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ABSTRACT

We present the theoretical background, finite element and spectral element analyses, and experimental validation of a new class of tunable
elastic metamaterials which leverage coupled dual-beam resonators that cancel in-phase bending vibration of each beam section. For a meta-
material with an array of rotatable single-beam resonators, we first show that the orthogonal bending modes of each resonator merely cause
the shrinkage of one bandgap and the expansion of the other with changing resonator angle. Then, by simply rotating the coupled dual
beams while keeping the joint tip mass stationary, we demonstrate that the bandgap of the host elastic metamaterial with an array of
coupled dual-beam resonators can be continuously tuned over a wide range of frequencies. While canceling the undesired lateral bending
motions, we enable tunable elastic metamaterials through altering the moment of inertia of the beam-type resonator attachments.
Continuous bandgap tuning over a broad frequency range is validated experimentally, yielding a 42% change in the starting frequency of
the bandgap as the coupled dual-beam resonators are rotated from 0� to 90�. Although passive tuning is considered in our work, active
components can be incorporated in the proposed design to enable adaptive tuning as well as time-varying behavior.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5099324

I. INTRODUCTION

Elastic metamaterials are artificial composites with local reso-
nators that can forbid or suppress the propagation of elastic waves
through subwavelength bandgaps.1–4 In order to enable tunable
bandgaps, smart materials such as piezoceramics or shape memory
alloys (SMAs) are usually incorporated in the design of local
resonators.5–12 Although smart materials can actively tune the
bandgaps, the tuning range and performance of the bandgaps might
be practically limited due to the size (e.g., the thickness of the
SMAs), characteristics (e.g., heat transfer duration for the SMAs or
circuit stability for the piezoceramics), geometry (e.g., straight or
curved SMAs), among other parameters of these materials.

In addition to the active metamaterials with smart materials,
tunable metamaterials can also be realized by passive means.13–18

For example, by imposing mechanical deformation, a given
bandgap can be adaptively tuned or switched on and off with
buckling elastic beams.14 With large deformations of curved
beams subjected to prestrain in a honeycomb structure, tunable

dispersion properties of elastic metamaterials can be achieved.17

By varying the applied temperature to change the temperature-
dependent moduli of the constituent materials, metamaterial-
based bandgaps can be made tunable.18 For the buckling-based
or deformation-based tunable metamaterials, substantially
flexible materials/structures have to be implemented in design
and fabrication. These architected or perforated materials might
suffer from problems related to structural stability, strength, and
integrity.

In order to enhance the structural stability while ensuring
structural strength and integrity, resonators that can be attached
on host structures, such as beams or plates, offer a more practical
solution.19 In modeling of metamaterial beam or plates, such reso-
nators are often modeled as spring-mass components. Practically,
when realizing a metamaterial with real springs, the possible and
unwanted lateral bending vibrations might cause the theoretical
bandgap to deviate from the experimental one.3 A cantilever beam
with or without a tip mass can be regarded as the simplest realiza-
tion of the local resonators.20–23
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The fundamental resonance frequency of a beam-type resona-
tor can be approximated based on the classical beam theory as
fr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3EI=meql3

p
, where E is the elastic modulus, I is the cross-

sectional area moment of inertia, meq is the effective mass for a
beam-type resonator with or without a tip mass, and l is the length
of the cantilever beam.24 Obviously, E, I, meq, and l are four param-
eters that can be considered for tuning the locally resonant (LR)
bandgaps resulting from the beam-type resonators. Although, in
theory, such an equation offers many combinations for modifying
or tuning the bandgap in the elastic metamaterials, adjusting these
parameters in a physical system is typically not very practical.
Recently, tunable or switchable metamaterials with SMA springs
and tip masses (as tunable spring-mass resonators) have been
theoretically studied and experimentally demonstrated by employing
cantilever straight/straight beams (i.e., with varying stiffness) or
straight/curved beams (i.e., with varying geometry and stiffness).9–12

However, only two extreme states of the elastic modulus or geometry
of the SMA beam-type resonators were experimentally realized in
these studies, and thus the bandgap tuning was not a continuous
process. In the present work, we design beam-type resonators, as
shown in Fig. 1, and explore substantial and continuous tuning of
the bandgap and transmission properties of the corresponding meta-
material beam. We demonstrate that, with the introduction of
coupling into typical beam-type resonators, continuous tuning of
bandgaps can be achieved by changing the moment of inertia of the
resonators without resorting to nonlinear deformation or prestrain.
The coupling of dual-beam resonator cancels in-phase bending
vibrations of each beam section, enabling an equivalent tunable
spring-mass resonator for which the vertical vibration of the resona-
tor can be preserved.

The paper is organized as follows: in Sec. II, which serves as a
background for the coupled dual-beam resonators, we study the
bandgap properties of a metamaterial beam with an array of rotat-
able single-beam resonators; in Sec. III, we propose the coupled
dual-beam resonators and study its properties through the spectral
element method (SEM); in Sec. IV, vibration analysis of the rotat-
able coupled dual-beam resonators is provided; in Sec. V, we
perform the experiments and demonstrate the continuous tuning
of the bandgap, which is followed by the conclusions drawn from
this work.

II. ROTATABLE SINGLE-BEAM RESONATORS

For a brief background on the coupled dual-beam resonator
concept, we first study the bandgap properties of a metamaterial
beam with an array of rotatable single-beam resonators. Consider a
uniform cantilever beam with a rectangular cross section of w� h
for which the moments of inertia of the beam are different about
the two orthogonal neutral axes. The moments of inertia are
Iw ¼ wh3=12 and Ih ¼ hw3=12, respectively, where the subscript
represents the neutral axis. Thus, for w . h, we have Ih . Iw with
a factor of the square of the aspect ratio (w=h). Now, for a host
beam carrying a periodic array of single-beam resonators with two
tip masses as shown in Fig. 2, rotating the beams alters the
moment of inertia of the single-beam resonators about the axis
which is parallel to the length of the host beam. Accordingly, the
LR bandgap can be tuned. One might think that by continuously
rotating the resonators, one can obtain a continuous bandgap
tuning. However, quite the opposite, it is a process of the expansion
(and strengthening) of one bandgap and the shrinkage (and
weakening) of the other independent bandgap, generated by two
independent orthogonal bending modes. To show this, the dis-
placement transmissions of the metamaterial beam, on which five
rotatable beam-type resonators are attached, are simulated by the
finite element method (FEM), and the results are shown in Fig. 2.
In the simulations, the dimensions of the host beam, made of alu-
minum, are 20 × 8 × 600mm3, which are also the dimensions of
the host beam that will be considered later in our experimental
setup. The dimensions of the resonator beam are 6 mm (w) × 3 mm
(h) × 60 mm (l). The joint tip mass is made of copper, with dimen-
sions of 4 × 15 × 15mm3. The lattice constant is 100 mm. As
shown in Fig. 2, the tuning process is not a continuous one. There
exists a pass band of flexural wave, in between the two separated
expansion/shrinkage bandgaps. In fact, the beam-type resonator
shown in Fig. 2 fails to continuously tune a flexural bandgap
because two orthogonal bending modes always exist, so do their
corresponding independent flexural bandgaps. Note that the
bandgaps shown in Fig. 2 (shaded regions) are based on the band
structure analysis by the FEM.

If the single-beam resonator is modeled as a spring-mass reso-
nator, the vibration direction of the spring-mass resonator is per-
pendicular to the length of the host beam (i.e., parallel to the
flexural beam motion) and an array of spring-mass resonators gen-
erate the flexural bandgap. To explain the expansion or the shrink-
age of the bandgap, we extract the vertical displacement of the tip
mass of a single-beam resonator at the two orthogonal bending
modes. The relation of the bandgap width or the vertical displace-
ment with respect to the rotation angle is shown in Fig. 3. The
bandgap width is also calculated by referencing the corresponding
band structures obtained by the FEM. The vertical displacement
UZ is normalized with respect to amplitude of the total displace-
ment U at the resonant frequency of the resonator, whose modes
are shown in the insets in Fig. 3. We can observe that, for a given
resonance frequency, the bandgap width is related to the vertical
displacement of the vibration of the single-beam resonator. Thus,
when the single-beam resonators are rotated to 0� and 90�, there is
only one effective projection of the resonator vibration for one of
the two principal bending modes, and this leads to disappearance

FIG. 1. Illustration of a tunable elastic metamaterial beam and the rotatable
coupled dual-beam resonators.
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of the other bandgap as shown in Fig. 2. During the rotation, the
effective vibration projection changes, but occurs at the same
frequency as the corresponding mode. It should be noted that,
since the two bending modes of the single-beam resonator are
orthogonal, the two bandgaps are generated independently as
shown in Fig. 2. Tuning of the bandgap through changing the
moment of inertia of single-beam resonators only expands or
shrinks the bandgap at these modes and this is not a continuous
tuning process over the frequency axis. Thus, even with a varying
moment of inertia, a rotatable single-beam resonator does not
enable a tunable spring-mass resonator.

III. ROTATABLE COUPLED DUAL-BEAM RESONATORS

A. Design principle

As discussed above and shown in Fig. 4(a), for a rotatable
single-beam resonator, there are two principal and orthogonal
bending modes when the beam is not at 0� and 90�. In this work,
in order to truly realize a tunable spring-mass resonator with
varying moment of inertia, we design a coupled dual-beam resona-
tor in which the beams are rotatable as shown in Fig. 4(b).

FIG. 2. Discontinuous tuning of the
bandgap in a metamaterial beam by
rotating the single-beam resonators at
0�, 30�, 60�, and 90�. The inset
shows a single resonator. The host
beam, perpendicular to the resonator,
is not shown, the aspect ratio w=h of
the beam-type resonator is 2 [6 mm
(w) × 3 mm (h) × 60 mm (l)], and the
frequency is normalized to that when
the beam is at 90�.

FIG. 3. Vertical displacement of the single-beam resonator and corresponding
bandgap versus changing rotation angle.
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The core design principle is to preserve the first principal bending
mode to be downward while rotating the beam-type resonator.

From a basic mechanics analysis, a vertical loading causes a
beam to have both vertical and lateral displacements, correspond-
ing to the two principal bending modes. The two displacements
can be obtained as

d1 ¼ 4Fl3

Ewh
sin2θ
h2

þ cos2θ
w2

� �
(1)

and

d2 ¼ 4Fl3sin θ cos θ
Ewh

1
h2

� 1
w2

� �
, (2)

where θ is the rotation angle, as defined in Fig. 4. The displacement
variation with respect to the rotation angle is plotted in Fig. 4(c).
We can see that the horizontal displacement variation d2 cannot be
neglected. Thus, to continuously tune a single flexural bandgap,
instead of simply expanding and shrinking the two independent
bandgaps, the influence of d2 should be considered and it should
be canceled to potentially allow a single vertical displacement-
preserved downward bending mode and the generation of the cor-
responding bandgap.

To cancel the lateral displacements of the single-beam resona-
tor, a coupled dual-beam resonator is designed as shown in Fig. 4(b),

in which two originally parallel beams with a joint tip mass are
arranged in the resonator. To change the moment of inertia of the
coupled dual-beam resonator, the two beams are simultaneously
rotated but in the opposite directions (i.e., one is clockwise and the
other one is counterclockwise). The existence of the joint tip mass
can successfully cancel the lateral displacements and allow a down-
ward bending mode no matter the rotation angle of the coupled dual
beams, as illustrated in Fig. 4(b). We will postpone the discussion of
preserving the vertical displacement in the coupled dual-beam
resonator to Sec. IV.

B. Modeling of the coupled dual-beam resonator

Next, a metamaterial with an array of rotatable coupled dual-
beam resonator is modeled using the spectral element method
(SEM). Due to the cancellation of the common lateral displace-
ment, the rotatable coupled dual-beam resonator is a practical reali-
zation of the ideal stiffness-tunable spring-mass resonator as shown
in Fig. 5. For later analysis of the bandgap properties of the meta-
material beam, we first calculate the equivalent parameters of the
coupled dual-beam resonators as spring-mass resonators.

Since the dual beams are symmetrically arranged with respect
to the length of the host beam on which it will be attached, the
analysis can be conducted on just one side of the resonators. The
equivalent mass of the dual beams with a joint tip mass can be
expressed as

meq ¼ 0:447whlρþM, (3)

where ρ is the density of the beam, M is the joint tip mass, w, h,
and l are the dimensions of the beam in Fig. 5. The moment of
inertia of the coupled dual beams can be obtained as

I ¼ 1
6
wh[h2(sin θ)2 þ w2(cos θ)2]: (4)

The equivalent spring constant of the coupled dual beams,
keq ¼ 3EI=l3, can be expressed as

keq ¼ E
2l3

wh[h2(sin θ)2 þ w2(cos θ)2]: (5)

Thus, the equivalent mass and spring constant of the one-
sided coupled dual-beam resonator has been obtained. For the

FIG. 4. (a) Two principal bending modes of a rotatable single beam; (b) cancel-
lation of the lateral displacement from a coupled dual-beam resonator allows a
vertical displacement-preserved single downward bending mode; (c) vertical and
lateral displacement variation (normalized by the vertical displacement d1 at 0�).

FIG. 5. Proposed rotatable coupled dual-beam resonator and its equivalent
tunable spring-mass resonator form for each beam section.
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whole coupled dual-beam resonator, it can be modeled as a pair of
collocated spring-mass resonators, as shown in Fig. 5.

The first bending mode-induced flexural bandgap can be ana-
lyzed by the SEM based on the equivalent spring-mass resonator
model.25 For a metamaterial beam arranged with an infinite peri-
odic array of the coupled dual-beam resonators, the equation of
motion for the unit cell at frequency ω can be described as

D11 þDr D12

D21 D22

� �
ul
ur

� �
¼ f l

f r

� �
, (6)

where ul and ur are the displacement vectors at the boundary
of the unit cell, f l and f r are the loading force vectors,

Dr ¼ Dr 0
0 0

� �
, and Dr is the effective dynamic stiffness of the

coupled dual-beam resonator. For the proposed coupled dual-beam
resonator (i.e., with two coupled beam sections), one can express

Dr ¼ 2� �ω2keqmeq

keq � ω2meq
: (7)

According to the Bloch theorem, the displacement and force
vectors associated with the two boundaries of the unit cell satisfy

ur ¼ e�iqaul , f r ¼ �e�iqaf l , (8)

where q is the Bloch wave vector and a is the lattice constant. The
following quadratic eigenvalue problem can be obtained

[D21 þ (D11 þDr þD22)e
�iqa þD12e

�2iqa]ul ¼ 0: (9)

By calculating the corresponding eigenvalues, the attenuation
region and the degree of attenuation in the band structure can be
obtained. The displacement transmission can be plotted according to

T(ω) ¼ 20 log10 juN (ω)=u1(ω)j, (10)

where N denotes the total number of the nodes in the metamaterial
beam model and uN (ω) is the transverse displacement at the Nth
node.

The displacement transmission obtained by the SEM is com-
pared with that obtained by the FEM as shown in Fig. 6. For simu-
lations of the displacement transmissions, the lattice constant is
100 mm, the dimensions of the coupled dual-beam resonator are,
respectively, w = 6mm, h = 3mm, and l = 60 mm. The material of
the dual beams and the host beam are aluminum alloy, the joint tip
mass is made of copper, with dimensions of 4 × 15 × 30 mm3. The
discrepancies shown in Fig. 6 come from the fact that the coupled
dual-beam resonators in the FEM modeling are not attached to the
host beam in the same pointwise manner as in the SEM modeling.
The high order bandgap observed in the FEM calculations in
Fig. 6(d) is also not captured by the SEM modeling, where the
equivalent spring-mass resonators only possess one degree of

freedom. Despite the discrepancies, a good agreement is observed
between the results obtained by the SEM and FEM. The agreement
between the SEM and FEM results indicates that the proposed
coupled dual-beam resonator can be regarded as a spring-mass res-
onator whose stiffness is tunable. Accordingly, this allows the meta-
material beam to have a continuously tunable bandgap, which
cannot be achieved when the single rotatable beam resonators are
used (as previously shown in Fig. 2).

With the SEM simulation, the bandgap location, the bandgap
width, and the wave attenuation with respect to the rotation angle
can be obtained through calculating the absolute value of the imagi-
nary part of qa, which is plotted in Fig. 7. Clearly, when the rotation
angle increases, the equivalent stiffness of the coupled dual-beam
resonator decreases and a single local resonance bandgap can be
generated. The starting frequency of the bandgap decreases from
354.0 Hz to 181.4 Hz (a 48.8% change, with a slight reduction of the
bandgap width) as the coupled dual-beam resonators are rotated
from 0� to 90� and this agrees with the basic theory.1

IV. VIBRATION ANALYSIS OF THE ROTATABLE
COUPLED DUAL-BEAM RESONATORS

As discussed in Sec. II, when a single-beam resonator vibrates,
there are two principal orthogonal bending modes and the vertical
displacements vary with changing rotation angle of the resonator.
In this section, we consider the vertical displacement of the first
bending mode of the coupled dual-beam resonators. In our design,
in order to cancel the lateral displacement, two coupled beams are
required to be rotated in the opposite direction (defined as shown
in Fig. 8). In other words, when the two beams rotate in the same
direction, the cancellation cannot be achieved. In Fig. 8(a), we
extract the vertical displacement of the first bending mode of
the resonator. Obviously, when the two coupled beams rotate as
intended, the vertical displacement is preserved (99%) at any
rotation angles. However, when the two beams rotate in the same
direction, the vertical displacement of the first bending mode is not
preserved and it yields a minimum when the rotation angle is
about 5�.

To see the influence of the vertical displacement, we analyze
the problem using FEM and obtain two displacement transmissions
as shown in Fig. 8(b). We can see that, when the two beams are
rotated in the same direction (which is unintended), the bandgap
width is narrower, shallower, and the shape of the bandgap is not
like that obtained from the SEM simulations previously shown in
Fig. 6. This indicates that only the coupled dual-beam resonator
with the required rotation direction can be modeled as a tunable,
idealized spring-mass resonator.

Next, we calculate the resonant frequency of the first bending
mode of the coupled dual-beam resonator and compare the results
obtained from analysis conducted in Sec. III (with keq and meq) as
shown in Fig. 9. We observe an excellent agreement between the
analytical solution and the FEM calculation when the beams are
rotated in the required opposite direction. On the other hand,
when the beams are rotated in the same direction, the simulated
resonance frequencies are lower than those obtained from analyti-
cal calculation due to the fact that the vertical displacement cannot
be preserved.
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V. EXPERIMENTAL RESULTS AND DISCUSSION

After addressing the advantage of the preservation of the verti-
cal displacement of the proposed coupled dual-beam resonators, in
this section, we set up a metamaterial beam and experimentally
obtain the displacement transmission to demonstrate continuous
bandgap tuning. The photos of the tunable coupled dual-beam res-
onators and the metamaterial beam are shown in Fig. 10. We con-
sider the transmission properties of the metamaterial beam with
rotators with four rotation angles as shown in Figs. 10(a)–10(d)
(i.e., 0�, 30�, 60�, and 90�). Note that, for fabrication and rotation
convenience, in the experimental setup the beam sections are short
(i.e., 25 × 6 × 3 mm3). The joint tip mass, made of copper, has the
dimension of 30 × 40 × 5mm3. Since the length of the beam section
is short, the previous SEM model based on the assumption of the
Bernoulli–Euler beam theory would fail to provide accurate enough
simulation of the displacement transmission (note that, a shear-
deformable theory, such as the Timoshenko beam theory, could be
used, which is beyond the main scope of the current paper). If the

FIG. 6. Displacement transmission of
the metamaterial beam with coupled
dual-beam resonators rotated to differ-
ent angles.

FIG. 7. Effect of rotation angle on bandgap location, width, and wave attenua-
tion for the metamaterial beam with coupled dual-beam resonators.
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length of the beam section in the resonator is more than 10 times
longer than the width and height of its cross section, the experi-
mental displacement transmissions can also be validated directly by
the SEM under the Bernoulli–Euler beam assumption.

The metamaterial beam, as shown in Fig. 10(e), is excited by
a multilayered piezoelectric actuator (AE0505D16, Thorlabs,
Newton, NJ, USA) with a linear chirp signal. A fiber Bragg grating
(FBG) displacement sensor is used to detect the displacement at
the other end of the metamaterial beam.26,27 Note that the displace-
ment of the multilayered piezoelectric actuator is proportional to

the excitation voltage (in its linear regime). The displacement
transmission is obtained by means of a stochastic spectral estima-
tion. The linear chirp signals are generated by the Simulink
and a dSPACE DS1104 system (dSPACE GmbH, Paderborn,
Germany). The transmission is obtained from the relationship
Td(ω) ¼ 20 log10 jSyu(jω)=Suu(jω)j, where Suu(jω) is the auto-
spectral density function of the input random displacement and
Syu(jω) is the cross-spectral density function between the input and
transmitted displacements. To protect the sensitive but fragile FBG,
two soft rubbers are used to support the metamaterial while trying
to satisfy the traction-free boundary condition, as shown in Fig. 10.

The displacement transmissions of the metamaterial beam are
shown in Fig. 11 with four rotation angles of the resonators. The
bandgaps in Fig. 11 are marked when the transmissions are below
0 dB. Excellent agreement is observed between the experimental
results and FEM simulations. The continuous tunability of the
flexural bandgap can be seen in this figure [Fig. 11 (multimedia
view)]. The slight transmission dip at 250 Hz is caused by the
rubber supports of the metamaterial beam that is used to stabilize

FIG. 8. (a) Vertical displacement of the first bending mode of the coupled dual-
beam resonator; (b) displacement transmission when the rotation angle is 5�.

FIG. 10. Photos of the experimental
setup components: (a)–(d) coupled
dual-beam resonator for different rota-
tion angles and (e) the resulting meta-
material beam with ten coupled
dual-beam resonators (The connection
of the beam section in the resonator
and the joint tip mass is realized by
the nylon bolts, nuts, and polylactic
acid pads).

FIG. 9. Resonance frequency of the first bending mode versus rotation angle
(for the two different rotation cases compared with analytical modeling).

Journal of
Applied Physics ARTICLE scitation.org/journal/jap

J. Appl. Phys. 126, 035107 (2019); doi: 10.1063/1.5099324 126, 035107-7

Published under license by AIP Publishing.

https://aip.scitation.org/journal/jap


the metamaterial beam and protect the fragile FBG sensor. The
bandgap resonance peaks in the experimental results are attributed
to experimental imperfections (e.g., the interface between the alu-
minum beam and the nylon bolts, nuts, and polylactic acid pads).
Note that the interface between the beam section and the joint tip
mass of each resonator is assumed to be rigid and fixed for a given
rotation angle in FEM simulation.

As shown in Fig. 11, as the rotation angle increases, the
starting frequency of the bandgap largely shifts toward lower fre-
quencies. Continuous bandgap tuning from 562 Hz to 326 Hz is
achieved, yielding a 42% change in the starting frequency of the
bandgap as the coupled dual-beam resonators are rotated from 0�

to 90�. This agrees with the prediction in the SEM result shown in
Fig. 6. In addition to the bending mode-induced bandgap, the tor-
sional mode-induced one [e.g., see Fig. 11(d), around 800 Hz when
the rotation angle is 90�] is also observed. Thus, with the proposed
design of the coupled dual-beam resonators, a wideband and con-
tinuously tunable bandgap can be achieved on a prismatic beam by
simply rotating the resonators. This rotation can easily be achieved
using proper actuators, such as an electric motor, which makes the

concept suitable also for adaptive and time-varying dynamics. It
should be also noted that, when the coupled dual-beam resonators
are arranged as one beam section on the top and the other collo-
cated coupled beam on the bottom of the host beam, this arrange-
ment can be used to generate continuous tunable longitudinal
bandgaps. This is because the vibrations of the two beams that are
perpendicular to the host beam can be canceled.

VI. CONCLUSIONS

In summary, we demonstrated continuous bandgap tuning of
a metamaterial beam over a broad frequency range by changing the
moment of inertia of the proposed coupled dual-beam resonators.
The coupled dual-beam resonators preserve the vertical displace-
ment of the first bending mode and enable an ideal stiffness-
varying spring-mass resonator with a changing rotation angle.
While the concept of changing the moment of inertia is relatively
straightforward in theory, we showed that continuous bandgap
tuning cannot be achieved if the resonators are realized by a single-
beam section with a tip mass instead of the proposed coupled

FIG. 11. Wideband and continuous
tuning of the proposed metamaterial
beam obtained by rotating the dual-
beam sections in the coupled dual-
beam resonators. Multimedia view:
https://doi.org/10.1063/1.5099324.1.
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dual-beam design. This is due to the fact that the resonance frequen-
cies of the two principal orthogonal bending modes of a single-beam
resonator remain in different rotation angles of the beam sections.
With the design of the coupled dual-beam resonator, one bending
mode-induced bandgap can be generated and continuously tuned
via changing the moment of inertia of the resonators simply by
rotating the coupled beam sections. Based on the proposed concept,
we demonstrated continuous bandgap tuning over a broad frequency
range, yielding a 42% change in the starting frequency of the
bandgap as the coupled dual-beam resonators were rotated from 0�

to 90�. The numerical simulations of bandgap tuning based on the
finite element method were validated experimentally. The proposed
mechanics-based design can inspire the design of active tunable
elastic metamaterials and, with the incorporation of actuators (such
as motors), can be implemented as adaptive and time-varying
metamaterials.
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