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Design and Analysis of Piezoelectric
Metamaterial Beams With Synthetic

Impedance Shunt Circuits
Christopher Sugino , Massimo Ruzzene, and Alper Erturk

Abstract—We present an electromechanical modeling
framework and a detailed numerical investigation for the
design and analysis of piezoelectric metamaterial beams
whose unit cells with segmented electrode pairs are
shunted to synthetic impedance circuits. This framework
aims to extend the well-studied locally resonant piezo-
electric metamaterials and resulting finite metastructures
with specified boundary conditions to novel concepts
beyond bandgaps associated with simple inductive shunts.
Overcoming the bandgap limitations of the locally resonant
design requires more advanced considerations in the
electrical domain. To this end, we bridge piezoelectric
metamaterials and synthetic impedance shunts, and
present a general design and analysis framework along
with numerical case studies. A general procedure is
implemented based on the root locus method for choosing
the shunt circuit impedance, with an emphasis on vibration
attenuation and practical design considerations. Case
studies are presented for systems with locally resonant
bandgaps with or without negative capacitance, as well as
systems with multiple distinct bandgaps, and the necessary
shunt admittance is derived for each case. Simulations are
performed for a typical finite meta material beam with syn-
thetic impedance shunts, accounting for the finite sampling
rate and circuit dynamics. Time-domain simulations using
these synthetic impedance circuits are compared to the
ideal frequency-domain results with very good agreement.

Index Terms—Metamaterials, piezoelectricity, piezoelec-
tric devices, vibrations, vibration control.

I. INTRODUCTION

M ETAMATERIALS and finite metastructures (with spec-
ified boundary conditions) [1] made from piezoelectric
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materials connected to shunt circuits have the potential to be
multifunctional and adaptable, since their structural properties
are directly affected by the shunt circuits [2]. The use of shunt
circuitry has many benefits over purely mechanical structures,
such as reduced mass addition and significantly greater design
freedom. There is a rich history of research on using piezo-
electric materials for vibration attenuation and control [3]–[11],
both using active and passive control schemes. More recently,
piezoelectric elements with shunt circuits have been applied to
metamaterial and metastructure systems, focusing instead on
how the effective mechanical properties of the structure are
changed by the shunt circuitry. Researchers have considered
the use of negative capacitance [13]–[18] and resonant circuits
[19]–[22], with an emphasis on reducing vibrations or creating
bandgaps. In short, the use of a sufficient number of piezo-
electric elements and shunt circuits results in stiffness of the
structure being altered by the shunt circuit admittance, limited
by the electromechanical coupling of the system [1].

One promising path forward in research on electromechanical
metastructures lies in the use of synthetic impedance circuits, a
type of voltage-controlled current source that establishes an ar-
bitrary impedance between two terminals. Voltage is measured
as an input to a digital signal processing (DSP) system, and a
corresponding voltage is applied to obtain the desired current
(in that sense, it is in fact synthetic admittance). Fleming et al.
[23] first proposed a simple single-sided synthetic impedance
circuit for use in piezoelectric shunt damping, and recently
Matten et al. [24] and Nečásek et al. [25] have successfully
developed a synthetic impedance system with piezoelectric ele-
ments. This is especially promising for use with electromechan-
ical metastructures, where the impedance applied to each shunt
circuit can dramatically change the effective dynamic properties
of the structure, and hence its dynamic performance. Ultimately,
this technology would enable truly multifunctional and adapt-
able electromechanical metastructures, whose stiffness could
be programed by changing the digital transfer function imple-
mented on a controller.

Previously, we developed the theory for a piezoelectric bi-
morph beam with segmented electrode pairs as a locally reso-
nant electroelastic metastructure [1]. We showed that if the same
normalized admittance is applied to each pair of electrodes and
if there are a sufficient number of electrodes, the normalized
admittance directly affects the dynamic stiffness of each mode

1083-4435 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-7547-4874
https://orcid.org/0000-0003-0110-5376
mailto:csugino@gatech.edu
mailto:alper.erturk@me.gatech.edu
mailto:ruzzene@gatech.edu


SUGINO et al.: DESIGN AND ANALYSIS OF PIEZOELECTRIC METAMATERIAL BEAMS WITH SYNTHETIC IMPEDANCE SHUNT CIRCUITS 2145

Fig. 1. Schematic of a piezoelectric metastructure (i.e., a finite meta-
material with certain boundary conditions) and a close-up showing the
jth electrode pair shunted to an electrical load of admittance Yj . Since
periodicity is not required, the electrode pairs do not have to be identical.
Symmetrically located piezoelectric layers are connected in parallel for
transverse vibrations (poling directions are shown by gray arrows).

shape of the structure. In the present paper, we develop a gen-
eral method for designing that normalized admittance to obtain
a desired structural response using the root locus method. Poles
and zeros can be placed to obtain a particular structural response
according to geometric root locus rules, and the corresponding
shunt circuit admittance is easily obtained. Case studies for de-
sign are shown for creating one or two locally resonant bandgaps
of arbitrary width. In order to justify the use of these arbitrary
admittances that often require a power input to the system, sim-
ulations are performed for a metamaterial beam with synthetic
impedance shunts [23], accounting for the finite sampling rate
and circuit dynamics.

II. PIEZOELECTRIC METAMATERIAL BEAM

Consider a bimorph piezoelectric metamaterial beam with
a rectangular cross section made from two continuous and
symmetrically located piezoelectric layers sandwiching a
central structural (i.e., shim or substrate) layer (see Fig. 1). The
piezoelectric layers are poled in the same direction along the
transverse axis (for parallel connection). The electrode pairs are
segmented (not necessarily in a periodic fashion) into opposing
pairs and connected to a total of S shunt circuits. The electrode
layers and the bonding layers are assumed to have negligible
thickness and effect on both structural and electrical behaviors.
The thin composite beam has certain specified boundary
conditions and is modeled based on the Euler–Bernoulli
beam theory by assuming geometrically small oscillations
and linear-elastic material behavior (i.e., piezoelectric material
and geometric nonlinearities [26]–[28] are assumed to be
negligible). The beam is assumed to be undamped at this point,
with the understanding that modal damping can be added easily.

Under these conditions, it can be shown that the govern-
ing electromechanical equations of the system for transverse

vibrations are

EI
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where w(x, t) is the transverse displacement of the beam at
position x and time t, vj (t) is the voltage between the jth elec-
trode pair and the central shim, H(x) is the Heaviside function,
and Yj is a linear integro-differential operator corresponding to
the admittance of the jth shunt circuit. Furthermore, EI is the
short-circuit flexural rigidity, m is the mass per length, ϑ is the
electromechanical coupling term in physical coordinates, and
Cp,j is the internal piezoelectric capacitance associated with
the jth electrode pair
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where cs , ρs , and hs are the central substrate layer’s elastic
modulus, mass density, and thickness, respectively, and b is the
width of the beam. The piezoelectric layers have mass density
ρp , thickness hp , width b, elastic modulus at constant electric
field c̄E

11, effective piezoelectric stress constant ē31, and per-
mittivity component at constant strain ε̄S

33, where the overbars
indicate effective material properties for one-dimensional thin
layers reduced from three-dimensional constitutive equations as

c̄E
11 =

1
sE

11

, ē31 =
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sE
11

, ε̄S
33 = εT

33 −
d2

31

sE
11

(7)

where sE
11 is the elastic compliance at constant electric field, d31

is the piezoelectric strain constant, and εT
33 is the permittivity

component at constant stress. The piezoelectric layers have seg-
mented surface electrodes numbered j = 1, 2, . . . , S, with each
electrode starting at x = xL

j and ending at xR
j , with total length

Δxj = xR
j − xL

j (see Fig. 1), and width be , symmetric about
the xz-plane.

Using an assumed modes-type expansion with N modes, the
transverse displacement of the beam is

w(x, t) =
N∑

r=1

φr (x)ηr (t) (8)

where ηr (t) are the modal coordinates to be determined. The
mode shapes φr (x) of the beam obtained for a given set of
mechanical boundary conditions at short circuit (with a single
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electrode pair covering the entire beam) are normalized such
that
∫ L

0
mφr (x)φs(x) = δrs , r, s = 1, 2, . . . , N (9)

∫ L

0
EI

d2φr

dx2

d2φs

dx2
dx = ω2

r δrs , r, s = 1, 2, . . . , N (10)

where L is the length of the beam, ωr is the rth natural fre-
quency, and δrs is the Kronecker delta. Substituting (8) into (1),
multiplying by some mode shape φk (x), and integrating across
the beam (see [29] for a full derivation with a single electrode,
which can be easily extended to multiple electrodes), governing
equations can be obtained in modal coordinates as
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is the difference in slope of the rth mode between the ends of
the jth electrode pair, and

qr (t) =
∫ L

0
f(x, t)φr (x)dx (14)

is the modal forcing. Taking the Laplace transforms of (11)
and (12) and substituting (12) into (11), and assuming there
are a sufficient number of electrodes on the structure so that the
following Riemann sum approximates the orthogonality integral
in (10)
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it can be shown [1] that the response of the rth mode shape in
(8) is given by
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Qr (s)

s2 + ω2
r

(
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) (16)

where Hr (s) is the Laplace transform of ηr (t) and Qr (s) is the
Laplace transform of qr (t)
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is a dimensionless parameter related to the electromechanical
coupling, and

h(s) =
Yj (s)
Cp,j

(18)

Fig. 2. Equivalent block diagram for the transfer function given in (19).

is the normalized circuit admittance, where Yj is the admittance
of the jth shunt circuit, or equivalently the Laplace transform of
Yj . In order to make this simplification, the normalized circuit
admittance h(s) is assumed to be identical for every electrode
pair. Clearly, the shunt circuits have added frequency depen-
dence to the modal stiffness of each mode. The extent of the
frequency dependence is determined by α, the dimensionless
system-level electromechanical coupling term, and the specific
form of dependence is determined by h(s), the normalized shunt
circuit admittance applied to every shunt circuit.

Note that the approximation in (15) governs how the metas-
tructure with a finite number of segmented electrode pairs begins
to behave as an infinite metamaterial (i.e., a unit cell with pe-
riodic boundary conditions) as the number of electrode pairs
becomes very large. In practice, for relatively low target fre-
quencies (i.e., low modal neighborhoods), it is straightforward
to determine how many electrode pairs are required, which is
discussed in detail in [1].

III. GENERAL SHUNT CIRCUIT DESIGN

One of the benefits of using shunt circuits as opposed to
mechanical resonators is the great flexibility in obtaining the
desired admittance h(s). This is especially true for systems
using synthetic impedance, in which h(s) is determined by a
digital transfer function implemented on a controller. For this
purpose, it is desirable to have a methodology for obtaining the
required admittance h(s) for certain design characteristics, such
as creating damping in a specified frequency range or creating
multiple bandgaps. To this end, the root locus method for system
design can provide a quick insight into the structure’s response.
In the following, it is assumed that there are a sufficient number
of electrode pairs to achieve convergence to the approximation
in (15) in the desired frequency range.

Consider the transfer function between the rth modal excita-
tion and the rth modal response

Hr (s)
Qr (s)

=
1

s2 + ω2
r

(
1 +

αs

s + h(s)

) . (19)

This can be represented by the equivalent block diagram shown
in Fig. 2. The characteristic equation of the system is

1 + ω2
rG(s)H(s) = 0 (20)

where

G(s)H(s) =
1
s2

(
(1 + α)s + h(s)

s + h(s)

)
. (21)
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To determine the effect of h(s) on each mode of the sys-
tem, we apply classical root locus techniques with the squared
short-circuit natural frequency ω2

r > 0 as the varied parameter
[30]. The poles and zeros of the transfer function G(s)H(s)
determine how the poles and zeros of the full transfer function
Hr (s)/Qr (s) evolve as ω2

r is increased. Since there are an in-
finite number of modes with increasing natural frequencies ωr ,
the transfer function G(s)H(s) should be designed in a way
that is stable for all values of ω2

r > 0, i.e., all of the branches
of the root locus must lie exclusively in the left half of the
s-plane. Conditional stability is generally not desirable, unless
extreme care is taken such that no particular actual mode (i.e., a
specific value of ωr for the structure under consideration) goes
unstable. Note that the actual structural response for harmonic
excitation [to obtain some desired frequency response function
(FRF)] is obtained by summing the modal contributions along
the imaginary axis, i.e.,

w̄(x, ω) =
N∑

r=1

Hr (jω)φr (x) (22)

where w̄ is the vibration amplitude at some point x along the
beam at an excitation frequency ω. The poles and zeros of
Hr (s) determine the behavior of Hr (jω), e.g., poles close to
the imaginary axis correspond to resonant frequencies, and zeros
close to the imaginary axis correspond to antiresonances.

Because h(s) appears in both the numerator and denominator
of G(s)H(s) in (21), there are always two more poles than zeros,
implying that the root locus always has two asymptotes at ±90◦

from the positive real axis. This follows the physical intuition
that the resonant frequencies of the full system, and thus the
imaginary part of at least two poles of the system, must become
arbitrarily large as ω2

r is increased. That is, as we consider higher
and higher modes, there is at least one associated resonance for
each mode that becomes arbitrarily large. Additionally, it is
always the case that the damping ratio of these two asymptotic
poles will become arbitrarily small for higher modes, as they
can only have a finite (negative) real part. Without the loss of
generality, we can write G(s)H(s) in the more convenient form

G(s)H(s) =
K
∏n

i=1(s − zi)
s2
∏n

i=1(s − pi)
=

K

s2

N(s)
D(s)

(23)

where

N(s) =
n∏

i=1

(s − zi), D(s) =
n∏

i=1

(s − pi) (24)

are polynomials defining the poles and zeros of G(s)H(s) con-
tributed by h(s), K is a constant that does not affect the posi-
tion of the poles and zeros, n is the total number of zeros of
G(s)H(s), and zi and pi are the n zeros and poles contributed
by h(s), respectively. As mentioned previously, note that the
total number of poles of G(s)H(s) is always n + 2, due to
the double pole at the origin. The normalized admittance h(s)
required to obtain the form of (23) is given by

h(s) = s

(
(1 + α)D(s) − KN(s)

KN(s) − D(s)

)
. (25)

Generally, if h(s) is to be implemented using a digital control
system, it is desirable to choose K such that h(s) is a proper
transfer function or that h(s) has at least as many poles as zeros.
Fortunately, since N(s) and D(s) are always polynomials of the
same order, the highest order term of s may always be canceled
in the numerator of (25) by selecting K = 1 + α. Under this
simplification, (25) becomes

h(s) =
s (
∏n

i=1(s − pi) −
∏n

i=1(s − zi))∏n
i=1(s − zi) − 1

1+α

∏n
i=1(s − pi)

(26)

which will always be a proper transfer function, since the max-
imum order of the numerator is n, and the denominator will
always be order n for α > 0. Equation (26) can be used to
obtain the normalized admittance required to place the desired
poles and zeros pi and zi of G(s)H(s) for a particular design.
Note that, although it is impossible to know the true value of α
for a particular system, it can be measured experimentally by
comparing open and short-circuit natural frequencies via

α =
(

ωOC,i

ωSC,i

)2

− 1 (27)

which should be identical for modes of the structure up to and
including the frequency range of interest, assuming a sufficient
number of electrode pairs. Equation (27) can be obtained di-
rectly from (16) by taking the limits as h(s) → ∞, correspond-
ing to short circuit, and h(s) → 0, corresponding to open circuit,
and comparing the roots of the denominator. This is a source of
some practical concern, as the estimate of α is required in the
transfer function h(s). To investigate the effect of this uncer-
tainty, say an estimate αexp is made that is not quite equal to the
true value α for a particular system. Then, using αexp in (26)
and substituting into (21) (with the true value α) gives

G(s)H(s) =
(1 + α)N(s) + εD(s)

s2D(s)
(28)

where ε = 1 − α/αexp is some small constant. Comparing (23)
and (28), it is clear that we obtain the desired performance only
when αexp = α or ε = 0. In the presence of small errors, we can
expect that the designed poles and zeros will be moved slightly.
For a more thorough analysis, the sensitivity of the poles and
zeros of G(s)H(s) to the parameter ε can be checked to ensure
that the system will not be made unstable in the presence of a
small uncertainty. Clearly, some care should be taken so that the
system poles and zeros are not overly sensitive to ε.

Using the well-known geometric rules of the root locus, some
stability constraints can be placed on the placement of the poles
pi and zeros zi . In order to maintain stability at large values
of ω2

r , we have the necessary condition that the intersection of
the two asymptotes with the real axis is less than or equal to
zero, or

σ =
∑n

i=1 pi −
∑n

i=1 zi

2
≤ 0 ⇒

n∑

i=1

pi ≤
n∑

i=1

zi. (29)

Additionally, since all branches of the root locus terminate at
asymptotes or zeros of G(s)H(s), there can be no zeros in the
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right half-plane, or

Re {zi} ≤ 0, i = 1, 2, . . . , n. (30)

Since all branches of the root locus begin at the poles of
G(s)H(s), it is also generally necessary for all poles to lie
in the left half-plane, except in very special cases of conditional
stability. Since conditional stability is not desirable, as a general
rule, we should require

Re {pi} ≤ 0, i = 1, 2, . . . , n. (31)

Finally, in order to maintain real coefficients in both N(s) and
D(s), all complex poles and zeros must appear in conjugate
pairs. For a more complete check for stability, the full root locus
plot can be used, or other criteria such as the Routh–Hurwitz
or Nyquist stability criteria. When h(s) requires energy input
(e.g., for negative capacitance shunting), stability should be a
primary design consideration.

Once the poles and zeros have been selected, it can be checked
immediately if h(s) is realizable with a passive network. Con-
sider the normalized impedance associated with the shunt circuit
admittance h(s)

Z(s) =
1

h(s)
. (32)

The necessary and sufficient conditions for physical realization
with a passive network are given by Brune [31] as (1) Z(s) is
a rational function which is real for real values of s and (2) the
real part of Z(s) is positive when the real part of s is positive.
The first condition is met automatically by our design method
for h(s) by placing poles and zeros in complex conjugate pairs,
but the second condition will not generally be true. It is possible
that some designs will always require power input, regardless of
the specific placement of poles and zeros. The use of a synthetic
impedance system will always require power input, even if the
implemented impedance is passively realizable, because the cur-
rent output is achieved by applying a voltage over a reference
resistor.

The following sections will discuss some of the interest-
ing design possibilities for the normalized shunt admittance
h(s) such as negative capacitance, resistive loading, and the
purely passive locally resonant bandgap, as well as more
complex designs that are easily obtained by placing poles
and zeros such as multiple bandgaps. For all structural sim-
ulations shown, the beam being considered is a cantilever
with length L = 100 mm and width b = 10 mm, with cen-
ter shim material aluminum (cs = 69 GPa, ρs = 2700 kg/m3,
hs = 0.1 mm), and piezoelectric material PIN-PMN-PT, with
c̄E

11 = 13.25 GPa, ē31 = −17.71 C/m2, ε̄S
33 = 4.05 × 10−8 F/m,

ρp = 8198 kg/m3, be = b = 10 mm, and hp = 0.3 mm, such
that the dimensionless coupling is α = 0.485.

A. Negative Capacitance

The use of negative capacitance in parallel with other circuit
components has the effect of increasing the effective value of the
dimensionless coupling term α, a result that has been discussed
previously in the literature [32], [33]. The negative capacitance

circuit simulates the effect of having more energy output from
the piezoelectric layers, increasing the effective conversion ef-
ficiency; of course, this additional energy must be supplied to
the system by an outside source. The general form for the nor-
malized admittance of some other normalized admittance g(s)
placed in parallel with a negative capacitance circuit is

h(s) = g(s) − cs (33)

where 0 < c < 1 indicates the fraction of piezoelectric capaci-
tance being provided by the negative capacitance circuit. Sub-
stituting (33) into (21) yields

G(s)H(s) =
1
s2

(
(1 + αnc)s + gnc(s)

s + gnc(s)

)
(34)

where

αnc =
α

1 − c
, gnc(s) =

g(s)
1 − c

(35)

are the equivalent electromechanical coupling and normalized
circuit admittance of the circuit. That is, the circuit with a paral-
lel negative capacitance is equivalent to a circuit with normalized
admittance gnc(s) with increased electromechanical coupling
αnc. This indicates that assuming the negative capacitance shunt
is used simply in parallel with the other circuit components, the
presence of the negative capacitance will not change the qualita-
tive behavior of the system. This will be illustrated more clearly
in the context of the locally resonant bandgap. This analysis also
suggests that it is detrimental to have any parallel positive capac-
itance between the two electrodes not due to the piezoelectric,
as this would reduce the effective coupling parameter (i.e., set c
to some negative number). Note that it is often simpler to place
the desired poles and zeros using (26), which will automatically
handle any required negative capacitance. On the other hand, it
may be beneficial to place a dedicated negative capacitance cir-
cuit in parallel with the synthetic impedance circuit to increase
the effective value of α for the synthetic impedance circuit.

B. Purely Resistive Load

Using the root locus approach for circuit design, a purely
resistive load h(s) = 1/τ , where τ = RCp,j is the RC time
constant of each shunt circuit, yields

G(s)H(s) =
1
s2

(
(1 + α)τs + 1

τs + 1

)
(36)

such that the shunt circuitry acts as a lead compensator, adding
a negative real pole and zero to the system, i.e.,

Pole: s = −1
τ

, Zero: s = − 1
τ(1 + α)

(37)

such that the pole is always less than the zero. As with a typical
lead compensator, this has the effect of pulling the root locus to
the left, adding damping and stability to the system (see Fig. 3)
along with the corresponding structural FRF.

The total shift in the asymptote intersection σ contributed by
the lead compensator is

Δσ =
1
2

(
−1

τ
+

1
τ(1 + α)

)
= − α

2τ(1 + α)
. (38)
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Fig. 3. Typical root locus plot of the poles of Hr (s)/Qr (s) with varying
parameter ω2

r > 0 (left), and corresponding response FRF (right) for a
cantilever beam with a harmonic point force excitation of magnitude Fo

and frequency ω at x = 0.1L. Both plots use τ = 1 × 10−4 s, and the
resulting damping is clearly visible at high frequencies in the FRF.

Larger values of α or smaller values of τ increase the separation
between the pole and zero added by the lead compensator such
that the root locus moves farther into the left half-plane. Note
that for very high frequency modes, the effect of the pole and
zero on the real axis is effectively canceled, leaving only the
added damping from the asymptote shift. This added damping
also becomes small for higher modes, since the real component
is fixed.

C. Locally Resonant Bandgap

The locally resonant bandgap is obtained by using a purely
inductive load, yielding h(s) = ω2

t /s, where ωt is the reso-
nant frequency of the LC circuit. The corresponding form of
G(s)H(s) is

G(s)H(s) =
1
s2

(
s2(1 + α) + ω2

t

s2 + ω2
t

)
(39)

such that zeros are added at s = ±jωt/
√

1 + α and poles are
added at s = ±jωt . Thus, there can be no branches of the root
locus with imaginary part between ωt/

√
1 + α and ωt , i.e., the

frequency range

ωt√
1 + α

< ω < ωt (40)

defines the locally resonant bandgap. The dimensionless elec-
tromechanical coupling term α determines the width of the
bandgap, with larger values of α yielding wider bandgaps. A
typical root locus and the corresponding structural response are
shown in Fig. 4. The multiple additional valleys inside the lo-
cally resonant bandgap can be attributed to the particular modes
of the structure being considered (here a cantilever) and largely
disappear with the addition of damping to the shunt circuits.

Note that if h(s) is to be implemented using DSP, it is likely
necessary to add some damping to both the pole and zero of
h(s) to maintain stability. This can be achieved by placing a
resistor in parallel with the inductance, or equivalently using

h(s) =
ω2

t

s
+ 2ζωt (41)

Fig. 4. Typical root locus plot for a locally resonant bandgap (left), and
corresponding response FRF (right) for a cantilever beam with a point
force excitation of magnitude Fo at x = 0.1L. Both plots use a target
frequency ωt = 1.1ω4, such that the resulting bandgap targets the fourth
short-circuit natural frequency. Note also the many resonances that ap-
pear before the bandgap, which can be mitigated by adding damping
to h(s).

for some desired damping ratio ζ. This also has the benefit of
attenuating the many resonant frequencies that occur before the
locally resonant bandgap, which are visible in Fig. 4, without
significantly reducing the attenuation in the bandgap itself. The
corresponding poles and zeros of G(s)H(s) are

Poles: s = ωt

(
−ζ ±

√
ζ2 − 1

)
(42)

Zeros: s =
ωt

1 + α

(
−ζ ±

√
ζ2 − (1 + α)

)
. (43)

An alternative approach to improve stability and attenuate the
edge resonances would be to add a lead compensator to the
system in analogy with the purely resistive load as discussed in
Section III-B.

As mentioned previously, the use of negative capacitance can
increase the effective value of α. In the context of the locally res-
onant bandgap, this would increase the width of the bandgap by
reducing the lower edge frequency. More specifically, assum-
ing the same target frequency ωt , the effective bandgap with
negative capacitance is

ωt√
1 + α/(1 − c)

< ω < ωt. (44)

This expression suggests that the lower edge frequency of the
bandgap can be made arbitrarily close to zero by using c → 1.
This is an idealization, as the system would likely be unstable
and require very large power input. For the case of a single
bandgap, the effect of negative capacitance is easily understood
via its effect on the coupling term α. For more complex systems,
it is typically simpler to place the poles and zeros to obtain the
desired performance (e.g., multiple bandgaps), then use (26) to
find the required shunt admittance.

D. Multiple Bandgaps

Bandgaps are characterized by the absence of resonant fre-
quencies across a wide frequency range. In terms of the root
locus, we require a certain alternating arrangement of poles and
zeros on the imaginary axis. In general, to create nb bandgaps
between lower and upper edge frequencies ωi,l and ωi,u , we
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Fig. 5. Typical root locus plot for two bandgaps (left), and correspond-
ing response FRF (right) for a cantilever beam with a point force excitation
of magnitude Fo at x = 0.1L. Bandgaps were placed to attenuate the
response at the fourth and seventh natural frequencies of the structure
at short circuit.

require

N(s) =
nb∏

i=1

(s2 + ω2
i,l), D(s) =

nb∏

i=1

(s2 + ω2
i,u ) (45)

with the constraint

0 < ω1,l < ω1,u < ω2,l < ω2,u < · · · < ωnb ,l < ωnb ,u (46)

such that there is an alternating pattern of poles and zeros along
the imaginary axis, with the zeros corresponding to the lower
edge frequencies and poles corresponding to upper edge fre-
quencies. An example root locus with two bandgaps is shown
in Fig. 5 along with the corresponding structural response FRF,
with bandgaps placed to attenuate the response at the fourth and
seventh natural frequencies of the structure at short circuit.

It can be expected that nearly all systems with multiple
bandgaps will require power input to the system. As with the
single locally resonant bandgap, it is likely necessary to add
some damping to maintain stability for digital implementations
of the transfer function. This can be achieved as before by adding
some damping to each pair of poles and zeros, i.e.,

N(s) =
nb∏

i=1

(
s2 + 2ζiωi,l + ω2

i,l

)
,

D(s) =
nb∏

i=1

(
s2 + 2ζiωi,u + ω2

i,u

)
(47)

where ζi is the damping ratio of the ith bandgap. It is not
necessary to give the same damping factor to both the pole
and zero of a particular bandgap, but doing so guarantees that
the condition for stability in (29) is met. Note that, although
adding damping has the benefit of attenuating the resonances
that appear before the bandgap, very large damping ratios will
reduce the attenuation in the bandgap as the system’s zeros
are moved far from the imaginary axis. An example root locus
for two bandgaps with 5% damping on every pole and zero,
and the corresponding structural response is shown in Fig. 6.
Although damping significantly attenuates the resonances that
appear before each bandgap, the attenuation in each bandgap
has been reduced.

Fig. 6. Typical root locus plot for two bandgaps with damping (left), and
corresponding response FRF (right) for a cantilever beam with a point
force excitation of magnitude Fo at x = 0.1L. Bandgaps were placed to
attenuate the response at the fourth and seventh natural frequencies of
the structure at short circuit, and 5% damping was added to each pole
and zero.

Fig. 7. Typical root locus plot for two bandgaps with damping (left), and
corresponding response FRF (right) for a cantilever beam with a point
force excitation of magnitude Fo at x = 0.1L. Bandgaps were placed to
attenuate the response at the fourth and seventh natural frequencies of
the structure at short circuit, and a compensator was added to target the
center of the frequency range between the two bandgaps.

As with the single bandgap, a compensator can also be used
to attenuate the resonances that appear before each bandgap and
improve stability, at the cost of increased system complexity
(an additional pole and zero are necessary). The corresponding
forms of N(s) and D(s) are then

N(s) = (s − z)
nb∏

i=1

(
s2 + ω2

i,l

)
,

D(s) = (s − p)
nb∏

i=1

(
s2 + ω2

i,u

)
. (48)

From the previous stability analysis, we must have p < z for
stability. Of course, damping can be used in addition to lead
compensation for increased stability. The placement of pole and
zero on the real axis determines the frequency range with the
most damping as well as the extent of attenuation. Because
the lead compensator does not move the zeros from the imagi-
nary axis, lead compensation does not significantly reduce the
sharp attenuation in the bandgap. An example root locus for
two bandgaps with a compensator and the corresponding struc-
tural response is shown in Fig. 7. It is clear that the resonances
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before each bandgap have been significantly reduced, and that
the attenuation in each bandgap is effectively unchanged.

E. Modal Damping

Clearly, the root locus interpretation is only possible in the
absence of modal damping, since the modal damping term con-
tains ωr . However, for relatively small modal damping, we can
expect that the effect of the shunt circuitry on the structure is
much more significant than the effect of damping and continues
the design process assuming no modal damping. The effect of
damping on any particular mode can be investigated by fixing ω2

r

and observing the root locus for varying modal damping ratio.
The modal transfer function can be easily modified to include
modal damping as

Hr (s)
Qr (s)

=
1

s2 + 2ζrωrs + ω2
r

(
1 +

αs

s + h(s)

) (49)

where ζr is the rth modal damping ratio. For some fixed value
of ωr (for some mode shape of the plain structure), the charac-
teristic equation can be written as

1 + ζr

(
2ωrs(s + h(s))

s2(s + h(s)) + ω2
r ((1 + α)s + h(s))

)
= 0 (50)

and so the root locus can be considered with ζr > 0 as the varied
parameter. Of course, it can be expected that modal damping will
increase the stability of the system, but it may negatively affect
the desired structural response (e.g., the attenuation inside the
locally resonant bandgap).

IV. SYNTHETIC IMPEDANCE SHUNTS AND CASE STUDIES

The previous discussion assumed unlimited flexibility in the
design of the shunt circuit, such that h(s) is any transfer func-
tion necessary to obtain the desired performance. Fleming et al.
[23] suggested a two-terminal device that they termed “synthetic
impedance” or “synthetic admittance” to implement an arbitrary
transfer function between an input voltage and output current.
The primary idea is to use a combination of simple circuit ele-
ments and DSP to measure the voltage across the piezoelectric
element, then output the corresponding voltage across a refer-
ence resistor to obtain the desired current. Operational amplifiers
are used to buffer and scale the measured voltage and supply
the necessary current and power at the output.

A. Metamaterial Piezoelectric Bimorph Beam With
Synthetic Impedance Shunts

The synthetic impedance circuit originally suggested by
Fleming et al. [23] is applied here to a piezoelectric bimorph
connected in parallel, which produces a voltage referenced to
the floating voltage level of the central shim. The positive ter-
minal of the circuit is connected to the two electrodes, and the
negative terminal is connected to the central shim, such that
the central shim is virtually grounded for every electrode pair.
The full synthetic impedance circuit is shown in Fig. 8.

Time-domain simulations accounting for the full dynamics
of each synthetic impedance circuit were run in Simulink. The

modal-governing equations (11) and (12) can be written in vec-
tor form as

η̈ + [Λ]η + [Kv→η ] v = KqFo(t) (51)

v̇ + [Y ]v − [Kη→v ] η̇ = 0 (52)

where

η = [η1 · · · ηN ]T , v = [ v1 · · · vS ]T (53)

[Λ] = diag[ω2
1 ω2

2 · · · ω2
N ] (54)

[Cp ] = diag
[
Cp,1 Cp,2 · · · Cp,S

]
(55)

[Y ] = [Cp ]
−1diag

[
Y1 Y2 · · · YS

]
(56)

[Kv→η ] = ϑ

⎡

⎢⎢⎢⎢⎢⎢⎣

Δφ′
1,1 Δφ′

1,2 · · · Δφ′
1,S

Δφ′
2,1

. . .
...

...
. . .

...

Δφ′
N,1 · · · · · · Δφ′

N,S

⎤

⎥⎥⎥⎥⎥⎥⎦
(57)

[Kη→v ] = −[Cp ]−1[Kv→η ]T (58)

and Kq defines the effect of the excitation Fo(t) on each modal
coordinate. For simplicity, a point force excitation Fo(t) was
used at a position xf , such that

qr (t) = Fo(t)φr (xf ) (59)

and accordingly

Kq =
[
φ1(xf ) φ2(xf ) · · · φN (xf )

]T
. (60)

The primary block diagram is shown in Fig. 9.
The individual circuit simulations were handled in Simulink

using Simscape Electronics. Since the transfer function for each
shunt circuit is assumed to be the same, the “For Each” block
in Simulink is used to apply the same circuit to each individual
pair of electrodes. The subsystems inside each block are shown
in Fig. 8, as discussed previously.

To account for analog to digital conversion and digital to ana-
log conversion, a discrete version of the ideal continuous trans-
fer function Yj (s) was obtained using MATLAB’s c2d command
using the bilinear transform. An input delay of one sample was
included to account for calculation time, although the delay of
an actual system may vary depending on the complexity of the
desired transfer function. The digital sampling rate of the sys-
tem was selected to maintain stability, but was not optimized to
be as low as possible.

For all simulations, N = 50 modes and S = 12 pairs of elec-
trodes were used to ensure convergence to the approximation
in (15). Electrodes were assumed to be segmented in a uni-
form manner, such that xL

j = (j − 1)L/S and xR
j = jL/S.

The structure was assumed to be a cantilever bimorph beam
excited by a point force at xf = 0.1L, with PIN-PMN-PT as
the piezoelectric material to give relatively large dimensionless
coupling α = 0.485, with the same parameters as described in
Section III. For concreteness, Rc = 5 kΩ was used. Addi-
tionally, 1% modal damping was assumed for every mode,
i.e., ζr = 0.01.
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Fig. 8. Block diagram showing the full synthetic impedance circuit. The input to the system is the voltage across the piezoelectric, vp , and the
output is the current through the piezoelectric element, iout, defined according to the passive sign convention. The DSP unit takes the measured
voltage from the analog part of the circuit and applies the corresponding input voltage back to the analog circuit.

Fig. 9. Simulink block diagram for the governing equations in modal coordinates. The “For Each Subsystem” block contains the voltage dynamics,
which are assumed to be the same for each pair of electrodes. The η related signals are N × 1 vectors and the v related signals are S × 1 vectors.

To characterize the performance of the system, FRFs were
calculated relating the tip displacement of a cantilever beam to
the force input magnitude at xf = 0.1L. A noise burst signal was
used as the input, and the corresponding frequency response was
obtained using a Hanning window and the Fast Fourier Trans-
form. Because Simscape Electronics automatically includes typ-
ical noise sources for each component (e.g., thermal noise from
resistors), root mean square averaging over multiple simulations
was used to reduce the noise in the FRFs. For each system con-
sidered, the ideal model FRFs were obtained from (11) and (12)
using matrix inversion, assuming the admittance Yj is exact.

B. Case Study I: Locally Resonant Bandgap

As discussed in Section III-C, the locally resonant bandgap
is obtained by using h(s) = ω2

t /s. To maintain stability in the
presence of some input delay, 5% damping was added, as given
in (41). For small damping values, the resulting bandgap should
have edge frequencies that agree well with (40). As a case study,
the bandgap was designed to be centered on the fifth short-

circuit natural frequency of the system, with ωt = 2ω5/(1 +
1/
√

1 + α). The digital sampling rate was set to fs = 100 kHz
to maintain stability. In general, a very high digital sampling rate
is required to maintain stability, as observed by Nečásek et al.
[25], although a more thorough analysis is required to pinpoint
the precise source of instability. A comparison of the time-
domain simulation and the idealized frequency-domain model
is shown in Fig. 10, revealing a very good agreement.

C. Case Study II: Locally Resonant Bandgap With
Negative Capacitance

As discussed in Section III-A, the use of negative capacitance
can effectively increase the coupling factor α. Alternatively,
rather than designing negative capacitance separately from the
rest of the circuit, the poles and zeros of h(s) can be placed
using (26) to create a bandgap that is wider than the purely
passive locally resonant bandgap. As a case study, the normal-
ized admittance h(s) was designed to create a bandgap in the
frequency range ω5/(2π) ± 200 Hz. Note that for the purely
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Fig. 10. Comparison of time-domain simulations and frequency-
domain simulations for a bandgap targeting the fifth mode of the sys-
tem at short circuit, with 5% damping on the pole and zero, S = 12
electrodes, and N = 50 modes. The shaded gray regions indicate the
expected infinite-electrode bandgaps. The digital sampling rate was set
to 100 kHz, with a one-sample input delay. The short circuit response is
included for comparison.

Fig. 11. Comparison of time-domain simulations and frequency-
domain simulations for a bandgap targeting ω5 including negative capac-
itance, with 5% damping on the pole and zero, S = 12 electrodes, and
N = 50 modes. The shaded gray regions indicate the expected infinite-
electrode bandgaps. The digital sampling rate was set to 500 kHz, with a
one-sample input delay. The short circuit response is included for com-
parison.

passive case for this particular system, as shown in Fig. 10,
the bandgap centered on ω5 would only span ω5/(2π) ± 85 Hz.
The digital sampling rate was set to 500 kHz. A comparison
of the time-domain simulation and the idealized frequency do-
main model is shown in Fig. 11; once again, a very good agree-
ment is observed.

D. Case Study III: Multiple Bandgaps

In certain applications, it might be the case that vibration
needs to be reduced in frequency ranges that are significantly
separated from each other. In these cases, rather than create a
single wide bandgap, it may be more efficient to create multi-
ple bandgaps targeting the specific frequency ranges of interest.
As a case study, the normalized admittance h(s) was designed
to create bandgaps around the fourth and seventh short-circuit
natural frequencies of the system, with 5% damping added

Fig. 12. Comparison of time-domain simulations and frequency-
domain simulations for two bandgaps targeting ω4 and ω7, with 5% damp-
ing on the pole and zero, S = 12 electrodes, and N = 50 modes. The
shaded gray regions indicate the expected infinite-electrode bandgaps.
The digital sampling rate was set to 1 MHz, with a one-sample input
delay. The short circuit response is included for comparison.

to each pole and zero. The digital sampling rate was set to
1 MHz. Time-domain simulations and frequency-domain re-
sults are shown in Fig. 12 together for this case as well.

V. CONCLUSION

Locally resonant piezoelectric metamaterials, and more re-
cently finite metastructures with specified boundary conditions
employing inductive shunts, have been well studied over the
past decade. Besides the issues related to enabling inductors
for low-frequency applications, the resulting bandgap size in
locally resonant metamaterials is limited by the system-level
electromechanical coupling. To overcome such limitations of
simple resonant shunts, the domains of piezoelectric metamate-
rials and synthetic impedance circuits were coupled in this paper.
A general framework was presented for design and analysis of
piezoelectric metamaterials and metastructures that employ seg-
mented electrode pairs shunted to synthetic impedance circuits.
The focus was placed on a bimorph metamaterial beam undergo-
ing transverse vibrations and a root locus method was employed
to design the shunt circuits. Using this approach, poles and zeros
can be placed according to the desired structural behavior (e.g.,
damping, single, or multiple bandgaps), and the corresponding
shunt circuit admittance is obtained. This is especially useful
for implementation on a system with synthetic impedance for
which the admittance is simply implemented as a digital transfer
function on a controller. Examples of applications were shown
through numerical case studies for adding damping, obtaining
a locally resonant bandgap, or creating multiple bandgaps in a
cantilevered bimorph metamaterial beam, as a specific metas-
tructure. A synthetic impedance circuit for use with symmetric
voltages was developed and simulated in Simulink, yielding
good agreement with the predicted FRFs in all cases.

It should be mentioned that there are practical challenges
when implementing these synthetic impedance circuits on a
segmented bimorph beam. As discussed in Section IV, a very
high sampling rate is required to maintain stability, and with
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many shunt circuits in a single system, the total required signal
throughput can be very large. Additionally, small variations in
piezoelectric capacitance must be accounted for, as well as any
signal processing delays, which add a phase delay to the intended
impedance. For all these reasons, maintaining a stable system
with many synthetic shunt circuits can be a significant challenge,
but the techniques presented here can provide an insight into
preserving stability with complex shunt circuit impedances.
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