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Locally resonant metamaterials leveraging shape memory alloy (SMA) springs are explored in this

work in an effort to develop adaptive metamaterial configurations that can exhibit tunable bandgap

properties as well as enhanced damping capabilities. An analytical model for a locally resonant

metamaterial beam in transverse vibrations is combined with an SMA model for the resonator

springs to investigate and leverage the potential of temperature-induced phase transformations and

stress-induced hysteretic behavior of the springs. Two case studies are presented for this new class of

smart metamaterials and the resulting finite metastructures. In one case, SMA resonators operate in

the linear elastic regime, first at low temperature (martensitic behavior) and then at high temperature

(austenitic behavior), demonstrating how the bandgap can be tuned to a different frequency range by

altering the SMA elastic modulus with temperature. In the second case, the SMA springs are kept at

high temperature at all times to operate in the nonlinear regime, so that the hysteresis associated with

the SMA pseudoelastic effect is manifested, yielding additional dissipation over a range of frequen-

cies, especially for the modes right outside the bandgap. Published by AIP Publishing.
https://doi.org/10.1063/1.5031168

I. INTRODUCTION

Locally resonant metamaterials offer bandgap formation

for wavelengths much longer than the lattice size, enabling

low-frequency and wideband vibration attenuation.1–3 The

resonating elements of a locally resonant metamaterial can

be mechanical1,4 or electromechanical.5–7 Researchers have

proposed different implementations of resonators for elastic

waves8–14 and presented methods to predict the edge fre-

quencies of the bandgap.2,3,15,16 Some of the existing efforts

include piezoelectrically coupled metamaterials and meta-

structures17–20 as smart material-based concepts, including

those leveraging ferroelectric phase transition.21

Acoustic/elastic metamaterials made from purely mechan-

ical resonating components usually do not exhibit reconfigura-

ble and adaptive characteristics since the bandgap frequency

range (i.e., target frequency and bandwidth combination) is

fixed for a given mass ratio and stiffness of the resonators. In

this regard, the replacement of ordinary resonators by shape

memory alloy (SMA) resonators can lead to an enhanced tun-

able metamaterial behavior. Among possible applications,

SMAs can be exploited to decrease undesired frequency varia-

tions between resonators, which can decrease the bandgap

width,3 as well as to intentionally modify the behavior of spe-

cific resonators in order to design a metamaterial beam insensi-

tive to multi-frequency excitations.22

The tuning of the bandgap is an attractive possibility

since the elastic modulus of typical SMAs changes with tem-

perature. For instance, the low-temperature modulus

(associated with a martensitic phase) can be around 30 GPa,

while the high-temperature modulus (associated with an aus-

tenitic phase) can be as high as 70 GPa.23,24 Assuming an

SMA element in the absence of mechanical loading, the

reversible transformation between these phases can be

induced by varying the temperature by 30 �C to 40 �C in

many SMAs. The temperatures for phase transformation are

usually between �100 �C and 100 �C and depend mainly on

the SMA composition, heat, and mechanical treatments.25–27

For instance, typical nickel-titanium SMAs can exhibit phase

transformation above room temperature for a larger titanium

content, while nickel-rich SMAs can exhibit phase transfor-

mation below room temperature.25–27 Therefore, it is possi-

ble to adjust the SMA modulus of elasticity by changing its

temperature (e.g., through Joule heating28–30). As long as the

SMA is not subjected to large deformations, it can be seen as

a linear elastic spring with a variable-stiffness feature. For

larger deformations, hysteretic behavior is associated with

stress-induced martensitic phase transformation, providing

additional damping capabilities.31–36

Although many different SMA models are avail-

able,24,37–41 the models by Liang and Rogers31,42,43 and

Brinson23 are among the most commonly employed and

extended SMA models due to their simplicity and relatively

good experimental agreement. The work of Liang and

Rogers31,43 presented the modeling of SMA helical springs

based on classical spring design by employing the pure shear

assumption and proposed the use of SMA springs in vibra-

tion problems. Brinson’s work23 proposed the separation of

the martensite volume fraction (an internal variable defined

to quantify the amount of phase transformation in the SMA)

into a stress-induced part and a low-temperature part as well
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as a constitutive law accounting for non-constant material

properties. Other efforts44–46 further split the stress-induced

martensite into tension and compression components in order

to represent the asymmetric behavior usually observed in

SMAs. Due to the attractive damping characteristics of

SMAs,31–33 the literature on the use of these materials in

vibration attenuation and control problems includes seismic

response enhancement and/or base isolation of structures,47–51

adaptive vibration absorbers,52–54 and beam-like (or plate-

like) structures with embedded SMA members,55–57 as well as

beams or plates made of SMAs58–60 and passive mitigation of

aeroelastic oscillations,34–36 among other applications.

In this work, we explore locally resonant metamaterials

that exploit shape memory alloy springs toward developing

adaptive metamaterials that exhibit tunable bandgap proper-

ties. An analytical model for a one-dimensional locally reso-

nant metastructure (i.e., a metamaterial beam with specified

boundary conditions) is combined with a shape memory spring

model of the resonator springs to investigate and exploit the

potential of temperature-induced phase transformations and

stress-induced hysteretic behavior of the springs. Numerical

case studies are presented for this new class of smart metama-

terials and metastructures. First, the general aspects of a meta-

material beam with linear spring-mass resonators are briefly

reviewed. Then, the linear springs of the resonators are mod-

eled as SMA springs, and two different cases are presented. In

the first case, the SMA springs operate in the linear elastic

regime, first at low temperature (with martensitic elastic prop-

erties) and second at high temperature (with austenitic elastic

properties), depicting how the bandgap can be tuned to a dif-

ferent frequency range by altering the SMA elastic modulus

with temperature. In the other case, the SMA springs are kept

at high temperature at all times and excited in the nonlinear

regime, so that the hysteresis associated with the SMA pseu-

doelastic effect can be exploited (i.e., a stress-induced mar-

tensitic phase transformation followed by an austenitic phase

transformation, yielding additional energy dissipation).

II. THEORY

In order to investigate the behavior of a metamaterial

beam with SMA-based resonators, a uniform Euler-Bernoulli

beam with fixed-free boundary conditions is considered for

transverse vibrations. The coupled equations of motion are

obtained for linear spring-mass resonators, following Sugino

et al.2 The equations are then modified to account for the

effects of phase transformations in the SMAs (therefore

replacing ordinary springs by SMA springs).

A. Shape memory alloy model

Shape memory materials can recover their original

(undeformed) shape multiple times by the application of

external stimuli (such as heat) after undergoing a substantial

deformation. The two most common effects of the SMAs are

the shape memory effect and the pseudoelastic effect,

defined in terms of the SMA temperature. In the shape mem-

ory effect, the SMA is deformed while at a relatively low

temperature so that the original shape can be recovered only

at a desired moment (later in time) by increasing the SMA

temperature. In case the SMA is bearing a load, the SMA

can act as an actuator. In the pseudoelastic effect, the SMA

is kept at a relatively high temperature throughout the

loading-unloading process such that the original shape is

recovered when the mechanical loading is decreased. In such

a case, the SMA behaves similar to a spring. Its spring

behavior can be linear or nonlinear depending on the level of

mechanical stress applied to the SMA.

The typical stress-strain behavior of an arbitrary SMA

member tested at different temperatures is shown in Fig.

1(a). Although different temperatures are considered, a fully

austenitic initial phase is assumed in all cases, and the lower

temperatures are not low enough to yield a low-temperature

martensitic phase transformation (so that only stress-induced

martensitic phase transformation takes place). Note the unre-

covered strain upon complete unloading at lower tempera-

tures, the completely recovered strain upon unloading at

higher temperatures, and the increase in the critical stress

levels at which phase transformations take place with

increasing temperature. Simplifying the discussion to the

three SMA phases of more practical applications, the austen-

itic phase is the high-temperature phase, and the martensitic

phase can be induced by either low temperature or by

mechanical stress. Therefore, the transition between two

FIG. 1. (a) Typical SMA stress-strain behavior for different temperatures (assuming T > Ms and fully austenitic initial phase in all cases). (b) A simplified

SMA phase transformation diagram. A and M stand for austenite and martensite, respectively.
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SMA phases depends on a combination of temperature and

mechanical stress. Based on experimental evidence, a phase

diagram such as the one shown in Fig. 1(b) is widely

employed to describe the required thermomechanical state of

a given SMA for phase transformations to take place.23

Based on Fig. 1(b), the SMA critical stresses for phase

transformation are given by23

rM
s ¼rmin

s þCM T�Msð Þ for T>Ms; otherwiserM
s ¼rmin

s ;

(1)

rM
f ¼rmin

f þCM T�Msð Þ for T>Ms; otherwiserM
f ¼rmin

f ;

(2)

rA
s ¼ CA T � Asð Þ for T � As; (3)

rA
f ¼ CA T � Afð Þ for T � Af ; (4)

where rM
s is the critical value of stress for the onset of stress-

induced phase transformation (or forward transformation),

rM
f is the critical stress for the completion of stress-induced

transformation, rA
s is the stress value for the onset of the

recovery of the austenitic phase (or reverse transformation),

and rA
f is the stress value at which the austenitic phase is

completely recovered. Additionally, rmin
s and rmin

f are mini-

mum stresses at which stress-induced phase transformation

begins and is completed, respectively; CM and CA represent

the influence of temperature on critical stresses for forward

and reverse transformations, respectively; Ms is the martens-

ite start temperature, Mf is the martensite finish temperature,

As is the austenite start temperature, and Af is the austenite

finish temperature (in the absence of stress), while T is the

SMA temperature.23

Based on Ref. 23, the SMA martensitic fraction, n, can

have a low-temperature part, nT, and a stress-induced part,

nS, and can be defined as n ¼ nT þ nS. A stress-induced

phase transformation takes place for rM
s < r < rM

f . The cor-

responding martensitic fraction can be given by

nS ¼
1� nS0

2
cos p

r� rM
f

rmin
s � rmin

f

 !
þ 1þ nS0

2
; (5)

where subscript 0 denotes an initial value (at the onset of

the current phase transformation). In this case, the

temperature-related part of the martensitic fraction can be

given by

nT ¼ nT0 �
nT0

1� nS0

nS � nS0ð Þ þ DT ; (6)

where

DT ¼
1� nT0

2
cos p

T �Mf

Ms �Mf

� �
þ 1

� �
; (7)

if Mf < T < Ms and T < T0 (decreasing temperature), other-

wise DT ¼ 0.

During the reverse phase transformation (from martensite

to austenite), the total martensitic fraction can be given by

n ¼ n0

2
cos p

T � Ar
s

Af � As

� �
þ 1

� �
; (8)

for T > As and rA
f < r < rA

s , where Ar
s ¼ As þ r=CA is the

temperature at which the austenitic phase begins to stabilize

with applied stress [see Fig. 1(b)]. The stress-induced and

low-temperature components are, respectively,

nS ¼ nS0 �
nS0

n0

n0 � nð Þ; (9)

nT ¼ nT0 �
nT0

n0

n0 � nð Þ: (10)

The theory above can be applied along with classical

spring design for the modeling of SMA helical springs.31,43

The SMA spring force is represented by

f sma ¼ k nð Þu tð Þ þ Y nð Þ; (11)

where u(t) denotes the spring deflection. The martensitic-

dependent SMA spring stiffness, k(n), is represented by

k nð Þ ¼ r4

4R3N
G nð Þ; (12)

where r is the coil spring wire radius, R is the mean coil

radius, N is the number of active coils, and G(n) is the

martensite-dependent shear modulus. The shear modulus is

expressed in terms of the martensitic fraction as

G nð Þ ¼ GA þ n GM � GAð Þ; (13)

where GM is the fully martensitic shear modulus and GA is

the fully austenitic shear modulus. It is assumed that the

shear modulus (G) and the elastic modulus (E) are related to

each other by E(n) ¼ 2(1 þ �)G(n), where � is the Poisson’s

ratio.

The term Y(n) in Eq. (11) is related to the nonlinear

stress-strain behavior of the SMA. It accounts for the

changes in the SMA helical spring force when stress-induced

phase transformations take place. By rearranging the SMA

constitutive equation23,42 and the SMA helical spring

model,31,43 this term becomes34

Y nð Þ ¼ �pr3

2R
G nð ÞeresnS; (14)

where eres is the maximum recoverable strain of the SMA. It

should be noted that this term depends on the stress-induced

martensitic fraction (which does not include the low-

temperature contribution to the total martensitic fraction). In

the fully austenitic phase, n ¼ 0 and this term vanishes, and

the SMA spring force is linear for austenitic elastic proper-

ties. In a fully stress-induced martensitic phase, n ¼ nS ¼ 1.

Upon a complete martensitic phase transformation, this term

no longer changes so that further mechanical loading yields

a linear force-displacement spring behavior for martensitic

elastic properties. Moreover, for relatively small SMA defor-

mations, no stress-induced phase transformation takes place

so that nS ¼ 0 and consequently Y(n) ¼ 0. In such a case, the
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force-displacement behavior of an SMA spring is linear,

with spring constant given by Eq. (12), and the shear modu-

lus changes only with the SMA temperature. Note, however,

that for SMA helical springs, the stress-induced martensitic

fraction never achieves unity since the core of the SMA

cross-section is not expected to undergo large strains and

stresses.

The mechanical constitutive equation for SMA wires

under uniaxial loading23,42 is extended for SMA bars under

pure torsion31,43 so that it can be employed to represent the

hysteretic shear stress-strain behavior of SMA helical

springs. By following the modelling approach of Refs. 31

and 43, the shear strain at the surface of an SMA spring can

be estimated by a linear relation given by

c ¼ r

2pR2N
u: (15)

Equation (15) can be used with the linear shear stress-

strain relationship given by s ¼ Gc, where s is the shear

stress, to verify if the corresponding shear stress is indeed in

the linear elastic regime, or if it falls outside of the linear

regime (therefore, within one of the transformation ranges).

The phase transformation ranges were previously depicted in

Fig. 1(b) and defined by Eqs. (1)–(4). In case the calculated

value of shear stress is not in the linear regime, the actual

value of the (nonlinear) shear stress is determined iteratively

by employing the procedure described in Ref. 34. By

employing such a procedure, the corresponding value of the

martensitic fraction can also be determined.

The iterative procedure34 is employed only during a

phase transformation. In such a case, values for the shear

stress within the transformation range (denoted by stest) are

used in Eq. (5) or (8) (depending on the loading direction)

along with the relation r ¼
ffiffiffi
3
p

stest,
31,43 yielding values for n

between 0 and 1 (denoted by ntest). Each pair ðntest; stestÞ is

verified in the following equation:

stest � G nð Þc� G nð Þntesteres ¼ 0; (16)

along with the shear strain given by Eq. (15) and the current

value of the shear modulus to determine the stress level and

martensitic fraction corresponding to given spring deflection

and temperature. Equation (16) is based on the constitutive

relationship for SMAs with non-constant material functions of

Ref. 23 (modified by the pure shear assumption31,43) and is

presented with more details in Ref. 34. In this way, the shear

modulus [Eq. (13)], the spring stiffness [Eq. (12)], and there-

fore the nonlinear spring force [Eq. (11)] can be updated

according to the current level of phase transformation.

B. Locally resonant metamaterial beam model

Consider a cantilevered Euler-Bernoulli beam with

bending stiffness EI, mass per unit length m, and length

L. The beam is assumed to be undamped (without loss of

generality) since modal damping can be introduced later. The

oscillatory base displacement applied to the beam in the

transverse direction is wb(t), while the relative transverse dis-

placement is w(x, t), such that the absolute displacement is

wabsðx; tÞ ¼ wbðtÞ þ wðx; tÞ. We assume that there are S
undamped resonators attached to the beam, as shown in Fig. 2,

at locations xj, with masses mj, and relative displacements uj,

for j¼ 1…S. For derivation of the equations of motion, con-

sider linear resonators with stiffness kj and natural frequencies

x2
a;j ¼ kj=mj. The final equations of motion (for linear resona-

tors) will be modified later for the case of SMA resonators.

The governing equation for the beam in physical coordi-

nates is2

EI
@4w

@x4
þ m

@2w

@t2
�
XS

j¼1

mjx
2
a;juj tð Þd x� xjð Þ ¼ �m €wb tð Þ;

(17)

where d(x) is the Dirac delta function. The governing equa-

tion for each resonator is

€uj tð Þ þ x2
a;juj tð Þ þ @

2w

@t2
xj; tð Þ ¼ �€wb tð Þ: (18)

Assume that the natural frequencies xi and mode shapes

/i(x) of the plain beam (without the resonators) are known61

and that the mode shapes are normalized such thatðL

0

/i xð Þ/j xð Þdx ¼ Ldij; (19)

where dij is the Kronecker delta.

Using an assumed-modes expansion with N terms and

employing the corresponding plain beam mode shapes as

basis functions, we assume

wðx; tÞ ¼
XN

i¼1

/i xð Þgi tð Þ: (20)

Substituting Eq. (20) into Eqs. (17) and (18), applying

orthogonality conditions,61 and rearranging provide the govern-

ing equations in modal coordinates.2 Using the expression for the

SMA spring behavior, Eq. (11), the governing equations become

XN

i¼1

dik þ
XS

j¼1

m̂j/i xjð Þ/k xjð Þ

2
4

3
5€gi tð Þ þ

XS

j¼1

m̂j/k xjð Þ€uj tð Þ

þ x2
kgk tð Þ ¼ �€wb tð Þ

ðL

0

/k xð Þdxþ
XS

j¼1

m̂j/k xjð Þ

0
@

1
A;

(21)

FIG. 2. Schematic of a locally resonant metamaterial beam (cantilever with

spring-mass resonators) under transverse base excitation.
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€uj tð Þ þ x nð Þ2a;juj tð Þ þ �Yj nð Þ þ
XN

i¼1

€gi tð Þ/i xjð Þ ¼ �€wb tð Þ;

(22)

where m̂j ¼ mj=ðmLÞ is the jth normalized resonator mass,

xðnÞ2a;j ¼ kðnjÞ=mj is the squared natural frequency of the jth
SMA resonator, in which k(nj) is given by Eq. (12), and
�YjðnÞ ¼ YðnjÞ=mj, in which Y(n) is given by Eq. (14). Note

that for linear resonators xa,j is constant (since kj is fixed)

and Y(n) ¼ 0. Furthermore, in the SMA case, the martensitic

fraction (n) can have contributions of both low-temperature

and stress-induced parts,23 or contribution of only one of

these variants, depending on the problem under consider-

ation (stiffness variation or hysteresis). The free indices k
and j go from 1 to N and 1 to S, respectively, therefore form-

ing a system of Nþ S coupled second-order ordinary differ-

ential equations. The index i denotes the coupling between

modes and goes from 1 to N.

Based on the theory in Ref. 2, the new resonance fre-

quency branches are

x̂þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ lþ X2

k

2
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4X2

k

1þ lþ X2
k

� �2

vuut
0
B@

1
CA

vuuuut ; (23)

x̂� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ lþ X2

k

2
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4X2

k

1þ lþ X2
k

� �2

vuut
0
B@

1
CA

vuuuut ; (24)

where x̂ ¼ x=xt and Xk ¼ xk/xt are the excitation fre-

quency and the plain beam natural frequencies normalized

by the target frequency, respectively. Superscripts þ and –

denote the higher and lower resonances, respectively.

Moreover, l is the ratio of the total mass of the resonators to

the plain beam mass.2 By analyzing the limiting values of

these frequencies, the new resonances of each mode cannot

be in the range

xt < x < xt

ffiffiffiffiffiffiffiffiffiffiffi
1þ l

p
; (25)

which defines the limits of the bandgap. The bandwidth of

the bandgap is then

Dx ¼ xt

ffiffiffiffiffiffiffiffiffiffiffi
1þ l

p
� 1

	 

: (26)

As usual in the SMA literature, no distinction between

the low-temperature martensite and the stress-induced mar-

tensite is made here with regard to the modulus of elasticity

(the modulus changes only between the martensitic and aus-

tenitic phases). Assume that the SMA modulus, E(n), is

bounded within EM and EA, that EA is two to three times

greater than EM (as commonly reported for many SMAs), and

also that the transition between these values is a linear func-

tion of the martensitic volume fraction n. When the SMA is in

a fully martensitic phase (induced either by low temperature

or mechanical stress), n ¼ 1 and hence E(n) ¼ EM. In the fully

austenitic phase (induced by high temperature), n ¼ 0 and

E(n) ¼ EA. For any mix of austenitic and martensitic phases, 0

< n < 1 and EM < E(n) < EA. The stiffness of the SMA reso-

nators is, therefore, in the range kM
j � kjðnÞ � kA

j .

Considering that the elastic modulus of the SMAs can

change with the martensitic fraction, the target frequency xt(n)

of the metamaterial with SMA resonators (where xtðnÞ
¼ xðnÞa;j in this work) is bounded within xM

t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
kM

j =mj

q
(for

the fully martensitic phase) and xA
t ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
kA

j =mj

q
(for the fully

austenitic phase). Since the bandgap width [Eq. (26)] changes

with the resonator natural frequency, the bandgap width of a

metamaterial beam with SMA resonators is bounded within

DxM ¼ xM
t

ffiffiffiffiffiffiffiffiffiffiffi
1þ l
p

� 1
� �

and DxA ¼ xA
t

ffiffiffiffiffiffiffiffiffiffiffi
1þ l
p

� 1
� �

as

the SMAs change from the fully martensitic phase to the fully

austenitic phase, respectively. Note that the target frequency

and the bandgap width change according to the martensitic

fraction of the SMAs (adjusted by temperature), while the

mass ratio is not modified. For a constant mass ratio l, the

ratio Dx/xt is the same in all cases. For convenience, we can

express the austenitic modulus in terms of the martensitic mod-

ulus (i.e., EA ¼ aEM) in the equations above. It follows that

DxA=DxM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EA=EM

p
is the increase in the bandgap width

achieved for the SMA under consideration when it changes

from the martensitic phase to the austenitic phase. This rela-

tionship provides a good insight based just on the elastic prop-

erties of the SMA at hand, without any assumptions for the

geometry of the SMA members.

III. CASE STUDIES AND RESULTS

Equations (21) and (22) are solved in the time domain in

this work by using a Runge-Kutta method to accommodate

the SMA model. For simulation purposes, four modes were

considered (with the understanding that a greater number can

be required to capture specific behaviors which are not of

concern in this work). Five resonators were assumed since

this is the number of resonators of the experimental valida-

tion presented in Ref. 2. Damping was also introduced to

capture the finite resonant amplitudes.2

A. Metamaterial beam with passive linear resonators

This section briefly reviews the metamaterial beam with

linear resonators. The resonator frequencies are chosen to

have the bandgap centered at the second natural frequency of

the plain beam. Figure 3(a) shows a transmissibility plot for

the free end of the beam. Frequency responses for both the

plain beam (without the resonators) and the metamaterial

beam (with linear resonators) are shown, as a validation of the

time-domain numerical solution scheme against the results in

Sugino et al.2 One can see Ref. 2 for experimental validations

of the purely linear and passive theory. Time responses are

shown in Fig. 3(b) for different values of excitation frequency

(normalized by the first natural frequency of the plain beam).

B. Metamaterial beam with shape memory resonators

In the following, linear resonators will be replaced by

SMA resonators. First, the variation of the SMA elastic
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modulus with temperature is considered for tuning. After that,

the hysteresis associated with the SMA pseudoelastic effect is

exploited. The martensitic and the austenitic moduli assumed

for the simulations are EM ¼ 35 GPa and EA ¼ 70 GPa, respec-

tively. The assumed values for the minimum stresses for the

onset and completion of stress-induced phase transformations

are rmin
s ¼ 20 MPa and rmin

f ¼ 80 MPa, respectively. The

stress-temperature slopes (as depicted in Fig. 1) are assumed as

CM ¼ 4 MPa �C�1 and CA ¼ 6 MPa �C�1. The actual critical

stresses are given by Eqs. (1)–(4) for a given SMA tempera-

ture, while the temperature depends on the case study. The

maximum recoverable strain of the SMA is assumed as eL

¼ 0.067. The assumed Poisson’s ratio (to estimate the shear

modulus) is � ¼ 0.33. The SMA transition temperatures

assumed for the simulations are Mf ¼ 29 �C; Ms ¼ 42 �C; As

¼ 43 �C, and Af ¼ 58 �C (also employed in Ref. 34). The

geometry of the SMA springs can be calculated using the

equations presented in Sec. II A according to the metamaterial

being considered. For the particular cases of this work, SMA

springs with 0.95 mm wire diameter and 8 mm mean coil

diameter are assumed (the same as Ref. 34). The number of

coils is calculated [using Eq. (12)] according to a prescribed

value of target frequency (and known resonator mass), yielding

the required stiffness of the resonators.

1. Leveraging temperature-induced phase
transformations

In this section, the reversible change in the elastic modu-

lus of an SMA (and the corresponding change in the resona-

tor stiffness) by properly adjusting its temperature is

exploited to enable the tuning of the metamaterial target fre-

quency, forming the basis of an adaptive metamaterial beam.

The discussion is limited to cases in which the SMA mem-

bers operate in the linear elastic regime (the deformation

achieved by the SMA is not large enough to result in a

stress-induced phase transformation). Note that, although the

shape memory effect is not leveraged in the sense of shape

recovery in this work (e.g., by heating an SMA that was sub-

stantially deformed while at a relatively low temperature),

the reversible transition between the martensitic phase and

the austenitic phase (related to the shape memory effect) will

be exploited.

Figure 4 gives some insight into the characteristics of

the bandgap [using Eqs. (23) and (24)]. The behavior

depicted in Fig. 4(a) was previously discussed in Ref. 2 for a

metastructure with linear resonators and is briefly recalled

here since it will be affected by the phase transformation of

the SMA resonators. Figure 4(a) depicts two arbitrary cases,

for the unity mass ratio and a lower mass ratio (l ¼ 1.0 and

l ¼ 0.3, respectively). The mass ratio l ¼ 0.3 is also consid-

ered in the cases of Fig. 4(b) (and in all cases that will be

presented next in this work), depicting how the new resonan-

ces can change depending on the current value of the SMA

modulus. It is noteworthy in Fig. 4(b) that the new higher

resonances are closer to the upper bound of the bandgap

when the target frequency increases from xM
t to xA

t as the

SMAs change from fully martensite to fully austenite. In this

particular case, the elastic moduli of the SMA resonators,

E(n), change from EM ¼ 35 GPa to EA ¼ 70 GPa when the

SMA steady-state temperature, T, changes from Mf ¼ 29 �C
to Af ¼ 58 �C. Since the Mf temperature is slightly above

room temperature, the SMA cooling (yielding the martensitic

phase) can be achieved simply by natural convection in the

absence of the heat source.

Figure 5(a) shows the transmissibility (tip displacement

to base displacement ratio) of the metamaterial beam with

SMA resonators. Two distinct limiting cases are shown. The

bandgap in a lower frequency range is obtained for the

SMAs at low temperature (in a fully martensitic phase). The

bandgap in a higher frequency range is obtained for the

SMAs at high temperature (in the fully austenitic phase).

Figure 5(b) shows the bandgap that would be achieved by

properly varying the temperature of the SMAs. Typical SMA

properties are assumed (especially the fully martensitic and

fully austenitic elastic moduli, which are the most influential

parameters of this case) so that the behavior depicted in Fig.

5 is realistic for experimental implementation. In an experi-

mental setup, the range of temperature can be achieved by

FIG. 3. (a) Transmissibility plots for the free end of the beam. The transmissibility for the plain beam (without the resonators) is shown in blue (solid line).

The transmissibility for the metamaterial beam (with linear resonators) is shown in red (dashed line). The bandgap is centered at the second natural frequency

of the plain beam. (b) Representative time responses for the free end of the metamaterial beam with linear resonators at different excitation frequencies. The

frequencies in (b) correspond to the markers in (a), namely, the x/x1 ratios of 5.3, 6.7, 7.3, and 9.5.
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Joule heating or heat exchange with the environment, for

example. Joule heating using DC power supplies is com-

monly reported in the literature when SMA wires are consid-

ered (in straight or coiled forms). Joule heating can also be

achieved using eddy currents associated with electromag-

netic induction. The latter (induction heating) is recom-

mended for bulk SMAs, such as SMA beams or plates.30

Note that, in the particular case of Fig. 5, it is assumed

that the SMAs do not undergo stress-induced phase transfor-

mation, so that the changes in the martensitic fraction are

only due to the changes in the temperature of the SMAs. It is

also assumed that the temperatures of all SMA springs are

the same (steady-state temperature is assumed). To clarify

the hypothesis of linear behavior (with changes only in the

slope of the stress-strain behavior depending on the tempera-

ture of the SMAs), the SMA model described in Sec. II A is

used to determine the stress values corresponding to the

spring deflections of the SMA resonators (which are required

to be smaller than the critical value depicted in Fig. 1 and

given by Eq. (1) for the SMA properties presented earlier in

this work). Considering this case of tuning of the metamate-

rial by temperature change, an attractive set of SMA proper-

ties can be given by large separation between the martensitic

and austenitic moduli (yielding larger tunability of the

bandgap) associated with a narrow thermal hysteresis (there-

fore requiring lower input heat to achieve the “high-

temperature” state of the austenitic phase).

2. Leveraging the pseudoelastic effect at a fixed
temperature

The pseudoelastic effect of SMAs is exploited in this

section. A fundamental difference is that the martensitic

phase is only induced by high enough mechanical stress and

not by low temperature. In the pseudoelastic effect, the SMA

springs behave like ordinary, linear-elastic springs at rela-

tively small deformation. In such a case, the SMA spring

behavior can be associated with the mechanical properties of

the austenitic phase. At larger deformations, stress-induced

phase transformation (from austenite to martensite) can take

place. The larger the mechanical loading, the larger the

amount of phase transformation. However, as a circular bar

under torsion, the SMA spring will never experience high

enough stress levels at its core to completely transform into

martensite (along the radius of the SMA wire). Considering

physically achievable deformations (which do not exceed the

FIG. 4. Resonant frequencies of the representative metastructure (a) for linear resonators and mass ratios of unity and 0.3 and (b) for SMA resonators with a

mass ratio of 0.3, at both fully martensitic and fully austenitic phases.

FIG. 5. Transmissibility graphs for a metamaterial beam with SMA resonators: (a) Two distinct limiting cases for the SMAs at low temperature (bandgap at a

lower frequency range) and at high temperature (bandgap at a higher frequency range). (b) Bandgap that can be obtained by properly varying the temperature

of the SMAs in an adaptive way.
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recoverable limits of the SMA), the SMA spring behavior

during phase transformation can be associated with arbitrary

mechanical properties (bounded by the fully martensitic and

fully austenitic elastic properties). The austenitic phase can

be recovered, while the SMA is mechanically unloaded due

to its high-temperature state.

The pseudoelastic effect requires T � Af. The particular

case of T ¼ Af is assumed, so that the SMAs are in the fully

austenitic phase in the absence of mechanical loading. The

SMA critical stresses are based on the phase diagram of Fig.

1 along with Eqs. (1)–(4). As previously shown for a meta-

material beam with linear resonators (Fig. 3), Fig. 6 shows

the transmissibility for the metamaterial beam with SMA

resonators operating in the pseudoelastic regime. Figure 6(a)

displays the transmissibility for the excitation frequency up

to slightly above the third natural frequency of the beam.

Figure 6(b) shows a closer view of the bandgap region and

includes the normalized displacement of the resonator

located at the free end of the beam. The resonances associ-

ated with the two new resonant frequencies, the lower bound

of the bandgap and the third natural frequency of the plain

beam, exhibit a moderate attenuation. At those particular

excitation frequencies, the resonators undergo larger dis-

placements so that the achieved stress levels are high enough

to induce some amount of martensitic phase transformation

(yielding some hysteretic dissipation). One can also note a

softening behavior at those resonances related to the increase

in the martensitic fraction in the SMAs, which decrease their

elastic moduli during the loading stage. The austenitic phase

and therefore the fully austenitic elastic modulus are recov-

ered during the unloading stage of the SMAs.

For the case of a metamaterial beam with SMA resona-

tors [repeated in Fig. 7(a)], representative time responses are

shown in Fig. 7(b) for different values of the excitation fre-

quency. The corresponding martensitic fraction of the SMA

resonators is shown in Fig. 7(c). Each of the SMA resonators

FIG. 6. (a) Transmissibility plot for the free end of a metamaterial beam with SMA resonators in the pseudoelastic regime. (b) Close-up for the bandgap region,

including the normalized displacement of the resonator located at the free end of the beam. The case with linear resonators is also shown.

FIG. 7. (a) Transmissibility plot for the case with SMA resonators. (b) Representative time responses for the free end of the metamaterial beam with SMA res-

onators (at different excitation frequencies). (c) Martensitic fraction of the SMA resonators. The SMA resonators are represented in blue, red, yellow, purple,

and green (from the closest to the clamped end of the main beam to the one located at the free end of the main beam, respectively). Not all SMA resonators

exhibit phase transformation at a given excitation frequency so that some of them are omitted. The frequencies in (b) and (c) correspond to the markers in (a),

namely, the x/x1 ratios of 5.3, 6.7, 7.3, and 9.5.
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is represented by a different color (details in the caption of the

figure) to highlight that not all of them exhibit some amount

of martensitic fraction at a given excitation frequency. A sig-

nificant attenuation is predicted for x/x1 ¼ 5.3 [cf. Fig. 6(a)],

where two SMA resonators (in green and red) undergo signifi-

cant phase transformation and therefore achieving larger lev-

els of hysteretic damping. There is also a less significant

contribution of two other SMA resonators (in yellow and pur-

ple). For x/x1 ¼ 6.7, although three SMA resonators exhibit

phase transformation, the achieved amount of martensitic

fraction (hence hysteresis) is minor since the transmissibility

was originally smaller than that for x/x1 ¼ 5.3. The same

applies for x/x1 ¼ 9.5. At x/x1 ¼ 7.3, there is no significant

phase transformation in any of the SMA resonators so that the

predicted behavior is similar to that of Fig. 6(a) for linear

resonators.

In order to gain more insight into the behavior of the

metamaterial beam (and resonators), Fig. 8 shows the trans-

verse displacement of the beam with SMA resonators for the

resonances of Fig. 6 (cases for linear resonators are included).

FIG. 8. Transverse displacements of the metamaterial beam with SMA resonators (in red, with diamond markers for the resonators) and of the metamaterial

beam with purely mechanical linear resonators (in blue, with square markers for the resonators) at the resonance frequencies seen in Fig. 6 [increasing fre-

quency from (a) to (f)].
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The displacement is shown along the beam length for time

instants corresponding to peak displacements at the free end

of the beam in the forced response. The beam and the resona-

tors are in phase for excitation frequencies up to the target fre-

quency and out-of-phase higher frequencies. The

improvements (in terms of attenuation) are related to the pseu-

doelastic hysteresis of the SMAs, achieved when the displace-

ments of the resonators are large enough to induce phase

transformations in the SMAs. For excitation frequencies at

which the displacements of the resonators are small, the beam

response is not modified since the SMAs operate in the linear

regime and no hysteretic damping is added to the structure.

IV. CONCLUSIONS

In this work, we explored locally resonant metamaterials

that exploit shape memory alloy (SMA) springs in an effort to

develop adaptive metamaterials that can exhibit tunable

bandgap properties and also leverage amplitude dependent

stress-induced phase transformations. An analytical model for

a locally resonant metamaterial beam in transverse vibrations

was combined with a shape memory spring model of the reso-

nators to investigate and exploit the potential of temperature-

induced phase transformations and stress-induced hysteretic

behavior of the springs. Various case studies were presented

for this new class of smart metamaterials and the resulting

finite metastructures with specified boundary conditions.

It was shown that a metamaterial beam with SMA resona-

tors can exhibit a tunable bandgap, since the natural frequency

of the resonators (and hence the target frequency of the meta-

material) can be adjusted by properly changing the elastic

modulus of the SMAs with temperature due to the reversible

transition between the low-temperature martensitic phase and

the high-temperature austenitic phase, which exhibit a lower

elastic modulus and a larger elastic modulus, respectively. It

was also shown that the SMA pseudoelastic hysteresis can

improve the damping in the resulting frequency response

functions substantially in order to create attenuation in the

vibration modes outside the bandgap. This is particularly of

interest for resonance frequencies that typically emerge right

outside the bandgap in locally resonant metastructures. A sig-

nificant decrease in the displacements of the resonator masses

is also predicted for the pseudoelastic case.

Overall, the framework and results presented in this

work can be used to design, analyze, and optimize tunable

and potentially adaptive locally resonant metamaterials and

metastructures leveraging SMAs. The one-dimensional con-

cept given here for transverse vibrations of a classical beam

can easily be extended to two-dimensional configurations as

in the purely mechanical counterpart3 of the problem.
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