3)

m= b(ρshs+ 2ρphp), (4)

θ =
ē31be
2hp

[(
hp+

hs
2

)2

− h2s
4

]
, (5)

Cp,j = ε̄S33be
(xRj − xLj )

2hp
. (6)

Note that the width of each segmented electrode be is identical
to the beam’s width b and the other parameters in equations
(3)–(6) are defined in table 1. Furthermore, the effectivemater-
ial properties reduced from the 3D constitutive equations are
given by (the overbar indicates average properties calculated
for 1D thin beams)

c̄E11 =
1
sE11

, ē31 =
d31
sE11

, ε̄S33 = ε̄T33 −
d231
sE11

. (7)

To solve equations (1) and (2) we use the assumed modes
method with N number of modes and write the transverse
vibration of the beam as

w(x, t) =
N∑
r=1

ϕr(x)ηr(t), (8)

Table 1. Composite beam properties. The overbars indicate
equivalent material properties for one-dimensional thin beams.

Parameter Definition

Composite beam
b Width
Lb Length
Substructure
cs Elastic modulus
ρs Mass density
hs Thickness
Piezoelectric layers
ρp Mass density
hp Thickness
c̄E11 Elastic modulus at constant

electric field
ε̄S33 Permittivity component at con-

stant strain
ē31 Effective piezoelectric stress

constant
sE11 Elastic compliance at constant

electric field
d31 Strain constant
ε̄T33 Permittivity component at con-

stant stress

where ϕr(x) are the undamped short-circuit mode shapes of the
transverse motion of the beam and ηr(t) are the modal coordin-
ates. The mode shapes are normalized such that

ˆ Lb

0
mϕr(x)ϕs(x)dx= δrs, r,s= 1,2, ..., (9)

ˆ Lb

0
EIϕr(x)

d4ϕs(x)
dx4

dx= ω2
r δrs r,s= 1,2, ... (10)

Substituting equation (8) into equation (1), multiplying by
the mode shape ϕk(x), applying orthogonality condition, and
integrating over x from 0 to Lb (see Sugino et al [6] for more
details), and introducing modal viscous damping, yields

d2ηr
dt2

+ 2ζrωr
dηr
dt

+ω2
r ηr− θ

S∑
j=1

vj
dϕr
dx

∣∣∣xRj
xLj
= qr(t), (11)

Cp,j
dvj
dt

+Yjvj+ θ
N∑
r=1

dηr
dt

dϕr
dx

∣∣∣xRj
xLj
= 0, (12)

where r goes from 1 to N and j goes from 1 to S, and

qr(t) =−md
2wb
dt2

ˆ Lb

0
ϕr(x)dx (13)

is the modal forcing due to some arbitrary base motion. Taking
Laplace transforms of equations (11) and (12) and assuming
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harmonic base excitation, the governing equations for modal
coordinates and voltages become

(s2 + 2ζrωrs+ω2
r )Hr(s)+ sθ2

S∑
j=1

1
Cp,j (s+ hj(s))

dϕr
dx

∣∣∣xRj
xLj

×
N∑
k=1

dϕk
dx

∣∣∣xRj
xLj
Hk(s) = Qr(s),

(14)

(sCp,j+Yj(s))Vj(s)+ sθ2
N∑
r=1

1
s2 +ω2

r

dϕr
dx

∣∣∣xRj
xLj

×
S∑

k=1

dϕr
dx

∣∣∣xRk
xLk
Vk(s) = Qj(s), (15)

where H(s) and V(s) are, respectively, the Laplace transforms
of η(t) and v(t), and

hj(s) =
Yj(s)
Cp,j

(16)

is the normalized admittance across the jth unit cell. Equa-
tions (14) and (15) form a system of N+ S coupled ordinary
differential equations which can be solved using the matrix
inversion method.

In the present study, unlike the uniform purely induct-
ive shunts case [6], the unit cells are connected to different
inductive shunt circuits in which resistors are also placed (in
parallel), respectively, to explore resonant frequency grading
as well as to enable simultaneous vibration attenuation and
energy harvesting. Thus, the admittance across the jth unit cell
is

Yj(s) =
1
sLj

+
1
Rj
, (17)

where Rj and Lj are the resistance and inductance of the jth
shunt circuit, respectively. Substituting equation (17) into (16)
yields

hj(s) =
ω2
t,j

s
+

1
τj
, (18)

where

ωt,j =

√
1

Cp,jLj
(19)

is the resonant frequency of the jth shunt circuit and τj = Cp,jRj
is its time constant. It is clear that the resonant frequency
of each shunt circuit can vary according to its respective
inductance and capacitance values, however, we assume that
the inherent capacitance of all segmented electrodes to be
identical. Thus, the target resonant frequency of each shunt
circuit is tuned by altering the values of the associated induct-
ors only.

Figure 2. Target frequencies of the shunt circuits that are connected
to segmented electrodes along the beam length showing (a)
fractional (p= 1/2), (b) first-order (p= 1) and (c) quadratic (p= 2)
frequency grading patterns. First-order grading displays uniform
frequency spacing between neighboring shunt circuits. ∆ω is
positive, yielding descending frequencies.

We consider different frequency grading patterns for the
shunt circuits such that

ωt,j = ωt+∆ω− 2∆ω

(
j− 1
S− 1

)p

, (20)

where ωt is some target frequency around which gradual vari-
ation of the shunt circuit frequencies take place, and 2∆ω
defines the range of the frequency grading pattern. Note that
positive values of∆ω result in a descending frequency grading
such that the target frequency of the first shunt circuit (near the
clamped end) is ωt,1 = ωt+∆ω and that of the the last shunt
circuit (near the free end) ωt,S = ωt−∆ω. When∆ω is negat-
ive, the result is an ascending frequency grading pattern. The
power p defines the profile of the frequency grading between
the first and the last shunt circuits as illustrated in figure 2.
Throughout the rest of the paper, fractional, first-order and
high-order refer to frequency grading patterns with 0< p< 1,
p= 1 and p> 1, respectively.

For a uniform locally resonant piezoelectric metastructure
with a constant length, under the assumption of infinite (i.e.
sufficiently large) number of unit cells connected to identical
inductive shunt circuits tuned to the same target frequency ωt,
the bandgap width is calculated by Sugino et al [6] as

ωt√
1+α

< ω < ωt, (21)

where

α=
2θ2hp
EIε̄S33be

(22)

is a dimensionless parameter quantifying the electromechan-
ical coupling of the metastructure [6]. Note that, for graded
locally resonant metastructures, the resulting bandgap width
cannot be expressed in a form similar to equation (21), because
a closed-form solution of equation (14) is beyond reach even
for infinite resonators approximation. However, in order to
facilitate the comparison of different graded frequency pat-
terns, we need to establish a criterion. For this purpose, we
adopt the approach in [49], where anything below 0.1 in the
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Figure 3. Transmissibility heatmaps versus normalized excitation frequency and dimensionless frequency range for (b) fractional (p= 1/2),
(d) first-order (p= 1) and (f) quadratic (p= 2) frequency grading patterns. (a), (c) and (e) show tip transmissibility versus normalized
excitation frequency for some selected frequency range values.∆ω= 0 corresponds to the uniform frequency pattern. S= 25, N= 200,
τωt = 500, and ζr = 0.001 are used.

beam tip transmissibility was considered as bandgap. The
beam tip transmissibility is the ratio of the displacement at the
free end of the beam to the displacement at its base (clamped
end), given as

|TR(ω)|=
∣∣∣∣wabs(Lb)wb

∣∣∣∣ . (23)

Then, the ‘bandgap’ (with a relatively relaxed definition) is
achieved when

|TR(ω)| ≤ 0.1 (24)

is satisfied.

3. Case studies and results

We consider a bimorph cantilever made of aluminum substruc-
ture and piezoelectric ceramic PZT-5A with the properties lis-
ted in table 2. There are many factors involved in defining the
frequency grading pattern such as the frequency range 2∆ω,
the power p, and the number of unit cells S. However, based on
the work of Sugino et al [6], a uniform locally resonant piezo-
electric metastructure with S= 10 unit cells would be suffi-
cient to ensure the formation of the bandgap. In order to rule

Table 2. Geometric and material properties of the graded
multifunctional piezoelectric metastructure.

Parameter Value Unit

Composite beam
b 10 mm
Lb 100 mm
Aluminum
hs 0.1 mm
cs 69 GPa
ρs 2700 kgm−3

PZT-5A
ρp 7750 kgm−3

hp 0.3 mm
c̄E11 61 GPa
ε̄S33 13.3 nFm−1

ē31 −12.3 Cm−2

out any effect of small number of unit cells, we will consider
S= 25 unit cells throughout the numerical analysis. Also a tar-
get frequency of ωt = 35ω1 is assumed, where ω1 is the first
short-circuit resonant frequency of the composite beam, and
a small structural damping ratio of ζr = 0.001 is considered
throughout the numerical results.
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Figure 4. Steady state response profiles at different normalized
excitation frequencies (30–35) within the bandgap for (a) decreasing
and (b) increasing first-order frequency grading (p= 1). Note that
(a) shows mode localization near the clamped end of the beam.
S= 25, N= 200, ∆ω= 2, τωt = 500, and ζr = 0.001 are used.

3.1. Effect of frequency grading range

The frequency grading range defines the upper and the lower
bounds of the frequency grading patterns shown in figure 2. It
is important to investigate the optimal value of the frequency
range that maximizes the vibration attenuation region (i.e. the
widest bandgap that satisfies equation (24)). Figures 3(b), (d)
and (f) show tip transmissibility heatmaps versus frequency
range and normalized excitation frequency for the cases of
p= 1/2, p= 1 and p= 2, respectively. We observe the fol-
lowing from the figures: (i) as the absolute value of the fre-
quency range increases, the bandgap becomes wider until
reaching a certain frequency range value where the bandgap
splits into multiple gaps, (ii) positive frequency range val-
ues exhibit fewer gaps while negative frequency range values
exhibit more gaps, and (iii) for positive frequency range val-
ues, quadratic frequency grading (figure 3(f)) shows bandgaps
at higher frequencies while for negative frequency range val-
ues, bandgaps occur at lower frequencies; on the other hand,
for fractional frequency grading, positive frequency range val-
ues show bandgaps at lower frequencies while negative fre-
quency range values show bandgaps at higher frequencies;
first-order frequency grading shows symmetric bandgaps.

These subtle differences in the bandgap formation for pos-
itive and negative frequency range values are captured in the
associated tip transmissibility plots (figures 3(a), (c) and (e)).
For the first-order frequency grading (p= 1), and regardless
of the direction of grading, the bandgap occurs over approx-
imately the same frequency range, though not identically. For
quadratic (p= 2) and fractional (p= 1/2) frequency gradings,
ascending and descending patterns yield bandgaps at two dif-
ferent regions. Note that the attenuation intensity inside the
bandgap is stronger for the quadratic profile due to small fre-
quency spacing between neighboring shunt circuits near the
clamped end of the beam. One can clearly observe that the
tip transmissibility curves are not identical for ascending and
descending patterns. If identical shunt circuits are assumed,
the bandgap would form to the left of the target frequency of
the shunt circuits. Thus, having descending frequency grading

Figure 5. Beam tip transmissibility heatmaps versus normalized
excitation frequency and dimensionless load resistance for (a)
uniform, (b) fractional (p= 1/2), (c) first-order (p= 1) and (d)
quadratic (p= 2) frequency grading patterns. ∆ω= 3, S= 25,
N= 200, and ζr = 0.001 are used.

patterns ensure that the target frequency of the neighboring
shunt circuit (to the right) lies within the bandgap formed by
the other shunt circuit (the one to the left) and this ensures
overlapping of the individual bandgaps such that the result is
a single continuous attenuation in the transmissibility curve
(given small frequency spacing) with a few resonant peaks.
These observations are valid and can be enhanced when the
shunt circuits have some resistance (as in our case) such that
the resonant peaks inside the bandgap are eliminated (or min-
imized). Based on these observations, only descending pat-
terns can gradually slow down waves, trapping the elastic
waves at some specific spatial region. This is clear in the tip
transmissibility plots, where the descending pattern results in a
gradual formation of bandgaps (blue line) while the ascending
pattern suddenly forms the bandgap (lower bound) and hence
no trapping of waves along the beam are observed. To further
illustrate this, figure 4 shows the evolution of the steady state
wave profile at some select normalized excitation frequencies
inside the bandgap (from 30 to 35) for the case of first-order
grading pattern (p= 1). It is clear that the descending grading
pattern results in localized vibration modes, in which vibration
energy is confined over some specific spatial region along the
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Figure 6. Tip transmissibility for different frequency grading
patterns. N= 200, τωt = 100, ∆ω= 3, S= 25, and ζr = 0.001 are
used.

Figure 7. Displacement heatmaps versus normalized excitation
frequency and dimensionless beam length for (a) fractional
(p= 1/2), (b) first-order (p= 1) and (c) quadratic (p= 2) frequency
grading patterns. (a) shows more localized vibration modes near the
clamped end. N= 200, τωt = 500, ∆ω= 3, S= 25, and ζr = 0.001
are used.

beam (near the clamped end of the beam) while the ascending
one does not.

For graded locally resonant metamaterial with mechanical
resonating elements, the opposite discussion is true because

Figure 8. Real power heatmaps versus normalized excitation
frequency and dimensionless load resistance for (a) uniform, (b)
fractional (p= 1/2), (c) first-order (p= 1) and (d) quadratic (p= 2).
Black line shows the optimal load resistance that maximizes the
power output at each normalized excitation frequency.∆ω= 3,
S= 25, N= 200, and ζr = 0.001 are used.

the bandgap is formed to the right of the target frequency
[7]. Because descending graded frequency patterns display
both vibration attenuation and mode localization that can be
exploited to enhance the harvested energy, we therefore focus
on descending graded frequency patterns for the rest of this
study.

3.2. Effect of electrical load resistance

In this section, we investigate the effect of varying the elec-
trical load resistance on the vibration attenuation of the piezo-
electric metastructure with graded local resonators. Figure 5
shows the tip transmissibility versus dimensionless load res-
istance τωt for different frequency grading patterns. These
heatmaps reveal the optimal value of the load resistance that
maximizes the bandgap width (represented by the darkest
blue region). One clearly observes that graded local resonat-
ors show wider bandgaps compared to the uniform resonators
(∆ω= 0). For a locally resonant metastructure with uniform
resonators, it is typical to consider undamped resonators
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Figure 9. (a) Tip transmissibility and (b) real power output for different frequency grading patterns. (c) Average real power output computed
over the normalized excitation frequency range shown as shaded region in (b). N= 200, τωt = 500, ∆ω= 3, S= 25 and ζr = 0.001.

(i.e. no load resistance in the shunts [6]), however, in the
graded configuration the localized modes are very sensitive
to electrical load resistance in the shunts. That is, high val-
ues of electrical load resistance (reduced damping in the res-
onators close to open circuit) would display more resonant
peaks inside the attenuation gap for graded patterns. There-
fore, some intermediate values of load resistance will be con-
sidered to have minimum resonant peaks for all graded pat-
terns. We focus on load resistance values between τωt= 100
and 500 in the following sections.

3.3. Performance comparison for vibration attenuation

In light of the previous sections, descending frequency grad-
ing patterns are superior in terms of the vibration attenuation
and wave trapping capabilities in a piezoelectric metastruc-
ture. To observe the vibration attenuation enhancement, we fix
the dimensionless load resistance τωt and frequency grading
range 2∆ω, and compare different graded frequency patterns
with the uniform case. The evaluation of vibration attenuation
is based on how wide the bandgap is according to equation
(24). Figure 6 shows the tip transmissibility plots for a vari-
ety of graded frequency patterns. The first-order pattern yields
the widest attenuation band, but weakest vibration attenuation
intensity. We observe that, as the grading order p increases, the
transmissibility curve slowly dips below 0.1 (red horizontal
line), and the vibration attenuation intensity increases (asso-
ciated with a narrower attenuation band). The percentages of
enhancement in the bandgap width for each frequency grading
pattern are listed in table 3. The localized vibration modes

slowlymove away from the tip of the beam toward the clamped
end, such that the waves are trapped over a wider spatial region
(figure 7). That is, if we trace the evolution of steady wave
profiles (as heatmaps versus normalized excitation frequency
and dimensionless beam length) from the start to the end fre-
quency of the bandgap, we can clearly see that the pattern of
wave trapping along the beam follows the frequency grading
pattern of the shunt circuits. These observations are valid for
each pattern shown in figure 7. Because first-order grading pat-
tern provides constant frequency spacing between neighboring
shunt circuits, the localization of vibration modes occurs at a
constant rate with respect to the excitation frequency, unlike
higher-order grading patterns where the formation of localized
modes occurs slowly with respect to the excitation frequency.
This is interesting because whenwe look at the fractional grad-
ing pattern, the localization of vibration modes occurs rapidly
with respect to the excitation frequency. In all cases, vibration
modes appear over the entire beam length when the excita-
tion frequency is at the start of the bandgap and gradually loc-
alized near the clamped end at the end of the bandgap. The
frequency grading order (p) governs how waves localize with
respect to the excitation frequency. This is particularly import-
ant when we look at the power output of shunt circuits. Hav-
ing the vibration energy localized over some distance (prefer-
ably small distance) over a wide frequency excitation range
enables us to extract the power more efficiently. Therefore,
to localize vibration modes near the excitation point (clamped
end), a fractional frequency grading pattern is the best choice
as it localizes vibration modes of a wider frequency range over
a short distance (near the clamped end). These remarks are
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Table 3. Normalized bandgap width for different frequency grading
patterns (in figure 6) and the percentage increase relative to uniform
grading.

Frequency pattern Normalized bandgap % Increase

Uniform 2.45 0
p= 1/3 2.73 11.4
p= 1/2 3.49 42.4
p= 1 4.05 65.3
p= 2 3.53 44.1
p= 3 3.25 32.7

useful when it comes to energy harvesting implementation as
will be shown next.

3.4. Wideband energy harvesting implications

Harvesting energy from vibrating structures is an attract-
ive approach to power small electronic components such as
sensors for structural health monitoring, among other applic-
ations [50–52]. The efficiency of the harvested energy is
increased when the vibrational energy is confined at some spa-
tial position along the structure. That is, by trapping the waves
at some position and then extracting the energy using the dir-
ect piezoelectric effect is a favorable solution. For this pur-
pose, we look at the ability to improve the real power out-
put for different graded arrays of shunt circuits. To this end,
we first show the effect of varying electrical load resistance
as heatmaps of the sum of the real power output across all
shunt circuits versus the normalized excitation frequency and
dimensionless time constant for different frequency grading
patterns as shown in figure 8. The plots show the optimal load
resistance that maximizes the real power output at each excit-
ation frequency. For all cases other than the uniform one, high
power output is obtained over a wider frequency range (from
30 to 35). To evaluate the performance of the frequency grad-
ing patterns, we focus on the frequency region where local-
ized vibration modes occur (from 30 to 35) and calculate the
average power output over this region as shown in figure 9.
The figure clearly shows that fractional patterns exhibit higher
average power compared with the other cases. Overall, any of
the graded scenarios is better than harvesting with uniform res-
onators when it comes to bandwidth enhancement.

4. Conclusion

In this paper, a locally resonant piezoelectric metastructure
with a graded array of shunted piezoelectric patches was con-
sidered. The electromechanical equations describing the lin-
ear transverse displacement of the beam and output electric
voltages were reviewed and solved using the matrix inversion
method. The grading parameter was the resonance frequency
of each shunt circuit; specifically, grading was performed on
the inductance of shunt circuits, keeping the associated capa-
citance and resistance fixed. Fractional, first-order, and high-
order frequency grading patterns were considered to reveal the

effect of frequency grading on the vibration attenuation band-
width, vibration localization, and harvested power. Numer-
ical results showed that first-order frequency grading pattern
resulted in the widest bandgap, yielding 65% increase in the
bandwidth compared to the uniform pattern; while fractional
frequency grading patterns resulted in the highest harvested
power. All graded scenarios resulted in wider energy harvest-
ing bandwidth as compared to the uniform resonators case.
Also, fractional grading patterns showed wideband localiza-
tion of vibration modes. The findings clearly show the signi-
ficance of properly grading the resonance frequencies of the
shunt circuits to achieve the desired enhancement in vibration
attenuation and energy harvesting.
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