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Combined piezoelectric and
flexoelectric effects in resonant
dynamics of nanocantilevers

Adriane G Moura and Alper Erturk

Abstract
We establish and analyze an analytical framework by accounting for both the piezoelectric and flexoelectric effects in
bimorph cantilevers. The focus is placed on the development of governing electroelastodynamic piezoelectric–
flexoelectric equations for the problems of resonant energy harvesting, sensing, and actuation. The coupled governing
equations are analyzed to obtain closed-form frequency response expressions via modal analysis. The combined
piezoelectric–flexoelectric coupling coefficient expression is identified and its size dependence is explored. Specifically, a
typical atomistic value of the flexoelectric constant for barium titanate is employed in the model simulations along with
its piezoelectric constant from the existing literature. It is shown that the effective electromechanical coupling of a piezo-
electric material, such as barium titanate, is significantly enhanced for thickness levels below 100 nm. The electromecha-
nical coupling coefficient of a barium titanate bimorph cantilever increases from the bulk piezoelectric value of 0.065 to
the combined piezoelectric–flexoelectric value exceeding 0.3 toward nanometer thickness level. Electromechanical fre-
quency response functions for resonant power generation and dynamic actuation also capture the size-dependent
enhancement of the electromechanical coupling. The analytical framework given here can be used for parameter identifi-
cation and design of nanoscale cantilevers that can be used as energy harvesters, sensors, and actuators.
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Introduction

Piezoelectric coupling is defined by a third-rank tensor
and is limited to certain materials that are non-centro-
symmetric, ranging from natural quartz to man-made
materials such as PZT (lead zirconate titanate) and BTO
(barium titanate). Flexoelectricity, on the other hand, is
the generation of electric polarization by the application
of a non-uniform mechanical strain field, that is, a strain
gradient (Maranganti and Sharma, 2009; Tagantsev
et al., 2009; Yudin and Tagantsev, 2013). The phenom-
enon of flexoelectricity is a higher-order effect and is
expected to be rather weak except for very small (submi-
cron) dimensions, making the concept of interest mainly
for microelectromechanical systems (MEMS) and espe-
cially nanoelectromechanical systems (NEMS) applica-
tions. Flexoelectricity is controlled by a fourth-rank
tensor and is therefore allowed in materials of any sym-
metry. Therefore, any piezoelectric material also exhibits
the flexoelectric effect at very low thickness levels, in the
presence of non-homogeneous strain fields. As a gradi-
ent effect, flexoelectricity is size dependent, while piezo-
electric coupling has no size dependence. Widely used

piezoelectric cantilever models developed for devices
above micron-level thickness have to be modified for
next-generation nanoscale devices since the effect of
flexoelectric coupling will change the overall electroelas-
tic dynamics at such small scales (Bhaskar et al., 2016).

Flexoelectric effect in solids has received suddenly
growing attention especially after experiments by Ma
and Cross (2001a, 2001b, 2002, 2003, 2005, 2006) on
elastic dielectrics (Cross, 2006) and for potential small-
scale applications thanks to developments in MEMS/
NEMS. In addition to experimental efforts by Ma and
Cross (Ma and Cross, 2001a, 2001b, 2002, 2003, 2005,
2006) and others (Huang et al., 2011; Zubko et al.,
2007), mainly for samples with high dielectric con-
stants, atomistic simulations (Maranganti and Sharma,
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2009) were presented to extract flexoelectric coeffi-
cients, and, importantly, substantial difference (several
orders of magnitude) was reported between the simu-
lated and identified flexoelectric coefficients (Cross,
2006). A comprehensive article on the flexoelectric
effect in solids by Yudin and Tagantsev (2013) presents
a detailed discussion on the subject matter along with a
historical account. It is no surprise that with its promise
of increased electromechanical coupling at small scales,
flexoelectricity is of great interest for submicron level
energy harvesting as well (Deng et al., 2014; Moura
and Erturk, 2017).

In addition to the mismatch in the order of magni-
tude of flexoelectric coupling between atomistic simula-
tions (Maranganti and Sharma, 2009) and experimental
measurements (Cross, 2006), one of the issues in flexo-
electric transduction and energy conversion has been
the lack of a clear understanding and modeling of the
converse effect, as the subject has created confusion
since the converse effect is associated with a polariza-
tion gradient (Cross, 2006). For instance, it was sug-
gested (Chu et al., 2009; Cross, 2006) that mechanical
flexoelectric sensors could be made with no actuation
property (which has no precedent or thermodynamic
basis). In a recent effort for finite samples, Tagantsev
and Yurkov (2012) presented a consistent and sym-
metric converse effect representation and its justifica-
tion. Moura and Erturk (2017) implemented this
converse coupling in a distributed-parameter electroe-
lastic framework and showed the variation of the elec-
tromechanical coupling in centrosymmetric cantilevers
for a broad thickness range, along with a case study on
strontium titanate (STO) cantilevers. The present work
aims to extend that effort to accommodate both piezo-
electric and flexoelectric transduction mechanisms in
piezoelectric materials such as BTO.

In the following, an analytical framework is devel-
oped and analyzed for combined transverse mode
piezoelectric and flexoelectric effects in bimorph canti-
levers for resonant energy harvesting and actuation. In
addition to closed-form expressions for the electrome-
chanically coupled voltage across the electrical load
and the shunted vibration response, the combined
piezoelectric and flexoelectric coupling coefficient
is extracted and studied. A case study is used for

analyzing the energy harvesting and actuation perfor-
mance, coupling coefficient, and size effects for a
BTO bimorph cantilever under bending vibration
using atomistic flexoelectric constant and bulk piezo-
electric constant from the existing literature in the
proposed framework.

Direct and converse piezoelectric and
flexoelectric effects

We consider the problem of a bimorph piezoelectric
cantilever under bending vibrations as shown in Figure
1 for linear behavior (i.e. linear-elastic material beha-
vior and geometrically small oscillations). The sample
geometry justifies beam assumptions, such that the
width (b) and thickness (h) of the rectangular cross-
section are much shorter than the overhang length (L).
We further assume that the beam dimensions are such
that the continuum theory is applicable (the beam
length for the smallest case is orders of magnitude
larger than the lattice parameter of the respective mate-
rial). ‘‘Static’’ flexoelectricity (Yudin and Tagantsev,
2013) is applicable since the beam thickness (smallest
dimension) is much smaller than the wavelength at
vibration frequencies of interest. Assuming a linear
constitutive behavior, polarization for combined direct
piezoelectric and flexoelectric effects in the transverse
mode can be written as

P3 = x33E3 + e311S11 +m1133

∂S11

∂x3

ð1Þ

where P3 is the polarization in thickness direction (3-
direction is the thickness direction and 1-direction is the
axial direction in Figure 1), E3 is the electric field, S11 is
the axial strain, x33 is the dielectric susceptibility, e311 is
the piezoelectric constant, and m1133 is the flexoelectric
coefficient.

The mechanical stress accounting for the converse
piezoelectric and flexoelectric effects can be expressed
as follows

T11 = c1111S11 + e311E3 + f1133

∂P3

∂x3

ð2Þ

or alternatively

Figure 1. Bimorph cantilevers undergoing bending vibrations (exhibiting combined piezoelectric and flexoelectric effects at very
small thickness levels): (a) energy harvesting/sensing in response to mechanical excitation and (b) shape morphing or dynamic
actuation under electrical excitation. The piezoelectric layers are oppositely poled in the thickness direction (series connection) and
the respective lateral faces have perfectly conductive and thin electrode layers.
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T11 = c1111S11 + e311E3 +m1133

∂E3

∂x3

ð3Þ

where T11 is the axial stress, c1111 is the elastic modulus
of the piezoelectric material (under short-circuit condi-
tion of the electrodes), and f1133 is the ‘‘flexocoupling
coefficient’’ (f1133 =x33

�1m1133). Note that the above
form of flexoelectric coupling is suitable for basic ‘‘exo-
genous’’ strain gradients, such as those due to mechani-
cal bending, but would be limited for ‘‘endogenous’’
ones, such as those due to domain boundaries and
interfaces, which are beyond the scope of this work
(Yudin and Tagantsev, 2013).

In the following, we develop and explore a complete
analytical framework by accounting for both the piezo-
electric and flexoelectric effects. The focus is placed on
the development of governing electroelastodynamic
piezoelectric–flexoelectric equations for the problems of
energy harvesting, sensing, and actuation. The coupled
governing equations are analyzed to obtain the fre-
quency response functions such as the voltage output
across the electrical load per base acceleration (in case
of mechanical excitation) or electromechanical admit-
tance in dynamic actuation (in case of electrical excita-
tion). Furthermore, the coupling coefficient for the
bimorph configuration is identified and its size depen-
dence is explored.

Euler–Bernoulli beam model for
piezoelectric–flexoelectric energy
harvesting and actuation

Coupled mechanical equation and modal analysis

The partial differential equation governing the forced
vibration of a bimorph cantilevered piezoelectric thin
beam under base excitation (Figure 1(a)) is

�∂2M(x1, t)

∂x1
2

+ csI
∂5wrel(x1, t)

∂x1
4∂t

+ ca

∂wrel(x1, t)

∂t

+m
∂2wrel(x1, t)

∂t2
= � m

d2wb(t)

dt2

ð4Þ

where wrel(x1, t) is the transverse displacement of the
beam (neutral axis) relative to its base and M(x1, t) is
the internal bending moment at position x1 and time t,
ca is the viscous air damping coefficient (mass propor-
tional damping), cs is the strain-rate damping coeffi-
cient (stiffness proportional damping), I is the
second moment of area of the rectangular cross-sec-
tion, and m is the mass per unit length of the beam
(m= rbh= 2rbhp, where b is the width of the beam, r

is the mass density of the material, hp is the thickness
of each piezoelectric layer), h= 2hp is the total beam
thickness, and wb(t) is the transverse displacement of
the base. The linear damping coefficients employed in

equation (4) satisfy the proportional damping condi-
tion (Meirovitch, 2001) so that the corresponding
undamped system’s mode shapes can be used in modal
analysis.

The internal bending moment in equation (4) is the
first moment of the axial stress field over the cross-
section of each layer

M(x1, t)= b

ð0
�hp

T11x3dx3 +

ðhp

0

T11x3dx3

0
B@

1
CA ð5Þ

The axial strain component is due to bending only
and at a certain level (x3) from the neutral axis is pro-
portional to the curvature of the beam

S11(x1, x3, t)= � x3

∂2wrel(x1, t)

∂x1
2

ð6Þ

and it is clear from equation (6) that the strain gradient
∂S11=∂x3 in this model is nothing but the curvature of
the uniform Euler–Bernoulli beam (assuming the effect
of the gradient ∂S11=∂x1 to be negligible).

Substituting equations (2) and (6) into the internal
bending moment in equation (5) gives

Mðx1; tÞ ¼ b

 ð0
�hp

cE
1111S11 � e311E3 + f1133

∂P3

∂x3

� �
x3dx3

+

ðhp

0

cE
1111S11 � e311E3 + f1133

∂P3

∂x3

� �
x3dx3

�

ð7Þ

For a finite sample (in which the polarization varies
continuously from its bulk value to zero at the electrode
boundaries (Tagantsev and Yurkov, 2012)), the flexo-
electric term can be evaluated using integration by parts
to identify the role of this term in the bending moment
equation

bf1133

ð0
�hp

∂P3

∂x3

x3dx3 +

ðhp

0

∂P3

∂x3

x3dx3

0
B@

1
CA

=� bf1133

ð0
�hp

P3dx3 +

ðhp

0

P3dx3

0
B@

1
CA

=� bf1133hp P3h i+ bf1133hp P3h i
� �

ð8Þ

where P3h i is the average polarization induced by the
electric field in the beam. The spatial scale of the polar-
ization variation at the interface is much smaller than
the beam thickness; therefore, P3h i’P, where the
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polarization in the bulk (Tagantsev and Yurkov, 2012)
can be given by

P= x33E3 ð9Þ

and it is useful to note from equations (2) and (3) that
the dielectric susceptibility x33 is

x33 =
m1133

f1133

ð10Þ

The electric field component E3 should be expressed
in terms of the respective voltage term for the series con-
nection configuration shown in Figure 1(a). For the series
connection of two oppositely poled identical piezoelectric
layers, the voltage resultant is v(t). It is important to note
that for the series connection case, e311 has opposite signs
for the top and bottom layers (due to opposite poling);
therefore, the instantaneous electric fields are in the same
direction (i.e. E3 = � v(t)=2hp in both layers) (Erturk
and Inman, 2011).

The polarization in equation (9) can then be substi-
tuted into equation (8) along with the appropriate elec-
tric field equations for the series connection case. This
gives the following contribution from the flexoelectric
effect

� bf1133hp P3h i+ bf1133hp P3h i
� �

= bm1133v(t) ð11Þ

The flexoelectric and piezoelectric coupling terms
resulting from equation (7) are only a function of
time, and therefore, it must be multiplied by
½H(x1)� H(x1 � L)� (where H(x1) is the Heaviside
function) to ensure its survival when the bending
moment is substituted into equation (4). The internal
bending moment is then

M(x1, t)= � YI
∂2wrel(x1, t)

∂x1
2

+qv(t)½H(x1)� H(x1 � L)�

ð12Þ

where the coefficient of the backward coupling term (q)
for the series connection case is

q= 1
2
e311bhp +m1133b ð13Þ

and the bending stiffness term YI of the composite
cross-section (in short circuit) is

YI =
2b

3
c1111h3

p ð14Þ

The coupled beam equation can then be obtained
from equation (4) as

YI
∂4wrel(x1, t)

∂x1
4

+ csI
∂5wrel(x1, t)

∂x1
4∂t

+ ca

∂wrel(x1, t)

∂t

+m
∂2wrel(x1, t)

∂t2
� qv(t)

dd(x1)

dx1

� dd(x1 � L)

dx1

� �

= � m
d2wb(t)

dt2

ð15Þ

where d(x1) is the Dirac delta function that satisfies the
following equation for a smooth test function g(x1)

ð‘
�‘

d(n)d(x1 � p)

dx
(n)
1

g(x1)dx1 =(� 1)n
dg(n)(p)

dx
(n)
1

ð16Þ

The vibration response relative to the moving base
can be expressed as

wrel(x1, t)=
X‘

r= 1

fr(x1)hr(t) ð17Þ

Here, hr(t) is the modal mechanical coordinate and
fr(x1) is the mass-normalized eigenfunction (obtained
from the short-circuit problem) for the rth vibration
mode for the series connection of the piezoelectric
layers given by

fr(x1)=

ffiffiffiffiffiffiffi
1

mL

r

cos
lr

L
x1 � cosh

lr

L
x1 +sr sin

lr

L
x1 � sinh

lr

L
x1

� �� �
ð18Þ

where sr is

sr =
sinlr � sinh lr

coslr + coshlr

ð19Þ

and the eigenvalues (lr.0, r = 1, 2, . . . ) are the roots
of the characteristic equation (for the short-circuit and
clamped-free boundary conditions)

1+ cos l cosh l= 0 ð20Þ

The mass-normalized eigenfunctions in equation (17)
satisfy the following orthogonality conditions

ðL
0

mfr(x1)fs(x1)dx1 = drs,

ðL
0

YIfr(x1)
d4fs(x1)

dx4
1

dx1 = drsv
2
r

ð21Þ

where drs is the Kronecker delta and vr is the
undamped natural frequency of the rth vibration mode
at short circuit (Rl ! 0)
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vr = l2
r

ffiffiffiffiffiffiffiffi
YI

mL4

r
ð22Þ

The mechanical equation in modal coordinates can
be obtained after substituting equation (17) into equa-
tion (15) (then multiplying the latter by the mode shape,
integrating over the beam length, and applying ortho-
gonality conditions) as

d2hr(t)

dt2
+ 2zrvr

dhr(t)

dt
+vr

2hr(t)� urv(t)= fr(t) ð23Þ

where the modal piezoelectric–flexoelectric electrome-
chanical coupling term is

ur =q
df(x1)

dx1

				
x1 = L

= 1
2
e311bhp +m1133b

� �df(x1)

dx1

				
x1 = L

ð24Þ

and the modal mechanical forcing function can be
expressed as

fr(t)= � m
d2wb(t)

dt2

ðL
0

fr(x1)dx1 ð25Þ

Coupled electrical circuit equation and modal analysis

To derive the governing electrical circuit equations of
the bimorph series configuration, we first examine a sin-
gle layer under bending vibrations. The only source of
mechanical strain is assumed to be the axial strain due
to bending, yielding the following electric displacement
D3

D3 = e33E3 + e311S11 +m1133

∂S11

∂x3

ð26Þ

where e33 is the dielectric permittivity of the material,
e33 = e0 + x33 =(1+ �x33)e0 (note that for high-K
materials, which are of interest in flexoelectricity,
�x33 � 1, and e33’x33).

The piezoelectrically and flexoelectrically coupled
electrical circuit equation can be obtained from

d

dt

ð
A

D � ndA

0
@

1
A=

v(t)

Rl

ð27Þ

where D is the vector of electric displacement compo-
nents, n is the unit outward normal of the electrodes,
and the integration is performed over the electrode area
A. The only contribution to the inner product of the
integrand is from D3. Using equation (26) in equation
(27), the following circuit equation is obtained

e33bL

hp

dv(t)

dt
+

v(t)

Rl

+(1
2
e311hpb+m1133b)

ðL
0

∂3wrel(x1, t)

∂x1
2∂t

dx1 = 0

ð28Þ

which can be extended to the resultant of two layers in
series connection (as in the case of a purely piezoelectric
bimorph (Erturk and Inman, 2011)

C
dv(t)

dt
+

v(t)

Rl

+
X‘

r= 1

ur

dhr(t)

dt
= 0 ð29Þ

where the modal electromechanical coupling is the same
as equation (24), and the equivalent capacitance of two
layers combined in series is

C =
e33bL

2hp

ð30Þ

Equations (23) and (29) are the governing electrome-
chanical piezoelectric–flexoelectric bimorph cantilever
equations in modal coordinates.

Closed-form steady-state response in energy
harvesting

For harmonic base excitation with wb(t)=W0ejvt, the
modal forcing function given by equation (25) can be
expressed as fr(t)=Fre

jvt, where the amplitude Fr is

Fr =v2mW0

ðL
0

fr(x1)dx1 ð31Þ

Then the steady-state modal mechanical response of
the beam and the steady-state voltage response across
the resistive load are also harmonic at the same fre-
quency as hr(t)=Hre

jvt and v(t)=Vejvt, respectively,
where the amplitudes Hr and V are complexed values.
Therefore, equations (23) and (29) yield

(v2
r � v2 + j2zrvrv)Hr � urV =Fr ð32Þ

1

Rl

+ jvC

� �
V + jv

X‘

r= 1

urHr = 0 ð33Þ

where zr is the modal mechanical damping ratio.
The steady-state voltage response is obtained as

v(t)=

P‘
r = 1

�jvurFr

v2
r�v2 + j2zrvrv

1
Rl
+ jvC +

P‘
r = 1

jvur
2

v2
r�v2 + j2zrvrv

ejvt ð34Þ
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Once the voltage across the electrical load is
obtained, the current and power output can be calcu-
lated easily. For the case of a real-valued electrical load
(i.e. a resistive load), the current delivered to the load is
i(t)= v(t)=Rl and the instantaneous power output is
P(t)= v2(t)=Rl.

The steady-state modal mechanical response of the
beam (that accounts for the converse piezoelectric–
flexoelectric effect) can be obtained as

wrel(x1, t)=
X‘

r= 1

Fr � ur

P‘
r= 1

jvurFr

v2
r�v2 + j2zrvrv

1
Rl
+ jvC +

P‘
r= 1

jvur
2

v2
r�v2 + j2zrvrv

0
BB@

1
CCA fr(x1)e

jvt

v2
r � v2 + j2zrvrv

2
664

3
775 35Þ

Closed-form steady-state response in actuation

The governing equations in energy harvesting can be
modified to represent the actuation problem, such that
there is no base excitation (Fr = 0), and the excitation
is due to harmonic voltage input (Figure 1(b))

(v2
r � v2 + j2zrvrv)Hr = urV ð36Þ

� I + jvCV + jv
X‘

r= 1

urHr = 0 ð37Þ

where the V=Rl term is replaced with the current input
�i(t)= � Iejvt. The steady-state mechanical response
and actuation current are obtained by solving equations
(36) and (37) as

wrel(x1, t)=
X‘

r= 1

urfr(x1)

v2
r � v2 + j2zrvrv

Vejvt ð38Þ

i(t)= jv C +
X‘

r = 1

u2
r

v2
r � v2 + j2zrvrv

 !
Vejvt ð39Þ

Piezoelectric–flexoelectric
electromechanical coupling coefficients
and size effects

The electromechanical coupling coefficient k is a direct
measure of energy conversion as commonly used in
piezoelectricity (Lesieutre and Davis, 1997). A dynamic
definition of the modal electromechanical coupling
coefficient can be obtained based on the difference
between the open-circuit and short-circuit natural fre-
quencies (Lesieutre and Davis, 1997)

k2 =
voc

r

� �2 � vsc
r

� �2

voc
r

� �2
ð40Þ

where k is the combined piezoelectric-flexoelectric cou-
pling coefficient for the rth vibration mode (the focus in

the simulations of this work will be placed on the fun-
damental mode, r = 1).

To express the coupling coefficient using equation
(40), recall the undamped short-circuit natural fre-
quency of the rth vibration mode

vsc
r =vr = l2

r

ffiffiffiffiffiffiffiffi
YI

mL4

r
ð41Þ

Then, for modal vibrations under open-circuit condi-
tions, equation (29) can be reduced to

v(t)=
�urhr(t)

C
,Rl ! ‘ ð42Þ

Substituting equation (42) into the modal mechani-
cal equation of motion in equation (23), the undamped
natural frequency of the rth vibration mode under
open-circuit conditions becomes

voc
r

� �2
= vrð Þ2 1+

ur
2

v2
r C

� �
ð43Þ

yielding

k2 =

ur
2

v2
r C

1+ ur
2

v2
r C

=
ur

2

v2
r C + ur

2
=

1

1+
v2

r C

ur
2

ð44Þ

Equation (44) can be simplified by substituting the
expression for the equivalent capacitance and electro-
mechanical coupling

k2 =
1

1+
4cE

1111
e33

3a2
r e311 + 4m1133=hð Þ2

ð45Þ

where ar = � sin lr � sinh lr +sr( cos lr � cosh lr)
and recall that h= 2hp. Equation (45) clearly captures
the thickness dependence of the flexoelectric effect and
shows that with decreased thickness (h), the coupling
coefficient (k) increases. This equation also shows the
effect of material properties on the coupling coefficient
and gives insight into the sign of the flexoelectric con-
stant (m1133), which has been reported with different
signs in the literature as pointed out by Zubko et al.
(2013). According to equation (45), the flexoelectric
and piezoelectric constants should have the same sign
to prevent non-monotonic dependence of the coupling
coefficient on the thickness (and its vanishing at a cer-
tain thickness value)—that is a negative e311 should be
accompanied with a negative m1133. It is worth

3954 Journal of Intelligent Material Systems and Structures 29(20)



mentioning that the coupling coefficient depends on the
vibration mode, electrode coverage, and so on.
Typically, the first bending mode is of interest (r = 1)
for which full electrode coverage yields no charge
cancelation.

Case studies and results

Electromechanical coupling and size effects

We consider BTO in our simulations using the atomis-
tic value of m1133 = � 5:463 3 10�9 C=m (Maranganti
and Sharma, 2009). The electromechanical coupling
coefficient due to combined piezoelectric and flexoelec-
tric energy conversion is plotted for a range of cantile-
ver thicknesses in Figure 2. The focus is placed on the
fundamental bending vibration mode (r = 1), and the
beam thickness in the simulations ranges from 1 to
1 nm. As stated previously based on equation (45), the
coupling coefficient increases with decreased thickness
and is illustrated graphically in Figure 2. The isolated
piezoelectric and flexoelectric coupling coefficients are
also shown in this figure and it is seen that only for
thickness levels below 100 nm does the flexoelectric
effect become appreciable, and it strongly enhances the
overall electromechanical coupling. For micron thick-
ness levels and above, the overall electromechanical
coupling is merely due to bulk piezoelectricity; how-
ever, the electromechanical coupling is dramatically
enhanced due to flexoelectricity for thickness levels
approaching the nanoscale.

Resonant energy harvesting: electromechanical
frequency response and size effects

The electromechanical frequency response behavior of
a bimorph cantilevered piezoelectric and flexoelectric

energy harvester under base excitation is simulated with
a focus on the first bending mode (r = 1) for a range of
electrical load resistive values. Three different geo-
metric scales are explored ranging from millimeter scale
to nanometer scale. The bimorph is made of BTO
and has perfectly conductive surface electrodes on
the faces that are perpendicular to the transverse base
excitation (Figure 1). The atomistic value (Maranganti
and Sharma, 2009) of m1133 =� 5:463 3 10�9C=m is
used in the following simulations along with the
necessary material properties (Bechmann, 1956):
e311 =� 4:4C=m2, cE

1111 = 166GPa, es
33 = 12:56nF=m,

and es
33 = 12:56nF=m. A mechanical quality factor (Q)

of ;50 is assumed, yielding an approximate modal
mechanical damping ratio of 1% of the critical damp-
ing for resonant vibrations. Three cases with total
thicknesses (h) of 1 mm, 1 mm, and 1 nm (thickness of
one layer of the bimorph is hp = h=2) are analyzed
while keeping a constant aspect ratio of L/b/h fixed at
100/5/1. The mechanical excitation is harmonic base
acceleration, d2wb(t)=dt2 = � v2W0ejvt. Therefore, the
results are presented as frequency response magnitude
maps normalized by the base acceleration quantified in
terms of gravitational acceleration (g = 9:81m=s2). To
capture optimal load in power generation and respec-
tive trends with changing load, a range of electrical
resistive load values spanning from short- to open-
circuit conditions (100 O to 1 GO) are simulated for
each case.

The voltage output (per base acceleration) frequency
response map for the 1-mm-thick BTO bimorph
(100 mm 3 5 mm 3 1 mm) is shown in Figure 3(a).
With increased electrical load resistance, the voltage
increases monotonically at all frequencies, as a typical
trend in energy harvesting (Erturk and Inman, 2011). It
is shown that the resonance frequency for the 1-mm-
thick STO cantilever is unaffected by the change in
resistive load, that is, the frequency of peak magnitude
does not change as the electrical load resistance value is
swept from short- to open-circuit conditions. This indi-
cates very low electromechanical coupling such that the
feedback in the mechanical domain due to induced low
voltage is negligible. The combined piezoelectric and
flexoelectric coupling coefficient (for the 1 mm thick-
ness level and BTO material properties) is obtained
from equation (45) or Figure 2 as k =0:0652 (which is
roughly the bulk piezoelectric value) confirming negli-
gible contribution from flexoelectricity. The beam
thickness is then decreased to 1 mm while keeping the
same aspect ratio (i.e. the dimensions are now 100 mm
3 5 mm 3 1 mm). The voltage output frequency
response map for this case is shown in Figure 3(b). As
with the 1 mm thickness case, the 1-mm-thick BTO
bimorph shows no noticeable shift in the fundamental
resonance frequency with changing load resistance.
The combined piezoelectric and flexoelectric coupling
coefficient for this case is k =0:0655, which, again,

Figure 2. Transverse mode coupling coefficient (k) versus
bimorph thickness (h) of a BTO cantilever for combined
piezoelectric and flexoelectric, piezoelectric only, and
flexoelectric only effects (for the first bending mode).
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indicates negligible flexoelectric contribution. The
beam thickness is further decreased to 1 nm (beam
dimensions of 100 nm 3 5 nm 3 1 nm) and the
analysis is repeated. The nanometer-thick bimorph
exhibits a shift in resonance from short- to open-
circuit conditions, as shown in Figure 3(c). This
shows significant electromechanical coupling as con-
firmed by the coupling coefficient of k = 0:365 and
Figure 2.

The electric current flowing to the resistive load is
simply obtained from the voltage output using Ohm’s
law. The current output (per base acceleration) fre-
quency response maps are also generated for the
BTO bimorph for each geometric scale, as shown in
Figure 4. The electrical current output decreases with
increased electrical load resistance, which is the oppo-
site trend as compared to voltage output. At all fre-
quencies, the maximum current is achieved under
short-circuit conditions of the surface electrodes. As

with the voltage output frequency response maps, similar
trends are observed for each case study in terms of the
coupling coefficient. The thickness levels of 1 mm and
1 mm show no noticeable shift in resonance frequency
(Figure 4(a) and (b)), indicating low electromechanical
coupling. The 1 nm thickness case shows significant fre-
quency shift (Figure 4(c)), revealing strong electromecha-
nical coupling as discussed previously for the voltage
output, as a result of flexoelectric contribution.

As a product of the two quantities which have oppo-
site trends with changing load resistance, the electrical
power exhibits more interesting trends, such as the pres-
ence of an optimal electrical load resulting in the maxi-
mum power output at a given frequency. The electrical
power output is calculated for each of the three geo-
metric scales with the fixed aspect ratio. The resulting
graphs are shown in Figure 5. The optimal load for
maximum power output can be determined for each
case from the power output frequency response maps.

Figure 4. Current output frequency response versus load
resistance maps (in magnitude form and per base acceleration)
for cantilevered BTO harvesters with a fixed aspect ratio of 100/
5/1 (L/b/h) for three different geometric scales with the
following thickness (h) values: (a) 1 mm, (b) 1 mm, and (c) 1 nm.

Figure 3. Voltage output frequency response versus load
resistance maps (in magnitude form and per base acceleration)
for cantilevered BTO harvesters with a fixed aspect ratio of 100/
5/1 (L/b/h) for three different geometric scales with the
following thickness (h) values: (a) 1 mm, (b) 1 mm, and (c) 1 nm.
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Both the 1 mm and 1-mm-thick harvesters result in a
peak power output around 100 kO (Figure 5(a) and
(b)). As with the previous frequency response maps, the
1 mm and 1 mm power output frequency response
maps show the resonance frequency to be insensitive to
the resistive load due to low electromechanical cou-
pling. Consequently, a single optimal load is observed
in the power map for the fundamental vibration mode
for each case in Figure 5(a) and (b). However, the 1-
nm-thick harvester exhibits two peak values for two dis-
tinct optimal electrical loads, 100 kO and 1 MO, respec-
tively, at the short-circuit and open-circuit resonance
frequencies, yielding the same power output (Figure
5(c)). This is an indication of a relatively strongly
coupled harvester configuration, as a result of the elec-
tromechanical coupling enhancement due to the flexo-
electric effect.

Finally, it is of interest to understand the structural
response of the BTO bimorph while generating electric-
ity from strain (piezoelectric effect) and strain gradient

(flexoelectric effect) fluctuations in response to mechan-
ical base excitation. The motion of the cantilever is
evaluated at the tip (x1 = L) using equation (35).
Figure 6 shows the tip displacement maps for all three
geometric scales of the bimorph using the same load
resistances and normalized excitation frequency range.
For the 1 mm and 1 mm-thick bimorphs, the vibration
responses of the cantilevers are insensitive to change in
electrical load resistance, again, showing negligible elec-
tromechanical coupling at these thickness levels (Figure
6(a) and (b)). Therefore, as a result of weak electrome-
chanical coupling, Joule heating in the resistive load
does not create any significant dissipation in the vibra-
tion response of the BTO cantilever. However, for the
bimorph with 1 nm thickness, the electromechanical
coupling is relatively strong, as seen from previous elec-
trical output graphs (Figures 3(c), 4(c), and 5c), and
therefore, mechanical to electrical energy conversion is
rather significant. Consequently, the structural
response of the bimorph is sensitive to changing load

Figure 5. Power output frequency response versus load
resistance maps (in magnitude form and per base acceleration)
for cantilevered BTO harvesters with a fixed aspect ratio of 100/
5/1 (L/b/h) for three different geometric scales with the
following thickness (h) values: (a) 1 mm, (b) 1 mm, and (c) 1 nm.

Figure 6. Tip displacement frequency response versus load
resistance maps (in magnitude form and per base acceleration)
for cantilevered BTO harvesters with a fixed aspect ratio of 100/
5/1 (L/b/h) for three different geometric scales with the
following thickness (h) values: (a) 1 mm, (b) 1 mm, and (c) 1 nm.
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resistance near the resonant frequency (Figure 6(c)).
Certain load resistance values result in significant shunt
damping, confirming thermodynamic consistency of
the fully coupled model.

Resonant actuation: electromechanical frequency
response and size effects

The same modeling framework is used to understand
the electromechanical response of the bimorphs in the
case of electrical excitation (voltage input) for the same
set of system parameters. Of interest is the tip displace-
ment frequency response (structural response for unit
actuation voltage input) from equation (38) and the
admittance frequency response (amount of current

drawn for unit actuation voltage input) calculated from
equation (39). The tip displacement and admittance fre-
quency responses are shown in Figures 7 and 8, respec-
tively. Particularly, in the admittance graphs shown in
Figure 8, the relative frequency difference between the
resonance and antiresonance frequencies is a measure
of electromechanical coupling. These frequency
response functions show, once again, that the overall
coupling is enhanced due to flexoelectricity only at the
nonometer scale.

Conclusion

An electromechanical framework is developed and ana-
lyzed for combined transverse mode flexoelectric and
piezoelectric energy harvesting as well as resonant
actuation for the bending vibration of a piezoelectric

Figure 7. Tip displacement frequency response functions (in
magnitude) for resonant actuation of BTO cantilevers with a
fixed aspect ratio of 100/5/1 (L/b/h) for three different
geometric scales with the following thickness (h) values: (a)
1 mm, (b) 1 mm, and (c) 1 nm.

Figure 8. Admittance frequency response functions (in
magnitude) for resonant actuation of BTO cantilevers with a
fixed aspect ratio of 100/5/1 (L/b/h) for three different
geometric scales with the following thickness (h) values: (a)
1 mm, (b) 1 mm, and (c) 1 nm.
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cantilever by accounting for two-way electromechanical
coupling. The modeling framework is based on the
Euler–Bernoulli beam theory and properly accounts for
thermodynamically consistent, symmetric, direct, and
converse coupling terms, and it captures the size effect
on the combined flexoelectric–piezoelectric coupling
coefficient. Based on a modal analysis procedure,
closed-form solutions of the electromechanical fre-
quency response functions are presented along with
various case studies for a broad range of geometric
parameters. Thickness dependence of the electromecha-
nical coupling (which is a measure of energy conver-
sion) is analytically extracted and its size dependence is
observed also in simulations of the electromechanical
frequency response functions. The flexoelectric–
piezoelectric coupling increases from the bulk piezo-
electric value of k = 0.0652 at the millimeter scale to
k = 0.365 at the nanometer scale due to flexoelectric
contribution. Overall, since the coupling coefficient is
thickness dependent, the energy conversion dramati-
cally increases in submicron thickness levels due to the
flexoelectric effect. The proposed model can be used
for parameter identification as well as performance
quantification and optimization in combined flexoelec-
tric and piezoelectric energy harvesting. The model was
also implemented for dynamic actuation, which could
be of interest for next-generation NEMS concepts
involving actuation for nanocantilevers with submicron
thickness levels.
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