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We investigate and experimentally validate the concept of bandgap tuning in a locally resonant

metamaterial beam exploiting shape memory alloy (SMA) resonators. The underlying mechanism

is based on the difference between the martensitic phase (low temperature) and austenitic phase

(high temperature) elastic moduli of the resonators, enabling a significant shift of the bandgap for a

sufficient temperature change. Experimental validations are presented for a base-excited locally

resonant metamaterial beam with SMA resonators following a brief theoretical background. It is

shown that the lower bound of the bandgap as well as the bandwidth can be increased by 15% as

the temperature is increased from 25 �C to 45 �C for the specific SMAs used in this work for

concept demonstration. The change in the bandgap lower bound frequency and its bandwidth is

governed by the square root of the fully austenitic to fully martensitic elastic moduli ratio, and it

could be as high as 70% or more for other SMAs reported in the literature. Published by AIP
Publishing. https://doi.org/10.1063/1.5050213

Locally resonant elastic/acoustic metamaterials and result-

ing finite metastructures with specified boundary conditions

enable bandgap formation at wavelengths much longer than

the lattice size for applications such as low-frequency vibra-

tion/sound attenuation.1–20 Purely mechanical resonating com-

ponents are usually not tunable (very few exceptions include

bistable configurations9 that are mechanically tunable to a cer-

tain extent), and therefore the bandgap frequency range (i.e.,

the combination of target frequency and bandwidth) is fixed

for a given structure and resonator combination.16,17

In this work, we explore a locally resonant metamaterial

beam leveraging shape memory alloy (SMA) resonators to

enable a tunable bandgap with changing temperature. The con-

cept is based on the mechanism that the elastic moduli of the

resonators are altered with temperature as well known from

the SMA literature.21,22 The SMA resonators exhibit martens-

itic properties at low temperature (e.g., room temperature) to

achieve a lower frequency bandgap, which can be shifted to a

higher frequency range due to the increased elastic moduli of

the resonators associated with the austenitic phase.

Consider the temperature-related SMA phase transfor-

mation kinetics21 in a low-stress case such that only the

low- and high-temperature phases take place (i.e., the self-

accommodated/twinned martensitic phase and the austenitic

phase, respectively). The typical four transition temperatures

of SMAs21,22 are considered: the martensite finish (Mf), the

martensite start (Ms), the austenite start (As), and the austen-

ite finish (Af), in the ascending order. Assume an internal

variable, the martensitic fraction (denoted by n), to represent

the amount of phase transformation in the SMA (n ¼ 1 in the

fully martensitic phase while n ¼ 0 in the fully austenitic

phase). Using Brinson’s model,21 the martensitic fraction at

low temperature (Mf � T � Ms, where T is the SMA temper-

ature) can be given by

n ¼ 1� n0

2
cos p

T �Mf

Ms �Mf

� �
þ 1

� �
; (1)

where subscript 0 denotes the value at the onset of the current

phase transformation. At high temperature (As � T � Af), the

martensitic fraction is

n ¼ n0

2
cos p

T � As

Af � As

� �
þ 1

� �
: (2)

The SMA elastic modulus can be defined in terms of the

martensitic fraction as E(n) ¼ EA þ n(EM � EA), where EM

is the fully martensitic modulus and EA is the fully austenitic

modulus. The phase transformation (evolution of the mar-

tensitic fraction with temperature) and the corresponding

elastic moduli for an arbitrary SMA element are depicted in

Fig. 1.

Next, an Euler-Bernoulli type locally resonant metama-

terial beam model is briefly reviewed based on the theory by

Sugino et al.16,17 Consider an undamped thin cantilevered

beam with flexural rigidity EI, mass per unit length m, and

length L, as shown in Fig. 2, under the excitation of the trans-

verse base displacement wb(t). The relative transverse dis-

placement is denoted by w(x, t), such that the absolute

displacement is wabs(x, t) ¼ wb(t) þ w(x, t). The locally reso-

nant metamaterial beam has S undamped resonators attached

to the beam, at locations xj, with masses mj, and relative dis-

placements uj, for j¼ 1, 2,…, S. The linear resonators have

stiffnesses kj and natural frequencies x2
a;j ¼ kj=mj, which are

typically assumed to be identical (see Ref. 16 for details).

Furthermore, damping is neglected at this point without loss
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of generality, and modal damping can be added at a later

stage. The governing equations of motion can be modified

for SMA resonators by including the dependence of the elas-

tic moduli of the resonators on the martensitic fraction such

that xa,j ¼ xa,j(n) (details can be found in Ref. 23).

Using an expansion with N terms and employing the

corresponding plain beam mode shapes24 yield

wðx; tÞ ¼
XN

k¼1

/k xð Þgk tð Þ; (3)

where /k is the kth mode shape and gk is the corresponding

modal weighting. The governing equations in modal coordi-

nates for the metamaterial beam with SMA resonators can be

given by16,23

XN

i¼1

dik þ
XS

j¼1

m̂j/i xjð Þ/k xjð Þ

2
4

3
5€gi tð Þ

þ
XS

j¼1

m̂j/k xjð Þ€uj tð Þ þ x2
kgk tð Þ

¼ �€wb tð Þ
ðL

0

/k xð Þdxþ
XS

j¼1

m̂j/k xjð Þ

0
@

1
A; (4)

€uj tð Þ þ x nð Þ2a;juj tð Þ þ
XN

i¼1

€gi tð Þ/i xjð Þ ¼ �€wb tð Þ; (5)

where dik is the Dirac delta function and m̂j ¼ mj=ðmLÞ is

the jth normalized resonator mass. The free indices k and j

go from 1 to N and 1 to S, respectively (i¼ 1, 2,…, N is the

coupling between modes).

Defining x as the excitation frequency and xt as the

target frequency of the resonators (the lower bound of the

bandgap), the beam with resonators exhibit no resonances in

the range xt < x < xt

ffiffiffiffiffiffiffiffiffiffiffi
1þ l
p

, which defines the limits of

the bandgap,16 where l is the mass ratio. The bandwidth

of the bandgap is, therefore, Dx ¼ xt

ffiffiffiffiffiffiffiffiffiffiffi
1þ l
p

� 1
� �

. The

bandgap width of a metamaterial beam with SMA resonators

is bounded within DxM ¼ xM
t

ffiffiffiffiffiffiffiffiffiffiffi
1þ l
p

� 1
� �

and DxA ¼ xA
tffiffiffiffiffiffiffiffiffiffiffi

1þ l
p

� 1
� �

as the SMAs change from the martensitic

phase (with xa;j ¼ xt ¼ xM
t ) to the austenitic phase (with

xa;j ¼ xt ¼ xA
t ), respectively. Rearranging these equations,

the increase in the bandgap width achieved when the SMA

resonators change from the martensitic phase to the austen-

itic phase is DxA=DxM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EA=EM

p
. Note that the mass ratio

(l) remains the same; therefore, DxM=xM
t ¼ DxA=xA

t .

Experiments were performed for concept demonstration

and model validation. SMA beams with Af � 45 �C (denoted

as “standard temperature” by the manufacturer, Kellogg’s

Research Labs) were used for the experiments. The SMA

beams are 132.1 mm long, 12.5 mm wide, and 0.75 mm

thick, with a mass per length of 0.0598 kg/m and a density of

6351 kg/m3. The electrical resistance of each SMA beam

measured at room temperature was 0.2 X. Due to the low

electrical resistance, sufficient heat generation through the

Joule effect would require a large electrical current; as an

alternative, hot air provided by a heat gun was employed for

thermal stimulation of the SMA beams. Temperatures were

measured both with an infrared thermometer and a thermal

camera. The transverse vibrations of the beams were mea-

sured by using a Polytec OFV-505 laser Doppler vibrometer

(LDV).

For the identification of the SMA elastic moduli, free

vibration tests were conducted at different temperatures

between 0 �C and 100 �C. In these preliminary characteriza-

tion experiments, a 100 mm long cantilevered SMA beam

without a tip mass was considered. Small initial displace-

ments were applied to the SMA beam to ensure that no

stress-induced phase transformation took place and linear

elastic behavior was observed. The free oscillation frequency

below room temperature was 33.2 Hz, while at room temper-

ature it was 32.4 Hz. The slight decrease in free vibration fre-

quency when the SMA temperature changed from T� T1 to

T� T1 is possibly an effect of the R-phase, a trigonal lattice

with a martensitic nature that can be attributed to composi-

tion inhomogeneity.25,26 At temperatures greater than 45 �C,

the oscillation frequency increased to 41.1 Hz. The damping

ratio values were estimated (by the logarithmic decrement

method) as 0.0072 and 0.0043 for the low- and high-

temperature cases, respectively.

The SMA characterization test results are summarized

in Fig. 3. The free vibration frequency is shown in Fig. 3(a)

and the damping ratio is shown in Fig. 3(b). Solid markers

(for T� T1 and T�Af) represent experimental data.

Markers for T1< T<Af were numerically obtained by using

Eqs. (1) and (2) (after calculating the SMA elastic moduli).

Figure 4(a) displays the free vibration responses of the SMA

FIG. 1. (a) Evolution of the martensitic fraction for a heating/cooling cycle

of an arbitrary SMA element and (b) the corresponding change in the SMA

elastic modulus, where M is the fully martensitic phase and A is the fully

austenitic phase.

FIG. 2. Schematic of a cantilevered locally resonant metamaterial beam

under base excitation.
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beam at room temperature (in blue) and above the Af temper-

ature (in red), and the respective frequency contents are

shown in Fig. 4(b).

The flexural rigidity for the individual SMA beams was

obtained as EMI ¼ 0.020 Nm2 and EAI ¼ 0.031 Nm2, and the

moment of inertia was I¼ 4.3� 10�13 m4. The resulting

martensitic modulus (for T � Mf) was EM ¼ 45 GPa and the

austenitic modulus (for T � Af) was EA ¼ 73 GPa. However,

several SMA beams were tested and a number of them

exhibited an austenitic modulus as low as 60 GPa. With the

elastic moduli experimentally identified, the SMA beams

were then employed to construct the metamaterial beam. A

cantilevered beam forms the main structure (6061 aluminum

alloy, with an elastic modulus of 68.9 GPa, a density of

2700 kg/m3, a width of 25.4 mm, a thickness of 1.59 mm,

and an exposed length of 248 mm). Point masses (25.4 mm

long, 12.7 mm wide magnets) were evenly distributed on the

main beam for the attachment of five SMA beam resonators

(127 mm long, 12.7 mm wide SMA beams). The attachment

masses (total of 61 g) do not contribute to the mass of the

resonators, but affect the resonant frequencies and the mass

ratio of the metamaterial beam (hence the bandwidth of the

bandgap). After attaching the SMA beams to the main alumi-

num cantilever, the overhang length of the SMA resonator

beams on each side was 50 mm, as shown in Fig. 5 along

with the setup components. An infrared capture of the meta-

material beam at high-temperature shows that all SMAs are

above the Af temperature. Although the temperature is not

uniform, it is deemed acceptable (emissivity was set to 0.95).

A long-stroke shaker (APS Dynamics Inc.) was used for base

excitation of the structure and the LDV measured vibrations

at the tip of the metamaterial beam. The bandgap associated

with the martensitic phase of the SMAs (when at room tem-

perature) was centered around the second resonant frequency

of the plain beam (that contained the point masses used in

attaching the SMAs to the aluminum beam) by using 5.65 g

tip masses on the SMA resonators. The resulting mass ratio

(l) was around 0.7, yielding a bandwidth of 15 Hz for the

bandgap (and Dx/xt ¼ 0.3).

The metamaterial beam was first tested at room temper-

ature so that the SMAs were in the fully martensitic phase.

At constant temperature and small deformations of the

SMAs (to ensure no stress-induced phase transformation),

the SMA resonators behaved as ordinary linear resonators.

As mentioned previously,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EA=EM

p
is the change in the tar-

get frequency (xt) achieved when the SMA resonators

switch from the martensitic phase to the austenitic phase. For

the SMAs under consideration, the target frequency is

expected to increase around 20% when the temperature of

the SMAs increases from T � Mf (which includes room tem-

perature) up to T � Af since
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EA=EM

p
� 1:2. At or below

room temperature, xt ¼ xM
t since Mf � 25 �C. At tempera-

tures greater than Af (around 45 �C), xt ¼ xA
t � 1:2xM

t .

Figure 6 shows the transmissibility frequency response

functions (FRFs) of the metamaterial beam with SMA

FIG. 3. (a) Oscillation frequency and (b) damping ratio for a cantilevered

SMA beam with Af� 45 �C at several different temperatures. Solid markers

represent experimental data.

FIG. 4. (a) Experimental free vibration response and (b) oscillation fre-

quency data at two different temperatures (low temperature in blue and high

temperature in red). Graphs are normalized to have unity peak value.

FIG. 5. Experimental setup to test a

metamaterial beam with SMA resona-

tors (left). Infrared picture during an

arbitrary high-temperature test (right).
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resonators. In these graphs, TRðLÞ ¼ j�wabsðLÞ=�wbj is the

transmissibility at the free end of the main beam (tip dis-

placement to base displacement ratio) in the magnitude

form, while the frequency axis is normalized with respect to

the first resonant frequency of the metamaterial beam

(6.7 Hz). The transmissibility FRFs for the two distinct limit-

ing cases are shown in the figure. The bandgap at a lower fre-

quency range was obtained for the SMAs at room temperature

(in the fully martensitic phase) as shown in Fig. 6(a) along

with the plain beam frequency response (exhibiting the mode

being targeted). As displayed in Fig. 6(b), bandgap at a higher

frequency range was obtained for the SMAs at high tempera-

ture (above 45 �C, in the fully austenitic phase). The target fre-

quency increased by around 15% from the low-temperature

case to the high-temperature case, changing from 46 Hz to

53 Hz. The bandwidth increased by the same ratio since Dx/xt

(controlled by the mass ratio, l) remains the same.

While the results in Fig. 6 validate the concept and

model for SMA-based bandgap tuning with temperature, the

amount of bandgap shift was limited by the particular SMAs

used in this work. It is worth mentioning that a number of

SMAs were reported in the existing literature which exhibit

a factor of 2–3 increase in the elastic modulus from the mar-

tensitic phase to the austenitic phase.21,22 In such cases, an

increase of 40%–70% in the bandgap could be expected. To

put it in context, the target frequency of 46 Hz (the lower

bound of the bandgap) could be increased to 78 Hz with such

SMA resonators, and the bandgap width would increase by

the same factor (a numerical simulation of this scenario is

shown in Fig. 7). Moreover, this increase in the elastic mod-

ulus could take place for roughly the same increase in tem-

perature reported in this work (as low as 20 �C between the

martensitic and austenitic phases). The advantage of using

SMA resonators is further supported by the possibility of a

metamaterial with self-tuning capabilities by exploiting the

environmental temperature change27 since SMA transition

temperatures can be tailored through alloy composition and

heat treatment.28,29

In summary, we demonstrated bandgap tuning in a

locally resonant metamaterial beam with SMA resonators.

The concept leveraged changing the temperature to alter the

elastic moduli of the resonators by moving from the fully

martensitic to the fully austenitic phase. As demonstrated via

our modeling framework, and validated experimentally, the

target frequency of the resonators (i.e., the lower bound of

the bandgap) as well as the locally resonant bandgap width

increases by the factor of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EA=EM

p
. The amount of tempera-

ture change required can be rather low (e.g., 20 �C), which

can be achieved easily and potentially by environmental tem-

perature change in certain applications.
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