Contents lists available at ScienceDirect

International Journal of Mechanical Sciences

journal homepage: www.elsevier.com/locate/ijmecsci

Mechanical Sciences

Experimentally validated broadband self-collimation of elastic waves

Soo-Ho Jo^{a,1}, Yiwei Xia^{b,1}, Adriane G. Moura^b, Heonjun Yoon^{c,*}, Yong Chang Shin^a, Alper Erturk^b, Byeng D. Youn^{a,d,e}

^a Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul 08826, Republic of Korea

^b The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States

^c School of Mechanical Engineering, Soongsil University, Seoul 06978, Republic of Korea

^d Institute of Advanced Machines and Design, Seoul National University, Seoul 08826, Republic of Korea

^e OnePredict Inc., Seoul 08826, Republic of Korea

ARTICLE INFO

Keywords: Self-collimation Equi-frequency contour Phononic crystal Anisotropy Broadband

ABSTRACT

One extraordinary phenomenon exhibited by phononic crystals (PnCs) is that they can manipulate oblique incident waves in a target direction via proper refraction, commonly called wave self-collimation. Although prior studies have demonstrated self-collimation of electromagnetic and acoustic waves, only a few studies have examined elastic waves in this context. If a PnC is designed to represent rectangular-like and/or parallel-line-like equi-frequency contour (EFCs), elastic waves can be self-collimated in either horizontal or vertical directions. However, in the existing literature, there is no theoretical rationale for realizing rectangular-like and/or parallel-line-like EFCs; besides, broadband self-collimation of elastic waves has not yet been explored. Therefore, we propose to derive the material property requirement for an anisotropic PnC to exhibit rectangular-like EFCs (a range of low frequencies) and parallel-line-like EFCs (a range of high frequencies) in the case of elastic waves. Furthermore, by inherently adjoining two frequency ranges of the rectangular-like and parallel-line-like EFCs at a certain frequency, broadband self-collimation covering the entire range of frequencies can be achieved. With the designed anisotropic PnC that fulfills the proposed material property requirement, self-collimation for S₀ Lamb waves is numerically simulated and experimentally demonstrated over a broad range of frequencies.

1. Introduction

A phononic crystal (PnC) is an engineered structure that consists of periodically arranged unit cells to exhibit properties beyond what is available in ordinary materials [1-10]. One extraordinary phenomenon of PnCs is their ability to manipulate any oblique incident waves in a target direction, so-called wave self-collimation [11–15]. One principle of self-collimation is to control the directions of energy transport in an equi-frequency contour (EFC). An EFC is a constant-frequency contour of three-dimensional dispersion curves, as shown in Fig. 1 (a), which can quantify the directions of both wave vectors and the polarization vectors within a medium [16,17]. In Fig. 1 (b), the vector \mathbf{k}_{w} from the origin to the EFC represents the direction along which the wavefront is propagated, and the normal vector ke of the EFC represents the direction along which wave energy is transported [18]. If a PnC is designed to exhibit rectangular-like or parallel-line-like EFCs, wave energy will be transported in either horizontal or vertical directions, thus enabling self-collimation.

In the case of electromagnetic waves, Chigrin et al. [19] presented self-collimated light beams at narrowband frequencies near a band gap. Prather et al. [20] organized several potential engineering applications of self-collimation, including a channel-less waveguide, a tunable splitter, an optical switch, and an all-optical analog-to-digital converter. Li et al. [21] proposed a gyromagnetic unit cell to achieve one-way selfcollimation. For acoustic waves, Li et al. [22] and Wen et al. [23] examined acoustic beam splitting and acoustic directional radiation using self-collimation, respectively. Shi et al. [24] doubled the frequency bandwidth of acoustic self-collimation using a sequential series of PnCs with the same period but a different filling fraction. However, only a few studies have been presented for the case of elastic waves; this is due to a complex tensor form of their governing equation. Liu et al. [25] investigated self-collimation under transverse elastic waves. Park et al. [26] executed topology optimization of a PnC for flattening the curvature of a rectangular-like EFC at a certain frequency. Cheng et al. [27] proposed a new design of a PnC composed of auxetic star-shaped honeycomb structures for self-collimation.

With respect to self-collimation of elastic waves in a PnC, two questions of importance can be posed: (1) how can a PnC be designed to have rectangular-like and/or parallel-line-like EFCs? and (2) how can elastic waves be self-collimated at broadband frequencies? To answer these questions, we newly propose material property requirement for

* Corresponding author.

https://doi.org/10.1016/j.ijmecsci.2020.106131

Received 8 July 2020; Received in revised form 6 September 2020; Accepted 30 September 2020 Available online 4 October 2020 0020-7403/© 2020 Elsevier Ltd. All rights reserved.

E-mail address: heonjun@ssu.ac.kr (H. Yoon).

 $^{^{1}\,}$ Soo-Ho Jo and Yiwei Xia contributed equally to this work as the first author.

Fig. 1. Concept of EFCs for a nondispersive wave mode: (a) constant-frequency contours in three-dimensional dispersion curves; (b) wavefront vector \mathbf{k}_{w} and energy transport vector \mathbf{k}_{e} .

an anisotropic PnC to exhibit broadband self-collimation in the case of longitudinal elastic waves (e.g., S_0 Lamb waves in a thin plate case). There have been several efforts on elastic wave propagation in PnCs with asymmetric lattices that possess anisotropic properties [28–32]. Our primary interest is to fundamentally examine effective material properties required for achieving self-collimation in EFC analysis and to thoroughly investigate the broadband self-collimation capabilities of the designed anisotropic PnC that satisfies the proposed material property requirement. Finally, self-collimation for S_0 Lamb waves is experimentally demonstrated at broadband frequencies. This study provides insightful theoretical rationale for anisotropic PnCs to realize the broadband self-collimation for elastic waves.

The rest of this paper is organized into the following sections. Section 2 describes the material property requirement for self-collimation of S_0 Lamb waves. Section 3 presents EFC analysis of the anisotropic PnC that satisfies the proposed material property requirement. Numerical simulations and experiments examining self-collimation performance of the anisotropic PnC are demonstrated at broadband frequencies in Section 4. Finally, the conclusions of this work are provided in Section 5.

2. Proposed material property requirement for self-collimation of \mathbf{S}_0 Lamb waves

If the lattice constant of a unit cell is much smaller than the wavelength of the elastic waves propagating through a host plate, a PnC equivalently behaves as an effective medium (a homogeneous solid) [33,34]. In this work, a term 'effective' has the same meaning with a term 'homogenized'. Under the assumption of plane harmonic wave motions at an angular frequency ω , the governing equation for elastic waves in a homogeneous solid, the so-called Christoffel equation [18], is as follows:

$$C_{iikl}^{\rm eff}k_jk_lV_k = \rho^{\rm eff}\omega^2 V_i \tag{1}$$

where k_i and V_i denote a component of a wave vector **k** and a particle velocity vector **V** in the *i*-th direction, respectively; ρ^{eff} and C_{ijkl}^{eff} are the density and the fourth-order tensor of elastic constants of the effective medium, respectively. Here, the 6 × 6 second-order tensor form of the elastic constants, written in Voigt notation, would be used instead [35]. When the effective medium is symmetric with respect to its principal axes (x_1 - and x_2 -axes in this study), the longitudinal-transverse mode coupling constants of C_{16}^{eff} and C_{26}^{eff} will be zero [16,36]. For a thin plate with plane stress conditions, Christoffel equation can be rewritten as

follows:

$$\begin{pmatrix} \begin{bmatrix} C_{11}^{\text{eff}} k_1^2 + C_{66}^{\text{eff}} k_2^2 & (C_{12}^{\text{eff}} + C_{66}^{\text{eff}}) k_1 k_2 \\ (C_{12}^{\text{eff}} + C_{66}^{\text{eff}}) k_1 k_2 & C_{66}^{\text{eff}} k_1^2 + C_{22}^{\text{eff}} k_2^2 \end{bmatrix} - \begin{bmatrix} \rho^{\text{eff}} \omega^2 & 0 \\ 0 & \rho^{\text{eff}} \omega^2 \end{bmatrix}) \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
(2)

In terms of $|\mathbf{k}|$, $\cos\theta$, and $\sin\theta$, Eq. (2) can be rewritten as follow:

$$\begin{pmatrix} |\mathbf{k}| \begin{bmatrix} C_{1f}^{\text{eff}} \cos^2\theta + C_{6f}^{\text{eff}} \sin^2\theta & (C_{12}^{\text{eff}} + C_{66}^{\text{eff}}) \cos\theta \sin\theta \\ (C_{12}^{\text{eff}} + C_{66}^{\text{eff}}) \cos\theta \sin\theta & C_{66}^{\text{eff}} \cos^2\theta + C_{22}^{\text{eff}} \sin^2\theta \end{bmatrix} - \begin{bmatrix} \rho^{\text{eff}} \omega^2 & 0 \\ 0 & \rho^{\text{eff}} \omega^2 \end{bmatrix} \end{pmatrix} \times \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
(3)

where $|\mathbf{k}|$ is the magnitude of the wave vector \mathbf{k} , calculated by $(k_1^2+k_2^2)^{1/2}$; k_1 and k_2 can be expressed as $|\mathbf{k}|\cos\theta$ and $|\mathbf{k}|\sin\theta$, respectively. Once both effective elastic moduli and the angular frequency ω are determined, the zero determinant in Eq. (3) provides two solutions of $|\mathbf{k}|$ for a certain θ that ranges from zero to 2π . Each of the solutions corresponds to S_0 and A_0 Lamb wave modes for a thin plate case, respectively. Then, k_1 and k_2 can be obtained for the given θ . Finally, a EFC can be defined as a function of k_1 and k_2 , as shown in Fig. 1. In general, an isotropic material exhibits a purely circular EFC.

If the elastic constants of C_{11}^{eff} , C_{22}^{eff} , C_{12}^{eff} , and C_{66}^{eff} satisfy the following relationship:

$$C_{11}^{\text{eff}} > C_{22}^{\text{eff}} \gg C_{12}^{\text{eff}}, C_{66}^{\text{eff}}$$
 (4)

solutions of the zero determinant in Eq. (3) can be approximately decomposed into two decoupled equations of standard ellipses centered at the origin; thereby, EFCs can be regarded as a superposition of two ellipses. Note that a major axis of one ellipse is parallel to the x_1 -axis and that of the other is vertical to the x_1 -axis. In both ellipses, polarized vectors at the wavefront follow S₀ Lamb waves around the minor axis, while they follow A₀ Lamb waves around the major axis. It is worth pointing out that the ellipses around the minor axis can be regarded as flat lines in a certain range of directions, due to their considerably small curvature. Since four flat lines near the two minor axes in each ellipse meet at the four angular points, a rectangular-like EFC can be obtained for S₀ Lamb waves. As an example, Fig. 2 (a) shows a rectangular-like EFC (colored in blue) for S₀ Lamb waves, that satisfies the material property requirement in Eq. (4). In particular, the four sides of the rectangular-like EFC tend to be more flattened as the ratio of C_{11}^{eff} and C_{22}^{eff} to C_{66}^{eff} and C_{12}^{eff} increases.

On the other hand, if the PnC, which satisfies the proposed material property requirement of $C_{11}^{\text{eff}} > C_{22}^{\text{eff}}$, exhibits a partial band gap in the x_2 -axis, the upper and lower edges in its rectangular-like EFC would

Fig. 2. The formation of (a) rectangular-like and (b) parallel-line-like EFCs for the case of S_0 Lamb waves, when satisfying the proposed material property requirement; and (c) a scheme to achieve broadband self-collimation.

not be observed. This is because a partial band gap represents the nonreal wave vectors [37,38]. A partial band gap refers to an extraordinary phenomenon where elastic waves cannot be propagated through PnCs in a certain incident direction [39,40]. From the viewpoint of EFCs, the partial band gap can be defined as a frequency range in which the EFCs are not closed in a specific certain direction [41]. Therefore, a parallelline-like EFC can be obtained in the x_1 -axis, as shown in Fig. 2 (b).

When a PnC is designed to satisfy the proposed material property requirement in Eq. (4), it can be seen in Fig. 2 (c) that the rectangularlike EFCs would be observed over a closed interval of low frequencies ($\omega_a \le \omega \le \omega_{ad}$). As the frequency increases, both the length and width of the rectangular-like EFCs increase with the wavenumber. If the upper and lower edges of the rectangular-like EFCs meet the borders of the first Brillouin zone at the certain frequency $\omega_{\rm ad},$ the rectangular-like EFCs are transformed into the parallel-line-like EFCs over a half-open interval of high frequencies ($\omega_{ad} < \omega \le \omega_b$). With the proposed material property requirement, the frequency ranges of rectangular-like and parallel-line-like EFCs are thus inherently adjoined at the frequency ω_{ad} as shown in Fig. 2 (c). Finally, broadband self-collimation covering the entire ranges ($\omega_a \le \omega \le \omega_b$) can be achieved for S₀ Lamb waves by adjoining these two kinds of EFCs at ω_{ad} . If one wants to realize broadband self-collimation by exploiting only the rectangular-like EFCs, the lattice constant of the unit cell needs to be much smaller to broaden the frequency range of the rectangular-like EFCs. However, due to the manufacturability of the PnC, it is impractical to make the unit cell extremely small. Therefore, the idea of adjoining frequency ranges of the rectangular-like and parallel-line-like EFCs enables to achieve broadband self-collimation with a macro-scale unit cell.

3. EFC analysis for the anisotropic PnC satisfying the proposed material property requirement

3.1. Design and effective material properties for the anisotropic PnC

The unit cell under consideration, shown in Fig. 3 (a), is composed of an aluminum square lattice with a rectangular hole at its center. Design variables of the unit cell include: the lattice constant d, the thickness t, the width w, and the height h of the rectangular hole, respectively. Table 1 summarizes both the geometry of the unit cell and material properties of the aluminum.

It should be noted that the effective longitudinal elastic constants of C_{11}^{eff} and C_{22}^{eff} will be different, since the rectangular hole is not symmetric with respect to diagonal lines. This implies that the PnC will posses anisotropic effective material properties, even though the aluminum itself is an isotropic material.

Several research efforts have been made to characterize effective material properties of anisotropic PnCs [42–46]. Among them, static analysis can be performed since the unit cell has nothing to do with

Table 1

Geometry of the unit cell and material properties of the aluminum.

Geometry	Lattice constant, d	9 mm
	Thickness, t	5 mm
	Width of the rectangular hole, w	8 mm
	Height of the rectangular hole, h	3 mm
Material	Density, ρ_{al}	2700 kg/m ³
properties	Young's modulus, Y _{al}	70 GPa
(Aluminum)	Poisson's ratio, v_{al}	0.33

Table 2

Effective material properties of the anisotropic PnC.

Effective material properties		Anisotropic PnC	
Density Elastic constants	$\rho^{\text{eff}} \\ C^{\text{eff}}_{11} \\ C^{\text{eff}}_{22} \\ C^{\text{eff}}_{12} \\ C^{\text{eff}}_{66} \\ \end{cases}$	1900 kg/m ³ 47.5 GPa 12.6 GPa 2.38 GPa 1.54 GPa	

any resonant structure and no impact on longitudinal-transverse mode coupling [16,36,47]. The effective density can be calculated by $\rho_{al}(d^2 - wh)/d^2$. Effective elastic constants can be calculated by the stress-strain relationship; C_{11}^{eff} , C_{22}^{eff} , and C_{12}^{eff} govern the longitudinal deformations, while the remaining C_{66}^{eff} governs the transverse deformation.

A commercially available finite element analysis (FEA) software, COMSOL Multiphysics 5.4, was used for all analyses in numerical simulations. A loss factor of the structure is set as 0.0001 [48]. For a 3×3 array of unit cells, Fig. 3 (b) and (c) show deforming behaviors of the array under tensile forces *H* and *V* in the x_1 - and x_2 -axes, respectively. Since the unit cell is periodically arranged in the x_1 - and x_2 -axes, respectively, periodic boundary conditions (PBCs) can be employed on interfaces among adjacent unit cells, according to Floquet-Bloch theorem [49,50]. Fig. 3 (d) shows deforming behaviors of the array under a shear force *S* in the x_1 -axis, while PBCs are applied in the x_2 -axis and zero displacements in the x_1 -axis are employed at both left and right ends of the structure. Magnitudes of the tensile forces *H* and *V* and the shear force *S* are the same, denoted as *F*.

The elastic constants of C_{11}^{eff} and C_{22}^{eff} can be estimated from the Hooke's law $F/(\delta_1 t)$ and $F/(\delta_2 t)$, where δ_1 and δ_2 are the average elongations in the x_1 - and x_2 -axes at load-acting surfaces in Fig. 3 (b) and (c), respectively. The elastic constant of C_{12}^{eff} can be estimated from $C_{12}^{\text{eff}}F_{22}^{\text{PBC}}/F$ (or $C_{22}^{\text{eff}}F_{11}^{\text{PBC}}/F$) in Fig. 3 (b) (or (c)) where F_{22}^{PBC} and F_{11}^{PBC} are average reaction forces outward normal directions at PBCs in Fig. 3 (b) and (c), respectively. Likewise, the elastic constant of C_{66}^{eff} can be estimated from $2F/(u_2 t)$, where u_2 is an average displacement in the x_2 -axis at load-acting surfaces.

Table 2 summarizes the estimated effective material properties of the anisotropic PnC. It can be seen that C_{11}^{eff} and C_{22}^{eff} are 19.9 times and

Fig. 3. Static analysis and EFC analysis for the unit cell: (a) a top view of the unit cell; static deforming behaviors under (b) a tensile force *H* in the x_1 -axis (C_{11}^{eff} and C_{12}^{eff}); (c) a tensile force *V* in the x_2 -axis (C_{22}^{eff} and C_{12}^{eff}); (d) a shear force *S* in the x_1 -axis (C_{66}^{eff}); (e) the formation of rectangular-like and parallel-line-like EFCs from 0 kHz to 220 kHz; and (f) the formation of the partial band gap from 93 kHz to 220 kHz in dispersion curves.

5.29 times larger than C_{12}^{eff} , respectively, while they are 30.8 times and 8.19 times larger than C_{66}^{eff} , respectively. It is known that the effective medium theory is generally based on the long-wavelength limit. However, since all effective material properties tend to gradually decrease together as the frequency increases [16], the Eq. (4) is still applicable at higher frequencies. Therefore, the anisotropic PnC can thus fulfill the proposed material property requirement over broadband frequencies, thereby enabling broadband self-collimation of elastic waves.

3.2. EFCs of the anisotropic PnC

By inserting the PBCs into the governing equation of the unit cell, an eigenvalue problem can be formulated as follows [51–53]:

$$\left([\mathbf{K}] + i\omega[\mathbf{C}] - \omega^2[\mathbf{M}]\right)\{\mathbf{u}\} = \mathbf{0}$$
(5)

where [**M**] and [**u**] are the mass matrix and the displacement vector, respectively. [**C**] and [**K**] are the damping and the stiffness matrices, which are functions of the reciprocal wave vector $\mathbf{k}(k_1, k_2)$. At a certain angular frequency ω , the EFC can be obtained by calculating a set of reciprocal wave vectors, which should be within a range from $-\pi/d$ to π/d .

At frequencies ranging from 0 kHz to 250 kHz, Fig. 3 (e) presents the EFCs of S_0 Lamb waves. In addition, for the purpose of investigating the formation of the partial band gap, Fig. 3 (f) depicts dispersion curves of the unit cell along some borderlines $(Y \rightarrow \Gamma \rightarrow X)$ of the first Brillouin zone [54], respectively; solid lines with blue and back indicate the band structures of S_0 mode and A_0 mode, respectively. It is found that the anisotropic PnC presents retangular-like EFCs at low broadband frequencies, ranging from 0 kHz to 93 kHz, due to the proposed material property requirement. Further, since a partial band gap is created in the x_2 -axis from 93 kHz to 220 kHz as shown in Fig. 3 (f), the upper and lower edges of the rectangular-like EFCs disappear. Therefore, the anisotropic PnC exhibitsparallel-line-like EFCs at high broadband frequencies, ranging from 93 kHz to 220 kHz, due to the combined effects of the partial band gap in the x_2 -axis and the proposed material property requirement. Here, it should be noted that whether S₀ Lamb waves can be self-collimated along the x_1 -axis depends on the incidence angle; a detailed explanation is provided in Appendix A.

The unit cell under consideration is a non-resonant type PnC. Unlike a resonant type metamaterial [30,55,56], which is designed for a certain target frequency, it is well known that a non-resonant type PnC is capable of exhibiting nearly constant effective material properties in a wide range of frequencies [36,46,57]. Therefore, the anisotropic PnC satifies the material property requirement at broadband frequencies and is capable of obtaining rectangular-like and parallel-line-like EFCs at each wide range of frequencies. In addition, it is worth pointing out that inherently adjoining two ranges of frequencies near 93 kHz enables realization of broadband self-collimation for S₀ Lamb waves from 0 kHz to 220 kHz.

4. Demonstration of broadband self-collimation of S₀ Lamb waves

4.1. Numerical simulation

Fig. 4 (a) shows a large aluminum plate with a 25×41 array of unit cells deployed near the center of it; the width and the height of the anisotropic PnC domain are 225 mm and 369 mm, respectively. This study performed transient analysis to numerically investigate broadband

Fig. 4. FEA simulations for transient analysis: (a) system configuration; out-of-plane velocity fields of the structure at frequencies of (b) 60 kHz; (c) 70 kHz; (d) 80 kHz; (e) 100 kHz; (f) 150 kHz; and (g) 200 kHz.

self-collimation of S_0 Lamb waves. To excite the oblique S_0 Lamb waves into the anisotropic PnC domain, a line source is set to be inclined by 150° with respect to the x_1 -axis. S_0 Lamb waves are induced by exciting the line source by 16 cycles of sinusoidal bursts in the normal direction with a prescribed velocity of 10 mm/s, regardless of the exciting frequency.

To investigate whether S_0 Lamb waves can be self-collimated at each frequency of rectangular-like and parallel-line-like EFCs, FEA simulation results are presented at six frequencies, including: 60, 70, and 80 kHz for the rectangular-like EFCs, and 100, 150, and 200 kHz for the parallel-line-like EFCs. Note that the anisotropic PnC can theoretically achieve self-collimation at arbitrary frequencies below 60 kHz; however, since the wavelength becomes longer as the frequency becomes lower, we

selected the frequency of 60 kHz as the lowest one for the rectangularlike EFCs, considering the manufacturable volume of the specimen and the transducer specifications in the experiments.

Figs. 4 (b) to (g) depict the calculated out-of-plane velocity fields at frequencies of 60, 70, 80, 100, 150, and 200 kHz, respectively. It can be seen in Figs. 4 (b) to (g) that S_0 Lamb waves propagate only along the x_1 -axis inside the anisotropic PnC at all frequencies. Therefore, the capability of the anisotropic PnC for broadband selfcollimation is confirmed through this FEA simulations. In addition, to validate the broadband self-collimation over a wide range of incidence angles, numerical simulation results for other incidence angles (i.e., 20°, 40°, and 50°) at frequencies of 60 kHz and 200 kHz are presented in Appendix B.

Fig. 5. Experimental setup showing the anisotropic PnC domain for self-collimation: (a) overall setup displaying the plate and scanning LDV; (b) close-up view showing the scan area as well as locations and orientations of piezoelectric line array sources for the S_0 Lamb wave excitation; and (c) a view of the anisotropic PnC domain.

Fig. 6. Experimentally measured out-of-plane velocity fields at frequencies of (a) 60 kHz; (b) 70 kHz; (c) 80 kHz; (d) 100 kHz; (e) 150 kHz; and (f) 200 kHz (note that Figures (a) to (c) were obtained using Source I, while Figures (d) to (f) were obtained using Source II; for a convenient representation, Figures (a) to (c) are therefore flipped in plotting to be consistent with the orientation of numerical simulations).

When the incident S_0 Lamb waves are fed into the anisotropic PnC, it could be partially reflected at the interfaces of the host aluminum plate and the anisotropic PnC due to the impedance mismatch. Therefore, the mechanical power of the transmitted wave in self-collimation would be less than that of the incident wave. The reflection coefficient of the velocity can be calculated by $(Z_{PnC}-Z_{al})/(Z_{PnC}+Z_{al})$ where Z_{al} and Z_{PnC} in-

dicate the mechanical impedances of the aluminum and anisotropic PnC considering the incidence angle, respectively. Then, the reflection coefficient of the mechanical power is calculated by $|Z_{PnC}-Z_{al}|^2/|Z_{PnC}+Z_{al}|^2$ which is equal to the absolute square of the reflection coefficient of the velocity [58,59]. For a very low loss factor, the transmission coefficient of the mechanical power can be obtained from energy conservation. The

velocity amplitude of the reflected waves in the host aluminum plate is calculated as near 3 mm/s. As the velocity amplitude of the incident waves is 10 mm/s, the reflection and transmission coefficients of the mechanical power can be obtained as near 9% and 91%, respectively. In addition, it can be found that the wavefront is inclined by a certain angle with respect to the x_1 -axis, even though the energy is transmitted in the x_1 -axis. This can be described by Snell's law, which covers the refracted angle depending on the variation of wavenumbers (or phase velocities) of the host structure and anisotropic PnC at the interfaces. When the propagating waves on the host structure are fed into the anisotropic PnC, the x_2 -directional wavenumber should be preserved at the interfaces; however, the x_1 -directional wavenumber is changed, depending on the EFCs of the anisotropic PnC at a given frequency. The ratio of the x_2 -directional wavenumber to the x_1 -directional wavenumber can determine the inclined angle of the wavefront in the anisotropic PnC domain.

4.2. Experimental validation

Experimental validation of the broadband self-collimation simulations was performed using the setup shown in Fig. 5 (a). This figure shows the fabricated plate with the attachment of piezoelectric line arrays for S_0 Lamb wave excitation (Fig. 5 (b)) and a close-up view of the anisotropic PnC domain and machined unit cells (Fig. 5 (c)). To generate S₀ Lamb waves at the desired frequencies, two line array sources were used (Source I for 60, 70, and 80 kHz and Source II for 100, 150, and 200 kHz), since the corresponding wavelength range is relatively wide. Source I (longer wavelength) includes five piezoelectric patches $(30 \times 30 \times 1 \text{ mm}^3)$ bonded as a line array $(150 \times 30 \times 1 \text{ mm}^3)$ to the aluminum plate on both sides at 150° relative to horizontal. For the shorter wavelength range, two piezoelectric patches (72.4 \times 5 \times 0.267 mm³) were bonded as a line array (144.8 \times 5 \times 0.267 mm³) to the aluminum plate on both sides at 30° relative to horizontal to form source II. The piezoelectric elements in the respective line arrays were connected in parallel and driven in phase (with each other as well as on both sides of the plate) to create S₀ Lamb waves. Each source array was excited by 16 cycles of sinusoidal bursts at the desired frequencies (60, 70, 80 kHz with Source I and 100, 150, and 200 kHz with Source II) using a function generator (Agilent 33200A) and a voltage amplifier (Trek Model PZD350). A Polytec PSV-400 scanning laser Doppler vibrometer (LDV) was used to measure the resulting wave field by recording the out-ofplane velocity of the plate over a grid of points covering the domain of interest.

The overall out-of-plane velocity field was measured over a broad range of frequencies to explore the frequency dependence and to validate the numerical results. To confirm the performance over a range of frequencies, experiments were conducted for frequencies of 60, 70, 80, 100, 150, and 200 kHz. To filter the presence of A₀ Lamb waves especially for long wavelength (lower frequency) cases, a two-dimensional circular averaging filter (pillbox) was applied, which is similar to a moving average filter in one-dimensional signals. The parameter radius was determined based on the ratio between the cutoff wavelength of S₀ and A₀ modes at each frequency and the scanning grid size. The process acted as a low-pass filter in the wavenumber domain so that S₀ Lamb waves were kept while the A₀ Lamb waves were filtered out. Therefore, S₀ Lamb waves can be clearly observed in the time series response for all six frequencies, as shown in Fig. 6. For better comparison, the experimental results for 60, 70, and 80 kHz were flipped horizontally (due to the symmetric arrangement of the line arrays in Fig. 5 (b)) so that the source orientation is consistent with the simulation. It was found that S₀ Lamb waves propagate only in the horizontal direction inside the anisotropic PnC at all frequencies. These experimental results agree very well with numerical simulations. It can be thus concluded from the experimental results that the anisotropic PnC is capable of self-collimation of S₀ Lamb waves over a wide frequency range using the rectangular-like and parallel-line-like EFCs.

5. Conclusion

This study newly proposed the material property requirement for anisotropic phononic crystals (PnCs) to achieve broadband selfcollimation of S₀ Lamb waves. Theoretical framework is presented for obtaining rectangular-like and parallel-line-like equi-frequency contours (EFCs), along with numerical simulations and experimental validations of self-collimation over a range of frequencies. To the best of the authors' knowledge, no previous study has revealed such a relationship between the effective elastic moduli and EFCs, in terms of broadband self-collimation. It is noted that, if the effective elastic moduli of C_{11}^{eff} and C_{22}^{eff} are much larger than those of C_{12}^{eff} and C_{66}^{eff} , rectangular-like EFCs can be obtained. In such a case, if C_{11}^{eff} is larger than C_{22}^{eff} , a partial band gap can be formed in the x_2 -axis, thereby enabling the realization of parallel-line-like EFCs in the x_1 -axis. This study used an array of square lattices with rectangular holes, which possesses the required anisotropic material properties. With the help of non-resonant structure characteristics, the anisotropic PnC represented rectangular-like EFCs at low broadband frequencies and parallel-line-like EFCs at high broadband frequencies. By adjoining frequency ranges of the rectangular-like and parallelline-like EFCs at a certain frequency, broadband self-collimation can be achieved for S₀ Lamb waves. Lastly, results from both numerical simulations and experiments demonstrated that the anisotropic PnC satisfying the proposed material property requirement is capable of broadband self-collimation of S₀ Lamb waves.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

CRediT authorship contribution statement

Soo-Ho Jo: Conceptualization, Methodology, Formal analysis, Writing - original draft, Writing - review & editing. **Yiwei Xia:** Investigation, Validation, Visualization, Writing - original draft, Writing - review & editing. **Adriane G. Moura:** Investigation, Validation, Visualization, Writing - original draft. **Heonjun Yoon:** Conceptualization, Formal analysis, Supervision, Project administration, Writing - original draft, Writing - review & editing. **Yong Chang Shin:** Conceptualization, Methodology, Formal analysis, Writing - review & editing. **Alper Erturk:** Investigation, Validation, Visualization, Writing - original draft, Writing - review & editing. **Super D. Youn:** Conceptualization, Funding acquisition, Writing - review & editing.

Acknowledgments

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2019R1A6A3A12032924).

Appendix A. Effects of an incidence angle on self-collimation phenomenon

When an oblique incidence angle θ_{in} is within an open interval ($|\theta_{in}| < \theta_{ag}/2$) where the allowable angle θ_{ag} is shown in Figs. A1 (a) and (b), the incident waves can be self-collimated in the x_1 -axis over broadband frequencies. The allowable angle θ_{ag} is defined as an angle formed by the intersection of diagonals in the rectangular-like EFCs, shown in Fig. A1 (a), or by the intersection of two lines crossing the endpoints of the parallel-line-like EFCs, shown in Fig. A1 (b). If the incidence angle is out of the open interval ($|\theta_{in}| > \theta_{ag}/2$), the incident S₀ Lamb waves would be self-collimated along the x_2 -axis in a low frequency range exhibiting rectangular-like EFCs or totally reflected due to the partial band

Fig. A1. Effects of an incidence angle θ_{in} on self-collimation phenomenon: x_1 -directional self-collimation for (a) rectangular-like and (b) parallel-line-like EFCs; (c) x_2 -directional self-collimation for rectangular-like EFCs and (d) total reflection for parallel-line-like EFCs.

gap in a high frequency range exhibiting parallel-line-like EFCs, as depicted in Figs. A1 (c) and (d), respectively. Note that the allowable angle θ_{ag} depends on the given frequency.

Appendix B. Broadband self-collimation over a wide range of incidence angles

Fig. A2 depicts numerical simulation results for other incidence angles (i.e., 20° , 40° , and 50°) at frequencies of 60 kHz and 200 kHz. All numerical settings were set as the same, except for the incidence angle. It can be confirmed that self-collimation can be realized over a wide range of incidence angles up to 50° and broadband frequencies.

References

- Colombi A, Roux P, Guenneau S, Rupin M. Directional cloaking of flexural waves in a plate with a locally resonant metamaterial. J Acoust Soc Am 2015;137:1783–9.
- [2] Shin YC, Yoon H, Jo S-H, Choi W, Park C-S, Kim M, et al. Phononic band gap of a quarter-wave stack for enhanced piezoelectric energy harvesting. Int J Mech Sci 2021;189:106003.
- [3] Jin Y, Djafari-Rouhani B, Torrent D. Gradient index phononic crystals and metamaterials. Nanophotonics 2019;8:685–701.
- [4] Ruiz H, Claeys C, Deckers E, Desmet W. Numerical and experimental study of the effect of microslits on the normal absorption of structural metamaterials. Mech Syst Sig Process 2016;70:904–18.
- [5] Cui X, Zhao J, Boyko O, Bonello B, Zhong Z. Multi-branch subwavelength focusing of the lowest-order antisymmetric Lamb mode in a gradient-index phononic crystal. Int J Mech Sci 2019;157:677–83.
- [6] Tol S, Degertekin F, Erturk A. Phononic crystal Luneburg lens for omnidirectional elastic wave focusing and energy harvesting. Appl Phys Lett 2017;111:013503.
- [7] Zhou W, Chen W, Destrade M, Lim C. Actively controllable topological phase transition in phononic beam systems. Int J Mech Sci 2020:105668.

Fig. A2. Out-of-plane velocity fields of the structure for (a) 20° and 60 kHz; (b) 20° and 200 kHz; (c) 40° and 60 kHz; (d) 40° and 200 kHz; (e) 50° and 60 kHz; and (f) 50° and 200 kHz.

- [8] Qu J, Kadic M, Wegener M. Three-dimensional poroelastic metamaterials with extremely negative or positive effective static volume compressibility. Extreme Mech Lett 2018;22:165–71.
- [9] Jo S-H, Yoon H, Shin YC, Choi W, Park C-S, Kim M, et al. Designing a phononic crystal with a defect for energy localization and harvesting: supercell size and defect location. Int J Mech Sci 2020;179:105670.
- [10] Zhu J, Chen H, Wu B, Chen W, Balogun O. Tunable band gaps and transmission behavior of SH waves with oblique incident angle in periodic dielectric elastomer laminates. Int J Mech Sci 2018;146:81–90.
- [11] Han X, Zhang Z. Acoustic beam controlling in water by the design of phononic crystal. Extreme Mech Lett 2020;34:100602.
- [12] Korozlu N, Kaya O, Cicek A, Ulug B. Self-collimation and slow-sound effect of spoof surface acoustic waves. J Appl Phys 2019;125:074901.
- [13] Zhao L, Lai C, Yu M. Modified structural Luneburg lens for broadband focusing and collimation. Mech Syst Sig Process 2020;144:106868.
- [14] Shen C, Jing Y. Loss-induced enhanced transmission in anisotropic density-near-zero acoustic metamaterials. Sci Rep 2016;6:37918.
- [15] Lee S-G, Kim K-J, Kim S-H, Kee C-S. Self-collimation-based photonic crystal notch filters. J Phys D: Appl Phys 2017;50:205102.
- [16] Lee HJ, Lee J-R, Moon SH, Je T-J, Jeon E-C, Kim K, et al. Off-centered double-slit metamaterial for elastic wave polarization anomaly. Sci Rep 2017;7:15378.
- [17] Yuan J, Shu J, Jiang L. Multifunctional beam steering via switchable negative refraction, self-collimation, and zero refraction effects in conventional and annular photonic crystals. Opt Express 2020;28:5367–77.
- [18] Auld BA. Acoustic fields and waves in solids. John Wiley & Sons; 1973.
- [19] Chigrin DN, Enoch S, Torres CMS, Tayeb G. Self-guiding in two-dimensional photonic crystals. Opt Express 2003;11:1203–11.
- [20] Prather DW, Shi S, Murakowski J, Schneider GJ, Sharkawy A, Chen C, et al. Self-collimation in photonic crystal structures: a new paradigm for applications and device development. J Phys D: Appl Phys 2007;40:2635.
- [21] Li Q-B, Li Z, Wu R-x. Bending self-collimated one-way light by using gyromagnetic photonic crystals. Appl Phys Lett 2015;107:241907.
- [22] Li J, Wu F, Zhong H, Yao Y, Zhang X. Acoustic beam splitting in two-dimensional phononic crystals using self-collimation effect. J Appl Phys 2015;118:144903.
- [23] Wen J, Yu D, Cai L, Wen X. Acoustic directional radiation operating at the pass band frequency in two-dimensional phononic crystals. J Phys D: Appl Phys 2009;42:115417.
- [24] Shi J, Lin S-CS, Huang TJ. Wide-band acoustic collimating by phononic crystal composites. Appl Phys Lett 2008;92:111901.
- [25] Liu W, Su X. Collimation and enhancement of elastic transverse waves in two-dimensional solid phononic crystals. Phys Lett A 2010;374:2968–71.
- [26] Park JH, Ma PS, Kim YY. Design of phononic crystals for self-collimation of elastic waves using topology optimization method. Struct Multidisciplinary Optimiz 2015;51:1199–209.
- [27] Chang S-Y, Chen C-D, Yeh J-Y, Chen L-W. Elastic wave propagation of two-dimensional metamaterials composed of auxetic star-shaped honeycomb structures. Crystals 2019;9:121.
- [28] Casadei F, Rimoli J. Anisotropy-induced broadband stress wave steering in periodic lattices. Int J Solids Struct 2013;50:1402–14.
- [29] Celli P, Zhang W, Gonella S. Pathway towards programmable wave anisotropy in cellular metamaterials. Phys Rev Appl 2018;9:014014.
- [30] Zhang H, Chen Y, Liu X, Hu G. An asymmetric elastic metamaterial model for elastic wave cloaking. J Mech Phys Solids 2020;135:103796.
- [31] Phani AS, Woodhouse J, Fleck N. Wave propagation in two-dimensional periodic lattices. J Acoust Soc Am 2006;119:1995–2005.
- [32] Kweun JM, Lee HJ, Oh JH, Seung HM, Kim YY. Transmodal Fabry-Pérot resonance: theory and realization with elastic metamaterials. Phys Rev Lett 2017;118:205901.
- [33] Pichard H, Torrent D. Dynamic homogenization of viscoelastic phononic metasolids. AIP Adv 2016;6:121705.

- [34] Ahsani S, Boukadia R, Droz C, Claeys C, Deckers E, Desmet W. Diffusion based homogenization method for 1D wave propagation. Mech Syst Sig Process 2020;136:106515.
- [35] Jaeken JW, Cottenier S. Solving the Christoffel equation: phase and group velocities. Comput Phys Commun 2016;207:445–51.
- [36] Ahn YK, Lee HJ, Kim YY. Conical refraction of elastic waves by anisotropic metamaterials and application for parallel translation of elastic waves. Sci Rep 2017;7:10072.
- [37] DePauw D, Al Ba'ba'a H, Nouh MA. Metadamping and energy dissipation enhancement via hybrid phononic resonators. Extreme Mech Lett 2018;18:36–44.
- [38] Krushynska A, Miniaci M, Bosia F, Pugno N. Coupling local resonance with Bragg band gaps in single-phase mechanical metamaterials. Extreme Mech Lett 2017;12:30–6.
- [39] He J, Kang Z. Achieving directional propagation of elastic waves via topology optimization. Ultrasonics 2018;82:1–10.
- [40] Liu Y, Chang Z, Feng X-Q. Stable elastic wave band-gaps of phononic crystals with hyperelastic transformation materials. Extreme Mech Lett 2017;11:37–41.
- [41] Ruzzene M, Scarpa F. Directional and band-gap behavior of periodic auxetic lattices. Physica Status Solidi (b) 2005;242:665–80.
- [42] Noguchi Y, Yamada T, Izui K, Nishiwaki S. Topology optimization for hyperbolic acoustic metamaterials using a high-frequency homogenization method. Comput Meth Appl Mech Eng 2018;335:419–71.
- [43] Lou J, Yang J, Kitipornchai S, Wu H. A dynamic homogenization model for long-wavelength wave propagation in corrugated sandwich plates. Int J Mech Sci 2018;149:27–37.
- [44] Zhu J, Bettaieb MB, Abed-Meraim F. Numerical investigation of necking in perforated sheets using the periodic homogenization approach. Int J Mech Sci 2020;166:105209.
- [45] Oh JH, Kwon YE, Lee HJ, Kim YY. Elastic metamaterials for independent realization of negativity in density and stiffness. Sci Rep 2016;6:23630.
- [46] Park JH, Lee HJ, Kim YY. Characterization of anisotropic acoustic metamaterial slabs. J Appl Phys 2016;119:034901.
- [47] Yang X, Kim YY. Topology optimization for the design of perfect mode-converting anisotropic elastic metamaterials. Compos Struct 2018;201:161–77.
- [48] Gréhant B. Acoustics in buildings. Thomas Telford; 1996.
- [49] Nouh M, Aldraihem O, Baz A. Wave propagation in metamaterial plates with periodic local resonances. J Sound Vib 2015;341:53–73.
- [50] Jo S-H, Yoon H, Shin YC, Kim M, Youn BD. Elastic wave localization and harvesting using double defect modes of a phononic crystal. J Appl Phys 2020;127:164901.[51] Gao C, Halim D, Yi X. Study of bandgap property of a bilayer membrane-type meta-
- [51] Guo G, Hamin D, Hi K, Gudy Gr banggap Jipperty of a binyet inclinate-type inclusion and a piper of the second second
- [22] Assis Groa, Ben D, Mitanda Ji Er, Cannio F, Dos Santos JWC, Artuda JR, Computing the complex wave and dynamic behavior of one-dimensional phononic systems using a state-space formulation. Int J Mech Sci 2019;163:105088.
- [53] Jo S-H, Yoon H, Shin YC, Youn BD. A graded phononic crystal with decoupled double defects for broadband energy localization. Int J Mech Sci 2020;183:105833.
- [54] Lee H, Oh JH, Seung HM, Cho SH, Kim YY. Extreme stiffness hyperbolic elastic metamaterial for total transmission subwavelength imaging. Sci Rep 2016;6:24026.
- [55] Sugino C, Erturk A. Analysis of multifunctional piezoelectric metastructures for low-frequency bandgap formation and energy harvesting. J Phys D: Appl Phys 2018;51:215103.
- [56] Zhu R, Chen Y, Wang Y, Hu G, Huang G. A single-phase elastic hyperbolic metamaterial with anisotropic mass density. J Acoust Soc Am 2016;139:3303–10.
- [57] D'Aguanno G, Le K, Trimm R, Alù A, Mattiucci N, Mathias A, et al. Broadband metamaterial for nonresonant matching of acoustic waves. Sci Rep 2012;2:340.
- [58] Kim Y-H. Sound propagation: an impedance based approach. John Wiley & Sons; 2010.
- [59] Graff KF. Wave motion in elastic solids. Ohio State University Press; 1975.