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Coupling of experimentally validated
electroelastic dynamics and mixing
rules formulation for macro-fiber
composite piezoelectric structures

Shima Shahab1 and Alper Erturk2

Abstract
Piezoelectric structures have been used in a variety of applications ranging from vibration control and sensing to morph-
ing and energy harvesting. In order to employ the effective 33-mode of piezoelectricity, interdigitated electrodes have
been used in the design of macro-fiber composites which employ piezoelectric fibers with rectangular cross section. In
this article, we present an investigation of the two-way electroelastic coupling (in the sense of direct and converse piezo-
electric effects) in bimorph cantilevers that employ interdigitated electrodes for 33-mode operation. A distributed-
parameter electroelastic modeling framework is developed for the elastodynamic scenarios of piezoelectric power
generation and dynamic actuation. Mixing rules (i.e. rule of mixtures) formulation is employed to evaluate the equivalent
and homogenized properties of macro-fiber composite structures. The electroelastic and dielectric properties of a rep-
resentative volume element (piezoelectric fiber and epoxy matrix) between two neighboring interdigitated electrodes
are then coupled with the global electro-elastodynamics based on the Euler–Bernoulli kinematics accounting for two-
way electromechanical coupling. Various macro-fiber composite bimorph cantilevers with different widths are tested for
resonant dynamic actuation and power generation with resistive shunt damping. Excellent agreement is reported
between the measured electroelastic frequency response and predictions of the analytical framework that bridges the
continuum electro-elastodynamics and mixing rules formulation.
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Introduction

Piezoelectric materials are well suited for a variety of
tasks since the piezoelectric effect is a reversible process
in the form of the direct effect (conversion of mechan-
ical strain to electric charge) and the converse effect
(conversion of electric potential to mechanical strain).
The most typical use of piezoelectric materials in
bending is through the utilization of the ‘‘31-mode’’
with uniform electrodes. The use of 31-mode in bend-
ing has been well studied for sensing, energy harvest-
ing, and static or dynamic actuation for decades (Baz
and Ro, 1996; Dosch et al., 1992; Erturk, 2012;
Erturk and Inman, 2009, 2011b; Hagood et al., 1990;
Hagood and Von Flotow, 1991; Leadenham and
Erturk, 2015a, 2015b; Leo, 2007; Smits and Choi,
1991), while the ‘‘33-mode’’ has been conventionally
employed for longitudinal (axial) deformations
through the use of piezoelectric stacks and bars
(Cunefare et al., 2013; Feenstra et al., 2008; Shahab

and Erturk, 2014a; Shahab et al., 2015a; Skow et al.,
2014; Zhao and Erturk, 2014).

The concept of interdigitated electrodes (IDEs) with
piezoelectric fibers was first introduced by Hagood
et al. (1993) and Bent and Hagood (1997) since the 33-
mode piezoelectric strain constant (50%–100% larger
than that of the 31-mode) offered an intriguing design
option to exploit inder bending deformation. The
resulting active-fiber composite (AFC) structure was
first characterized by Bent et al. (Bent, 1997; Bent et al.,
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1995), and its properties were further investigated by
others (Belloli et al., 2007; Berger et al., 2005; Brei and
Cannon, 2004; Lin and Sodano, 2008, 2009) numeri-
cally and experimentally in next-generation efforts.
However, the AFC technology employed piezoelectric
fibers with circular cross section that limited the interac-
tions between fibers and electrodes, yielding low elec-
tromechanical coupling and high dielectric loss. Solving
this problem using fibers with rectangular cross section,
researchers at the NASA Langley Research Center
developed the macro-fiber composite (MFC) technol-
ogy (High and Wilkie, 2003; Wilkie et al., 2000). The
advantages of the MFC technology over monolithic
piezoelectrics include increased flexibility, improved
actuation authority, and anisotropic behavior. These
characteristics of MFCs have led to experimental appli-
cations including structural sensing and vibration con-
trol (Browning et al., 2009; Sodano et al., 2004),
bio-inspired locomotion (Cen and Erturk, 2013; Erturk
and Delporte, 2011), acoustic wave devices (Collet
et al., 2011; Matt and Di Scalea, 2007), morphing-wing
and flapping-wing structures (Bilgen et al., 2010; Kim
et al., 2007; Kim and Han, 2006; Paradies and Ciresa,
2009), and in-air/underwater dynamic actuation or
energy harvesting (Cha et al., 2013, 2016; Erturk and
Delporte, 2011; Shahab and Erturk, 2014b, 2014c,
2015a, 2015b; Shahab et al., 2015b).

It is worth mentioning that, other than their use in
AFCs and MFCs, IDEs have also found use in micro-
electro-mechanical systems (MEMS) as electrodes over
monolithic electroelastic plates. IDEs are useful to
MEMS since the 33-mode coupling allows for larger
voltages to be produced in energy harvesting, overcom-
ing the forward voltage requirements of diodes for DC
rectification. Additionally, implementation of IDEs
allows for an electrode surface only on one side of a
piezoelectric material, simplifying the microfabrication
process (Choi et al., 2006; Jeon et al., 2005). However,
in the existing literature, modeling of the effect of 33-
mode IDE actuators and harvesters in MEMS applica-
tions has been oversimplified or excluded completely.

In the early constitutive modeling efforts for 33-
mode MFCs, Williams et al. (2002, 2004a, 2004b) pre-
sented an experimentally validated model for equivalent
thermal expansion and mechanical properties of MFCs
using modified classical mixing rules. Deraemaeker
et al. (2009) reported the mixing rules-based calcula-
tions of the equivalent parameters and compared with
manufacturer’s data and experimental results. In
another work, Deraemaeker and Nasser (2010) pro-
posed a finite element method (periodic homogeniza-
tion) to evaluate the equivalent properties of MFCs.
More recently, Prasath and Arockiarajan (2015) pre-
sented analytical and numerical models to evaluate the
effective thermo-electro-elastic properties of MFCs and
the effect of thermal environment on the effective piezo-
electric constants of MFCs. Most of these efforts have

explored the constitutive behavior and structural homo-
genization alone. With increased applications on the
dynamics of structures with MFCs, there is a growing
need for coupling such homogenized constitutive mod-
eling with a proper continuum electro-elastodynamics
framework for energy harvesting, sensing, and actua-
tion problems of both resonant and off-resonant
applications.

In this article, building on the model presented by
Deraemaeker et al. (2009), the electroelastic and dielec-
tric properties of a representative volume element
(RVE; piezoelectric fiber and epoxy matrix) between
two subsequent IDEs are obtained using mixing rules,
validated for a set of sample geometries, and then the
RVE electroelastic mechanics is coupled with the global
electroelastic dynamics based on the Euler–Bernoulli
kinematics of MFC bimorphs following the analytical
modeling approach of Erturk and Inman (2009). A lin-
ear distributed-parameter model for a bimorph assum-
ing Euler–Bernoulli beam theory for energy harvesting
and actuation is extended to the 33-mode and
employed for parameter identification and model vali-
dation. The identified physical parameters of the MFC
bimorphs are validated experimentally for different
MFC types with the same overhang length but different
active widths. The resulting framework that bridges
mixing rules formulation with the continuum electro-
elastodynamics is employed for energy harvesting and
actuation problems.

Electroelastic equations of a bimorph
cantilever with 33-mode piezoelectric
coupling

Electroelastic properties of an MFC laminate using
mixing rules formulation

An MFC laminate with IDE configuration is shown in
Figure 1. The piezoelectric active material consists of
lead zirconate titanate (PZT) fibers of rectangular cross
section embedded in a Kapton film. As depicted in
Figure 1(d), the strain axis and the electrical poling axis
(the x-direction) are coincident. Therefore, the MFC
laminate uses the 33-mode of piezoelectricity. Note that
the manufacturer (Smart Material Corp.) uses polyester
electrode sheets for waterproof behavior in custom-
made samples investigated in this work (however, the
resulting properties are similar to those of the standard
samples).

The non-uniform electric field lines (Beckert and
Kreher, 2003; Bowen et al., 2006; Deraemaeker et al.,
2009) (curvature of the lines is highly dependent on the
distance between the electrodes) through the piezoelec-
tric fibers and dead zones are depicted in Figure 1(b).
Because of the non-uniform electric field and heteroge-
neous complex structure involving active and passive
regions (in Figure 1(b); PZT fiber and epoxy,
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respectively) in MFCs, a straightforward analytical
integration using standard PZT properties cannot be
performed to obtain the electromechanical coupling
and capacitance parameters. In this work, mixing rules
formulation is employed to evaluate the equivalent and
homogenous properties of MFCs from the constitute
properties. To this end, the piezoelectric fiber segments
between subsequent IDEs are modeled as a set of piezo-
electric elements in 33-mode and they are combined in
parallel. That is, in Figure 1, each RVE is a capacitor
which is connected in parallel to the remaining RVEs
along the length and width of the MFC laminate.

The linear constitutive equations for a piezoelectric
thin beam (RVE in Figure 1(d)) with 33-mode coupling
are as follows (Erturk and Inman, 2011b)

T3 = cE
33, eS3 � e33, eE3 ð1Þ

D3 = e33, eS3 + eS
33, eE3 ð2Þ

where T3 is the stress, S3 is the strain, E3 is the electric
field, D3 is the electric displacement, cE

33, e is the elastic
modulus at constant electric field, e33, e is the effective
piezoelectric stress constant, eS

33, e is the permittivity
component at constant strain, and subscript e stands
for the equivalent properties.

The equivalent elastic modulus (cE
33, e), piezoelectric

charge constant (d33, e), and permittivity constant (eS
33, e)

are defined based on mixing rules formulation for an
RVE in Figure 1(d) (Agarwal et al., 2006; Deraemaeker
et al., 2009)

Figure 1. (a) An MFC laminate using the 33-mode of piezoelectricity; (b) volumetric representation of an MFC showing PZT fibers
with electric field lines, polymer matrix (epoxy), and interdigitated electrodes; (c) digital image of the planar surface of an MFC
actuator (M8514-P1 with polyester electrode sheets and approximately 90% volume fraction of PZT fibers) under optical
microscope; and (d) an RVE (in symmetric shape).
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cE
33, e = ncE

33, p +(1� n)cE
33,m ð3Þ

d33, e =
1

cE
33, e

 !
nd33, pcE

33, p ð4Þ

eS
33, e = neT

33, p +(1� n)eT
33,m

h i
� d2

33, ecE
33, e ð5Þ

where n is the PZT fiber volume fraction and is
obtained by the measurement done from the digital
image of the planar surface of an MFC actuator
(shown in Figure 1(c)) and eT

33 is the permittivity com-
ponent at constant stress. The subscripts p and m stand
for PZT fiber and matrix (epoxy) properties of RVE,
respectively. The mixing rules-based effective electroe-
lastic parameters will be coupled with the electroelastic
dynamics based on the Euler–Bernoulli kinematics in
the next section to obtain the global parameters (e.g.
capacitance and electromechanical coupling) of an
MFC bimorph and to exploit the 33-mode of piezoelec-
tricity in bending mode. The analysis of an Euler–
Bernoulli bimorph beam with monolithic piezoelectric
layers in 31-mode has been thoroughly covered in pre-
vious work (Erturk and Inman, 2009) for energy har-
vesting applications. The key concepts for 33-mode use
will be developed next and applied to experimental
problems of actuation and energy harvesting in this
article.

Coupled mechanical equation under base excitation

Schematics of MFC bimorph cantilevers for dynamic
actuation with fixed base and energy harvesting
from base motion are shown in Figure 2. Each sym-
metric bimorph is composed of two MFC laminates
(Figure 1(a)) which are combined in a vacuum bonding
process using high-shear-strength epoxy (this process is
described elsewhere (Anton et al., 2010)). Therefore,
the bimorphs contain a bonding layer in addition to
the MFC laminates.

The MFC bimorph cantilever configurations shown
in Figure 2 are modeled here based on the Euler–
Bernoulli beam theory since length/thickness ratio is
very high. Deformations are assumed to be small and
the composite structure is assumed to exhibit linear
material behavior. The partial differential equation
governing the base-excited cantilevered bimorph is as
follows (voltage actuation case will be addressed briefly
later on)

� ∂2M(x, t)

∂x2
+ ca

∂5wrel(x, t)

∂x4∂t
+ cb

∂wrel(x, t)

∂t

+ms

∂2wrel(x, t)

∂t2
= � ms

∂2wb(t)

∂t2
ð6Þ

where wrel(x, t) is the transverse displacement of the ref-
erence surface relative to its base at position x and time
t, ca is the stiffness-proportional damping coefficient,
cb is the mass-proportional damping coefficient, ms is
the mass per unit length of the beam, M(x, t) is the inter-
nal bending moment, and wb(t) is the transverse base
displacement.

The internal bending term in equation (6) is the first
moment of the axial stress field over the cross section of
MFC laminate

M(x, t)=

ð
A

T3zdA=

XM
m= 1

be

ð�hb=2

�h~p�hb=2

T3zdz+

ðh~p + hb=2

hb=2

T3zdz

0
B@

1
CA ð7Þ

where, in each RVE (Figure 1(d)), be is the sum of the
width of piezoelectric fiber and is the width of the
matrix layer (epoxy) in the direction of bimorph width.
In equation (7), M is the number of RVEs in active
width of the bimorph (b); therefore, b=Mbe.
Furthermore, h~p is the thickness of the piezoelectric
fiber, hb is the thickness of the bonding and Kapton
layers, and T3 is the previously defined stress compo-
nent (in the x-direction) given by equation (1). The
stress component for bonding (epoxy) and Kapton
layers are assumed to be negligible as their stiffness is
much less than the stiffness of PZT fibers (considering
also that the bonding layer is at the neutral surface
level). The electric field in equation (1) can be given in
terms of the voltage across the electrodes, v(t). The vol-
tage across the terminals of each MFC laminate is
v(t)=2 when two MFC laminates are connected in series
and v(t) when connected in parallel. The electric field is
defined as E3 =6v(t)=Le, where Le is the distance
between two subsequent electrode fingers (shown in
Figure 1(d)). The plus and minus difference is a result
of the difference in poling of the piezoelectric material
which is an important parameter for the series or paral-
lel connection of the piezoelectric layers as in the case

Figure 2. Schematic of a cantilevered MFC bimorph composed
of two bonded single-layer MFC laminates: (a) dynamic actuation
and (b) transverse base excitation.
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of 31-mode bimorphs as well (Erturk and Inman,
2011b). In Figure 1(c), each RVE is essentially a capaci-
tor which is linked in parallel to the adjacent RVEs
along the length and width of the MFC laminate.
Furthermore, the piezoelectric stress constant e33, e in
equation (1) can be given in terms of more common
piezoelectric strain constant d33, e as e33, e = d33, ecE

33, e.
The axial strain at a certain level (z) from the neutral
axis of the symmetric composite beam is simply pro-
portional to the curvature of the beam at position x

S3(x, z, t)= � z
∂2wrel(x, t)

∂x2
ð8Þ

Substituting equation (1) into equation (7) and
multiplying the electrical term by H(x� (n� 1)Le)½
�H(x� nLe)�, the internal bending moment at the axial
position x and time t becomes

Ms(x, t)= � D
∂2wrel(x, t)

∂x2

+
XN

n= 1

qsv(t) H(x� (n� 1)Le)� H(x� nLe)½ � ð9Þ

Mp(x, t)= � D
∂2wrel(x, t)

∂x2

+
XN

n= 1

qpv(t) H(x� (n� 1)Le)� H(x� nLe)½ � ð10Þ

where D is the bending stiffness of the composite cross
section, H(x) is the Heaviside function, and n is the
index of the RVE at a distance x from the fixed end of
the bimorph. Note that, here and hereafter, the sub-
scripts and superscripts s and p, respectively, stand for
the series and parallel connections of MFC laminates.
In equations (9) and (10), N is the number of RVEs in
the active overhang length, L, as L=NLe. The back-
ward coupling terms for the series and parallel connec-
tion cases (qs and qp, respectively) can be expressed as
follows:

qs =
XM

m= 1

e33be

2h~p
h~p +

hb

2

� �2

� h2
b

4

" #
=

XM
m= 1

e33beh~p

2Le

(h~p + hb)=Md33, ecE
33, e

Ae

Le

hpc ð11Þ

qp = 2qs = 2Md33, ecE
33, e

Ae

Le

hpc ð12Þ

For each RVE, Ae is the effective cross-sectional area
and hpc is the position of center of piezoelectric fibers
from the neutral axis (in thickness direction). The gov-
erning mechanical equation with electromechanical
coupling can be obtained using equation (9) or (10) in
equation (6). For instance, for the parallel connection

of MFC laminates, the electromechanically coupled
beam equation can be obtained as follows

D
∂4wrel(x, t)

∂x4
+ ca

∂5wrel(x, t)

∂x4∂t

+ cb

∂wrel(x, t)

∂t
+ms

∂2wrel(x, t)

∂t2

� qpv(t)
dd(x)

dx
� dd(x� L)

dx

� �
= � ms

∂2wb(t)

∂t2

ð13Þ

Likewise, for the series connection case, qs is used
for the backward coupling term in equation (13).

Coupled electrical circuit equation

The electric current output is obtained from the integral
form of Gauss’s law as follows

d

dt

ð
A

D � n dA

0
@

1
A=

v(t)

Rl

ð14Þ

where D is the vector of electric displacement compo-
nents, n is the unit outward normal, and the integra-
tion is performed over the effective cross section of
the MFC laminate, A, where A ffi MAe. The inner
product of the integrand in equation (14) is obtained
using the electric displacement D3 given in equation
(2). Using equation (8) (with z= hpc) for the average
bending strain in terms of the curvature and the elec-
tric field in terms of the voltage across the electrodes
(E3 = �v(t)=Le), equation (14) yields

Cp

dv(t)

dt
+

v(t)

Rl

+Md33, ecE
33, e

Ae

Le

hpc

ðL
0

∂3wrel(x, t)

∂x2∂t
dx= 0

ð15Þ

where the internal capacitance is

Cp =
XM
m= 1

XN

n= 1

eS
33, e

Ae

Le

=MNeS
33, e

Ae

Le

ð16Þ

Modal analysis of mechanical base excitation and
electrical actuation problems

The transverse deflection of the reference surface (rela-
tive to the clamped end) at position x and time t is given
by

wrel(x, t)=
X‘

r= 1

fr(x)hr(t) ð17Þ

where fr(x) and hr(t) are the mass-normalized eigen-
function and the generalized modal coordinate for the
rth mode, respectively. The eigenfunctions denoted by
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fr(x) can be obtained for the transverse vibration of a
uniform clamped-free beam as

fr(x)=

ffiffiffiffiffiffiffiffi
1

msL

r
cos

lr

L
x� cosh

lr

L
x

�

+
sinlr � sinh lr

coslr + coshlr

sin
lr

L
x� sinh

lr

L
x

� ��
ð18Þ

where lr is the eigenvalue of the rth mode obtained
from the characteristic equation given by

1+ cosl coshl= 0 ð19Þ

The expression given for fr(x) satisfies the compa-
nion orthogonality conditions (Erturk and Inman,
2009, 2011b)

ðL
0

fs(x)msfr(x)dx= drs ð20Þ

ðL
0

fs(x)D
d4fr(x)

dx4
dx=v2

r drs ð21Þ

where vr =l2
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D=msL4

p
is the undamped short-circuit

natural frequency of the rth vibration mode and drs is
the Kronecker delta.

The base displacement is assumed to be harmonic of
the form wb(t)=W0e jvt (where v is the excitation fre-
quency and j is the unit imaginary number). The modal
forcing is expressed as fr(t)=Fre

jvt where the ampli-
tude Fr is

Fr = � srv
2W0 ð22Þ

where

sr = � ms

ðL
0

fr(x)dx ð23Þ

Then assuming harmonic steady-state modal
mechanical response and voltage response of the forms
hr(t)=Hre

jvt and v(t)=Ve jvt, and using equation (17)
in equations (13) and (15) in conjunction with the
orthogonality conditions yield the electromechanically
coupled linear equations for the complex amplitudes

(v2
r � v2 + j2zrvrv)Hr � urV =Fr ð24Þ

1

Rl

+ jvCeq

� �
V + jv

X‘

r= 1

urHr = 0 ð25Þ

where ur is the modal electromechanical coupling, zr is
the modal mechanical damping ratio, and Ceq is the
equivalent capacitance. The modal electromechanical
coupling and equivalent capacitance depend on the
way the MFC laminates are connected. The analytical

expressions for the equivalent capacitance and modal
electromechanical coupling are given in Table 1 for the
series and parallel connections of the individual MFC
laminates, similar to the case of the 31-mode problem
with uniform electrodes (Erturk and Inman, 2011b).

The actuation problem can be represented in a simi-
lar fashion such that the excitation is due to the harmo-
nic voltage input and there is no base excitation
(Fr = 0), yielding

v2
r � v2 + j2zrvrv

� �
Hr = urV ð26Þ

� I + jvVCeq + jv
X‘

r= 1

urHr = 0 ð27Þ

Here, as compared to equation (25), V=Rl is replaced with
�i(t)=� Iejvt, where i(t) is the electric current input (neg-
ative sign indicates current flow into the system).

Energy harvesting from base excitation: voltage
output and tip velocity frequency response functions

Closed-form solutions for the voltage and vibration
response, v(t) and wrel(x, t), can be obtained from equa-
tions (24) and (25) for steady-state behavior. The
frequency-domain transfer functions, that is, frequency
response functions (FRFs), are extracted as (Erturk
and Inman, 2009, 2011b)

a(v)=
v(t)

�v2W0ejvt
=

P‘
r = 1 ½(� jvursr)=(v

2
r � v2 + j2zrvrv)�

(1=Rl)+ jvCeq +
P‘

r = 1 ½(jvu2
r )=(v

2
r � v2 + j2zrvrv)�

ð28Þ

b(v, x)=
wrel(x, t)

�v2W0ejvt
=
X‘

r = 1

½sr + ura(v)�fr(x)

v2
r � v2 + j2zrvrv

ð29Þ

Finally, the displacement FRF relative to the fixed
end can be modified to express the absolute velocity
response, g(v, x), to conveniently compare model simu-
lations with experimental measurements

g(v, x)=
wb(t)+wrel(x, t)

€wb(t)
=

1

jv
+ jvb(v, x) ð30Þ

Table 1. Modal electromechanical coupling and equivalent
capacitance of an MFC bimorph for the series and parallel
connections of the MFC laminates.

Series connection Parallel connection

ur Md33, ec
E
33, e

Ae

Le
hpc

dfr(x)
dx

			
x= L

2Md33, ec
E
33, e

Ae

Le
hpc

dfr(x)
dx

			
x= L

Ceq
MNeS

33, e
Ae

2Le
2MNeS

33, e
Ae

Le

MFC: macro-fiber composite.
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Dynamic actuation: tip velocity and admittance FRFs

Solving equations (26) and (27) at steady state yields
the displacement FRF, x(v, x), and the admittance
FRF, u(v)

x(v, x)=
wrel(x, t)

Vejvt
=
X‘

r= 1

urfr(x)

v2
r � v2 + 2jzrvrv

ð31Þ

u(v)=
i(t)

v(t)
=

I

V
= jv Ceq +

X‘

r = 1

u2
r

v2
r � v2 + 2jzrvrv

 !

ð32Þ

For experimental comparisons, the tip velocity FRF
is obtained simply from jvx(v, x).

Experimental validations for energy
harvesting and dynamic actuation

For experimental validation of the energy harvesting
and actuation models presented in the previous section,
three cantilevered MFC bimorphs were tested focusing
on the fundamental mode of bending vibration. The
MFCs, fabricated by Smart Material Corp., have active
length of 85 mm (region containing piezoelectric fibers)
for all samples in unclamped condition. Each bimorph
is made from two identical MFC laminates labeled as
M8507-P1, M8514-P1, and M8528-P1 (Figure 3(a))
with active widths of 7, 14, and 28 mm, respectively.

The individual MFC laminates were processed with
a vacuum bonding system to create symmetric
bimorphs which are then cantilevered in aluminum
clamps as shown in Figure 3(a). The overhang lengths
of the MFC bimorphs are approximately 75.5 mm,
while the total thicknesses are around 0.61 mm. The
electrode leads of the MFC bimorphs are connected in
parallel throughout the experiments discussed in this
article and the focus is placed on the energy harvesting
and dynamic actuation problems for the fundamental
bending vibration mode with geometrically and materi-
ally linear behavior. Energy harvesting experiments
(Figure 3(b)) were conducted through a Spectral

Dynamics SigLab data acquisition device that received
base acceleration data (using a Kistler accelerometer
with a Kistler Signal Conditioner), absolute velocity
data measured at the tip of the bimorph by means of a
laser Doppler vibrometer (Polytec PDV 100), and vol-
tage across the resistive load (IET decade box) for a set
of resistance values. Sinusoidal excitation with 10
averages was fed to a B&K electromechanical shaker
through an HP power amplifier for base excitation over
a range of frequencies centered around the first mode.
Actuation experiments (Figure 3(c)) were conducted in
the same setup, but with a fixed mount instead of a
shaker and a high voltage amplifier (Trek, Inc. Model
2220) which provides reference voltage and monitors
current drawn during the actuation process.

System parameters by experimental identification
and model simulation

The geometric properties for the active (PZT fibers)
and passive (epoxy, electrodes, and Kapton film) layers
of MFCs are shown in Figure 4 for both xz-plane and
yz-plane (cross section). From the surface image (e.g.
Figure 1(c) for M8514-P1 bimorph), the width of each
piezoelectric fiber is approximately 355.5 mm and each
epoxy layer between the fibers has a width of 34.4 mm.
Since the total active width is 14 mm, this sample
(M8514-P1) has approximately 36 piezoelectric fibers
(i.e. M=36) and the volume fraction is n= 0:9. The
average spacing between two subsequent electrodes is
407.18 mm. Therefore, the number of RVEs over the
beam length is 185 (N=185). After measuring the capa-
citance of the MFCs and using equation (16), the aver-
age effective surface area of each RVE, Ae, is calculated
as 0.02 mm2, while hpc (distance from the reference sur-
face, i.e. neutral axis level, to fiber center in the thick-
ness direction) is 157 mm. The MFCs use Navy II type
piezoelectric ceramic for which the effective value of the
piezoelectric constant for an RVE is e33, e = 19:1C=m2.
In Table 2, the properties of PZT fibers, epoxy, RVE
(the equivalent properties for an RVE are calculated by
mixing rules), and those of the overall MFC are given.

Figure 3. (a) Cantilevered MFC bimorph samples in aluminum clamps; (b) close-up view of an M8514-P1 type bimorph cantilever
mounted on electromechanical shaker with an accelerometer; and (c) dynamic actuation test for sample bimorph (M8514-P1)
cantilever in fixture mounted rigidly to table.
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Note that the electrode layers are made from epoxy and
copper fibers (volume fraction of copper is approxi-
mately 24%) which are perpendicular to the PZT fibers,
and the composite structure is embedded in Kapton
film. The in-plane (yz-plane) sequence of layers for a
MFC is shown in detail in Figure 4(b). The equivalent
properties of electrode–Kapton layer are calculated
using mixing rules formulation. Then, the properties of
an MFC are calculated from the properties of all the
included layers (PZT–epoxy (RVE in Figure 1(d)) and
electrode–Kapton layers). For example, the RVE has

the equivalent elastic modulus of 48.3 GPa, and by
including the electrode and Kapton layers (elastic mod-
ulus is 117.2 and 2.8 GPa for copper and Kapton,
respectively), the overall cE

33 is evaluated as 31.1 GPa
and the piezoelectric constant is e33 = 13:6C=m2 for
the MFC. The reported values in Table 2 compare
favorably with previously published numerical and
experimental data (Deraemaeker et al., 2009) as well as
with data from the manufacturer’s datasheet.

Having mixing rules-based equivalent and homoge-
nized properties, the modal electromechanical coupling
(u) for the bimorph MFC (with parallel connection of
the laminates) is obtained from Table 1 for fundamen-
tal bending vibration mode (r=1). For each cantilev-
ered bimorph MFC sample, the short-circuit resonance
frequency, the mechanical damping ratio, and the
equivalent capacitance are obtained and shown in
Table 3. Note that the modal electromechanical cou-
pling is related to the difference between the short- and
open-circuit natural frequencies (Erturk and Inman,
2011a) (i.e. knowing the short- and open-circuit natural
frequencies and the capacitance, the modal electrome-
chanical coupling can be calculated).

Figure 4. Two-dimensional representation of an MFC bimorph (made from two identical MFC laminates bonded using high-shear-
strength epoxy with electrodes (epoxy and copper fibers) perpendicular to the PZT fibers embedded in Kapton film). (a) Geometric
parameters in the xz-plane and (b) sequence of layers in the cross-sectional area (yz-plane: not to scale). Approximate data provided
by manufacturer or measured under optical microscope.

Table 2. Properties of the active layer (PZT fiber), passive layer or matrix (epoxy), RVE, and the 33-mode MFCs using analytical
mixing rules (eS

33 = eT
33 � d2

33cE
33 and e0 = 8:854 pF=m).

PZT fiber Epoxy RVE MFC

cE
33, c33 (GPa) 48.30 3.10 43.78 31.10

d33 (pm/V) 440 – 437 437
eT
33=e0 1850 4.25 1665 1665

eS
33 (nF/m) 7.02 – 6.38 8.80

PZT: lead zirconate titanate; RVE: representative volume element; MFC: macro-fiber composite.

Table 3. Identified parameters from dynamic actuation and
energy harvesting experiments for the fundamental bending
mode.

M8507-P1 M8514-P1 M8528-P1

fsc (Hz) 44.6 47.9 46.4
foc (Hz) 46.1 48.5 47.2
z (%) 1.8 2 1.5
u (10�3 C=m

ffiffiffiffiffi
kg
p

) 3.5 4.5 9
Ceq (nF) 3.8 5.5 17.5
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In order to demonstrate the consistency of model
predictions and experimentally identified parameters,
Figure 5 shows the modal electromechanical coupling
and the piezoelectric stress constant for all three sam-
ples. It is worth adding that various sources of uncer-
tainly exist due to manufacturing imperfections (both
in MFC fabrication and in their bonding process to
obtain a bimorph). Note that the modal coupling term
increases with increasing sample width (Figure 5(a))
and roughly the same piezoelectric constant is obtained
for each sample (Figure 5(b)) using the coupling term
in its expression (Table 1). Next, the results from the
mixing rules formulation of the effective electroelastic,
elastic, and dielectric properties of MFCs can be fully
bridged with the global electroelastic dynamics of MFC
bimorphs for energy harvesting and actuation.

Energy harvesting from base excitation: mechanical
excitation

Figure 6(a) to (c) shows the voltage output and tip
velocity FRFs obtained from equations (28) and (30)
for M8507-P1, M8514-P1, and M8528-P1 bimorphs
using the energy harvesting setup (Figure 3(b)). The
denominator of these FRFs is normalized with respect
to gravitational acceleration (g). The tests were con-
ducted at low base excitation levels around the funda-
mental resonance frequency for a set of resistive
electrical loads ranging from 100 O to ;9.09 MO
(more precisely the resistor set is [0.1 1 10 99 909.1
5000 9082.6] kO). As the load resistance is increased,
the resonance frequency shifts from the short-circuit
resonance frequency to the open-circuit resonance fre-
quency. It is observed that, by changing the load resis-
tance from short- to open-circuit conditions, the
voltage output increases uniformly and the resonance
frequency for moderate resistive loads takes a value
between the short- and open-circuit resonance frequen-
cies as expected from basic energy harvester dynamics.
With increased load resistance, the peak vibration

amplitude decreases considerably from the peak of
short-circuit condition to a certain value and then it is
amplified at the open-circuit resonance frequency. This
phenomenon results from the changing electrical load-
ing condition of the bimorph and shunt damping effect
due to Joule heating in the resistor (Lesieutre, 1998;
Lesieutre et al., 2004).

The voltage, electric current, power output, and the
tip velocity (per base acceleration) versus load resis-
tance graphs for excitations at the fundamental short-
and open-circuit resonance frequencies (44.6 and
46.1 Hz, respectively) are shown in Figure 7(a) to (d)
for M8507-P1. For brevity, the remaining samples are
not graphically presented here as the overall trends and
model versus experiment agreement qualities are simi-
lar. It is observed from Figure 7(a) and (b) that the vol-
tage amplitude and the current amplitude versus load
resistance have the opposite monotonic trends. That is,
as the load resistance increases, the voltage output
increases and the current output decreases monotoni-
cally. The voltage for excitation at the short-circuit
resonance frequencies is higher when the system (i.e.
the electrical loading condition) is close to short-circuit
conditions, and vice versa. For the 0.74 MO load resis-
tance, both excitation frequencies yield approximately
the same voltage amplitude (49.1 V/g). The electrical
power output versus load resistance graph for excita-
tions at the fundamental short- and open- circuit reso-
nance frequencies is plotted in Figure 7(c). Since it is a
product of two variables with opposite trends (i.e. vol-
tage and current given in Figure 7(a) and (b)), the
power output exhibits peak values for certain load
resistance values. Since the system is lightly damped
and strongly coupled (Erturk and Inman, 2011b)
approximately, the same power output (4.6 mW/g2) is
delivered to substantially different optimal resistance
values for excitations at 44.6 and 46.1 Hz. Figure 7(d)
shows that the vibration amplitude at the fundamental
short- and open-circuit resonance frequencies is attenu-
ated significantly for the optimum electrical load of the

Figure 5. Experimental and analytical results for (a) modal electromechanical coupling and (b) equivalent piezoelectric stress
constant for all samples.
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maximum power output (cf. Figure 7(c)) as a result of
the previously mentioned Joule heating effect associ-
ated with resistive shunting. Note that the nonlinear
effects can easily be pronounced under higher base
excitation levels and a proper nonlinear nonconserva-
tive modeling framework (Leadenham and Erturk,
2015b; Stanton et al., 2010; Usher and Sim, 2005; Wolf
and Gottlieb, 2002) is required for such cases.

Dynamic actuation: electrical excitation

Finally, the same modeling framework is employed to
predict the electromechanical response in the case of
dynamic actuation around the fundamental resonance

frequency for the same set of system parameters. The
setup used in dynamic actuation experiments was previ-
ously shown in Figure 3(c). In typical applications, the
admittance FRF (how much current is drawn for unit
actuation voltage input) is useful to quantify actuation
power consumption while the tip velocity FRF (struc-
tural response for unit actuation voltage input) is typi-
cally the main interest. For low actuation voltage levels
(to obtain geometrically and materially linear beha-
vior), the admittance and tip velocity FRFs of the three
bimorphs (M8507-P1, M8514-P1, and M8528-P1) are
shown in Figure 8. The model predictions using equa-
tions (31) and (32) exhibit excellent agreement with the
experimental frequency response data, confirming the

Figure 6. Experimental and analytical frequency response results for energy harvesting from base excitation for a set of resistive
loads: voltage output FRFs (left) and tip velocity FRFs (right) for a set of resistors for (a) M8507-P1; (b) M8514-P1; and (c) M8528-P1.
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Figure 7. (a) Voltage, (b) current, (c) power, and (d) tip velocity amplitude (per base acceleration input) versus load resistance for
excitations at fundamental short- and open-circuit resonance frequencies.

Figure 8. Experimental and analytical frequency response results for dynamic actuation: admittance FRF (left) and tip velocity FRF
(right) for (a) M8507-P1; (b) M8514-P1; and (c) M8528-P1.

Shahab and Erturk 1585



validity of the framework with two-way coupling given
in this article. Once again, under higher excitation lev-
els, nonlinear effects would be pronounced and such
effects are not accounted for in the present effort. It is
worth mentioning that while nonlinear dynamics of 31-
mode bimorphs with uniform electrodes were studied in
the existing literature (Leadenham and Erturk, 2015b;
Stanton et al., 2010; Usher and Sim, 2005; Wolf and
Gottlieb, 2002), there is a need for similar efforts for
MFCs with moderate to large fields (mechanical/electri-
cal) and geometric deformations.

Conclusion

An experimentally validated electro-elastodynamic
modeling framework was developed for energy harvest-
ing, sensing, and actuation applications of 33-mode
MFC bimorph cantilevers with IDEs. Homogenized
electromechanical constitutive properties of MFCs were
obtained based on the mixing rules formulation and
then coupled with the distributed-parameter electroelas-
tic model to give the global electroelastic parameters of
MFCs with different aspect ratios. Experimentally vali-
dated equivalent analytical expressions for the capaci-
tance and modal electromechanical coupling terms were
given for the series and parallel connections of MFC
laminates. The analytical modal electromechanical cou-
pling terms were shown to depend directly on the width
of the sample, yielding identical piezoelectric constants
when normalized with respect to width. This was con-
firmed for a set of MFC bimorph samples with different
widths via carefully conducted tests. Experiments were
performed for energy harvesting from base excitation
(as a mechanical excitation problem) and dynamic
actuation (as an electrical excitation problem) around
resonance. Experimentally obtained electromechanical
frequency response curves were successfully predicted
using the analytical framework given in this paper. This
successful modeling framework connects mixing rules
formulation with the continuum homogenized electroe-
lastic dynamics to exploit in a variety of applications of
MFCs ranging from vibration energy harvesting and
biomimetic locomotion to structural sensing and vibra-
tion control. Future work will focus on geometric and
material nonlinearities under moderate to high mechan-
ical and electrical excitation levels.
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