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a b s t r a c t

Energy harvesting is an essential technology for enabling low-power, maintenance-free electronic
devices, and thus has attracted a great deal of attention in recent years. A variety of designs and approaches
have been proposed to harvest ambient vibration energy, but crucial questions remain regarding figures
of merit characterizing the performance of energy harvesters. Of primary importance is the energy
conversion efficiency. There are large discrepancies in the definition and tested values of efficiency in
the literature. This study is intended to answer the fundamental question for energy harvesters: how to
define and calculate the energy conversion efficiency.We first review studies on efficiency and analyze the
energy flow in an energy harvesting system. Based on the analysis, we derive an efficiency expression for
linear cantilever energy harvesters. The developed efficiency expression transparently and quantitatively
reveals the relationship between efficiency and key parameters. Experiments are performed to validate
the efficiency expression. Furthermore nonlinear energy harvesters are tested in both on-resonance and
off-resonance conditions. Both experimental and theoretical studies manifest that the energy conversion
efficiency tends to decrease as the excitation frequency rises and its value is related to the phase difference
between excitations and responses. Around resonance states where the phase difference of both linear
and nonlinear energy harvesters is about 90 degrees, the efficiency calculation is much simplified.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

The dramatic decrease in power consumption of electronic
components sets a stage for autonomous operation by using the
energy harvesting technology [1–3]. Harvestingmechanical energy
from ambient vibration and deformation via the piezoelectric ef-
fect has been intensively studied in the past decades. Researchers
have recently focused on improving the performance of piezo-
electric energy harvesters (PEHs) via high-performance piezoelec-
tric materials [4–8], structure &manufacturing process innovation
[9–14] and optimization of dynamic characteristics [15–17].

In order to optimize PEHs’ performance, appropriate perfor-
mance metrics need to be defined first. Taking various structural,
material and vibration parameters into account, researchers have
proposed several comprehensive figures of merit including nor-
malized power density (NPD) [18], effectiveness [19,20], volume
figure of merit (FoMv) [21] and systematic figure of merit with
bandwidth information (SFoMBW) [22]. Although thesemetrics, de-
veloped under some assumptions, provide comprehensive infor-
mation on PEHs’ performance, basic metrics such as power output
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and efficiency are still preferred by both researchers and end users.
The ultimate goal of research on PEHs is to generate as much elec-
trical energy as possible fromamechanical vibration source, that is,
high power output and high efficiency. While the electrical power
output can be measured in experiments and calculated in theoret-
ical models, the mechanical power input cannot be easily moni-
tored and there is no unified calculation process. As a consequence,
a large discrepancy exists in the reported efficiency values. As
Table 1 lists, it has been estimated that efficiency can be over
80% [23,24]; it has also been argued that efficiency cannot exceed
50% no matter how well an energy harvester is optimized [25].
Some researchers claimed that efficiency around the resonance
state is much higher than that in off-resonance states [26], while
others believed that efficiency decreases monotonically as the ex-
citation frequency increases [27].

Efficiency is not only a critical metric for the development and
optimization of PEHs, but also has been widely used to compare
PEHs with other power generation methods (e.g., solar panels,
thermal energy harvesters, triboelectric nano-generators, etc.).
Therefore, it is essential to understand efficiency, the fundamental
performancemetric of energy harvesters. In this paper, we present
an insight into the PEHs’ efficiency in the full frequency range both
theoretically and experimentally.

http://dx.doi.org/10.1016/j.eml.2017.05.002
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Table 1
Reported efficiency values of various piezoelectric energy harvesters.

Reference Efficiency Note

[23] ∼50%–90% PZT; bimorph cantilever; vibration; theoretical estimation
[24] >80% PZT; tube; flow-induced vibration; theoretical estimation
[28] 2.56% PVDF film; rainbow bimorph; theoretical estimation
[29] 21.8% PVDF nanofiber; direct deformation; experimental data
[30] 7.5% PZT; flextensional structure; direct deformation; experimental data
[31] >80% PZT; fixed–fixed bimorph plate; theoretical estimation
[32] ∼7% PZT; cantilever; vibration; experimental data
[33] 0.72% PZT; cantilever; fluid flows experimental data
[4] 5.4%/14.9%/27.5% PZT/PMN-PT/PZN-PT; cantilever; vibration; experimental
[34] <44% PZT; bimorph cantilever; vibration; theoretical estimation
[35] 3.1% PZT sandwiched between two Terfenol-D discs
[36] 1.2% PZT; Impact-type using a rotational flywheel; experimental data
[26] 26%/<2% PZT cantilever beam; vibration; on-resonance/off-resonance; experimental data
[37] 12.47% PVDF/AlO-rGO beam; direct deformation; experimental data
[38] 80.3%/35.1%/15.4% Stack/Membrane/Cantilever; ball drop impact; experimental data
[39] 10% PZT fixed–fixed beam; ball drop impact; experimental data
[40] 5%–18% Piezoelectric nanowires: direct deformation; experimental data
Efficiency, also called energy conversion efficiency, generally
refers to the ratio of the output energy to the input energy of a sys-
tem. Tomaintain consistency, it makes sense to define efficiency of
PEHs in the same way, i.e., the ratio between the output electrical
energy Eout and the inputmechanical energy Ein (η = Eout/Ein). This
definition is in a form similar to the electromechanical coupling
factor squared k2ij, where kij is the material coupling factor (electri-
cal field in direction i, stress in direction j). However, the value of kij
from piezoelectric material suppliers represents how efficient the
employed piezoelectric element (piezoelectricmaterial alone) is in
terms of convertingmechanical energy into electrical energy and it
does not account for the structural design and electrical circuit as-
pects. Therefore, the material coupling factor kij cannot be applied
to the entire structure. The overall harvester efficiency η is usually
much smaller than the material coupling factor kij. The concept of
coupling factor, or the coupling coefficient, has also been defined at
the system level [41] for the piezoelectric structure as k2sys = (ω2

o −

ω2
s )/ω

2
o , where ωo and ωs are, respectively, the open-circuit and

short-circuit natural frequencies of the vibration mode of interest
(note that k2sys = κ2/(1+κ2), where κ2 is defined as an electrome-
chanical coupling coefficient in the following sections. It is widely
used in the energy harvesting literature [27,42,43]). The system
coupling coefficient ksys is ameasure ofmechanical to electrical en-
ergy conversionwithin the lossless structure and is not equal to the
efficiency η either since it does not account for the presence of an
electrical load as well as mechanical and dielectric losses.

While most researchers have reached an agreement on the
definition of efficiency (η = Eout/Ein), the expressions of the input
and output energy vary, which leads to a large discrepancy in the
reported efficiency values. In this paper, we analyze the dynamic
characteristics of the input and output power of both linear and
nonlinear PEHs in detail. It is found that the phase difference
between the excitation and the response significantly affects the
input energy, and further the efficiency of the system.

In the following, we first review some representative work
on efficiency. We then analyze the energy flow of the energy
harvesting process and derive an algebraic efficiency expression
based on a universal SDOF model. Following that, an experiment
is conducted to validate the developed efficiency expression. Via
the developedmodel, we discuss the effect of different parameters
on the energy conversion efficiency. Finally, the phase responses of
nonlinear PEHs are studied experimentally.

2. Literature review

Piezoelectric energy conversion efficiency has been discussed
for a long time. In 1990s, Goldfarb and Jones [44] studied
the efficiency of a piezoelectric stack energy harvester under a
steady-state sinusoidal compressive force. They proposed a linear
circuit model without accounting the hysteresis phenomenon
to analyze the effect of different parameters on efficiency. The
experiments indicated that large-amplitude and low-frequency
force with a high load resistance tends to achieve high efficiency.
A maximum efficiency around 10% was obtained at approximately
5 Hz (several orders of magnitude below the resonance frequency
of the piezoelectric stack). It is noteworthy that piezoelectric
stacks are not practical to be used directly as energy harvesters
without any auxiliary structures due to their ultra-high stiffness.
By contrast, beam + inertial mass configurations, thanks to their
flexible characteristics, receive the most attention. Most recently
proposed models are based on the beam configurations.

In 2004, Richards et al. [42] derived an exact efficiency formula
based on a simplified SDOF model.

η =
1
2

κ2

1 − κ2


1
Q

+
1
2

κ2

1 − κ2


. (1)

In Eq. (1), efficiency η depends only upon the quality factor Q and
the electromechanical coupling coefficient κ2 of thewhole system.
This definition only works at the resonance state with a matching
resistance. The theoretical study estimated that the efficiency
value can be over 90%with the assumedweak damping and strong
coupling effects, which high value has seldom been achieved in
experiments. Nevertheless, the exact formula reveals the effects of
damping and electromechanical coupling on efficiency.

In 2006, Shu and Lien [27] theoretically analyzed the energy
conversion efficiency of a cantilever PEH coupledwith a full-bridge
rectifier around resonance states. They assumed that the input
mechanical energy was the sum of extracted electrical energy and
the energy dissipated by the structure damping. The efficiency
expression was

η =
ακ2

ζ (αω̃ + π/2)2 + ακ2
. (2)

Efficiency is dependent upon the frequency ratio ω̃ (response
frequency/natural frequency), the normalized resistance α (load
resistance/matching resistance), the electromechanical coupling
coefficient κ2 and the mechanical damping ratio ζ . In general,
the conversion efficiency can be improved with a large coupling
coefficient and a small damping ratio. It is known that, due to
the stiffness difference of piezoelectric elements between the
short-circuit condition (natural frequency = 1) and the open-
circuit condition (natural frequency =

√
1 + κ2), the frequency

to obtain the maximum power output shifts along the variation
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of the coupling factor. Therefore, the analysis was classified into
two categories: weak coupling and strong coupling. Maximum
efficiency of 46% and >80% were estimated to be reached by the
defined weak and strong coupling systems, respectively.

It is worth mentioning that the assumed strong coupling
system has seldom been made in experiments. Most experimental
efficiency values aremuch lower than the estimated value [32]. The
same expression has also been derived in different ways [25,45].

In 2009, Liao and Sodano [46] argued that the classic definition
of efficiency did not provide information on the capacity of a PEH
for converting mechanical energy to electrical energy. All systems
with low damping ratios showed high efficiency, irrespective
of the mechanical-to-electrical energy conversion performance.
Therefore they proposed to redefine the efficiency of PEHs as the
ratio of power output to strain energy over each cycle. The energy
conversion efficiency was redefined as

ηPH =
κ2αω̃

1 + (1 + κ2)(αω̃)2
. (3)

In this definition, the efficiency value is not related to the structural
damping. The numerical study estimated a maximum efficiency
of ∼2.5%, attained around the system resonance frequency.
Off-resonance efficiency is way smaller than the on-resonance
efficiency. There is no experimental validation in the study. The
authors did not give an explicit way to measure the defined strain
energy in experiments. Hence this definition has not been widely
used. Furthermore, it is inconvenient to compare PEHs with other
energy harvesting methods by the re-defined metric ηPH . The
metric ηPH , similar to the loss factor used for structural damping,
reflects the mechanical-to-electrical energy conversion of PEHs in
a certain aspect, but cannot replace the role of efficiency.

In 2014, Shafer and Garcia [25] presented a theoretical analysis
on the efficiency of a base-excited bimorph cantilever coupled
with a full-bridge rectifier. They found that energy was transferred
back and forth between the energy harvester and excitation source
over each cycle. For some systems (e.g., backpacks, shoes), energy
transferred back to the excitations was thought to be impossible to
be recovered. The authors thus defined two cases: conservative and
non-conservative. For the conservative case, the defined efficiency
was the same as that in Eq. (2); for the non-conservative case, a
complex expression was derived

ηnc =
κ2αω̃

(αω̃ + π/2)2
1

√
ψ

1
ξ(θ)

, (4)

where ψ and ξ(θ) account for information of the modal response
and phase difference, respectively.

The efficiency vs. frequency response curve exhibited three
peaks and, and at the resonance states efficiency had an upper
limit 44%. The three-peak response has seldom been found in
experiments and is different from that in Ref. [27] where efficiency
is defined in the same way. The difference is deemed to be from
that, in the theoretical study herein, the efficiency value at each
frequency was calculated with a load resistance actively changing
to maximize power output.

In 2015, Kim et al. [23] presented another efficiency expression
for a base-excited cantilever PEH with a resistive load.

η =
ακ2

2ξ

1 + α2ω̃2


+ ακ2

. (5)

They argued that efficiency has no limit and can be over 80%
under certain circumstances. There is no experimental validation
in the paper. The developed model indicated that the optimal
resistance to get the maximum power output was different from
that to obtain the highest efficiency, which was also discussed in
Refs. [25,46].
3. Theoretical analysis

In terms of the working principle, PEHs can be classified into
two types: inertial energy harvesters and non-inertial energy
harvesters. For non-inertial energy harvesters, force directly
applies to the systems and causes active materials to expand or
shrink. For inertial energyharvesters, excitations donot deform the
active materials directly, but induce inertial force in the systems.
Such energy harvesters are usually fixed on a vibration base such
as human bodies, animals, vehicles and buildings. In this paper we
mainly focus on inertial energy harvesters.

3.1. Energy flow analysis

Before modeling an energy harvesting system, we first need to
comprehend the energy flow in the system. Physically, an energy
harvesting system involves three parts: an excitation source such
as humanmotion or vehicle vibration, an energy harvesting device
and an interface circuit. Overall, there are four energy reservoirs
and three steps of energy transformations in the process as shown
in Fig. 1.

Step 1. Mechanical energy is captured and transferred from the
excitation source to the PEH.

Step 2. Mechanical energy is converted to the electrical energy in
the PEH.

Step 3. Electrical energy is extracted from the PEH to the external
load.

Each energy reservoir couples with its neighbors in both
forward and reverse directions. The first reservoir refers to the
mechanical energy in the host. The effect of adding a PEH should
be trivial to the dynamic characteristics of the host. (e.g., vehicles
and building sensors). That means the excitation energy overall
is infinite relative to the energy used by the following energy
harvesting system. The second reservoir contains oscillating
kinetic energy of the inertial mass, elastic potential energy of the
structure and structural damping energy. The third reservoir stores
electrical energy in a PEH, which cannot be fully extracted by
the external electrical load. The fourth reservoir represents the
electrical energy used by the electrical load. In the whole process,
a part of energy is inevitably transferred to heat due to a variety
of effects such as structural damping, dielectric loss and current
leakage, etc.

As a dynamic system, a PEH experiences an oscillating energy
flow. Therefore, we should consider the stable state and the net
energy transformation in each step while analyzing the energy
transmission process. Following the classic efficiency definition,
efficiency ought to be equal to the ratio of the net input energy
to the 4th reservoir and that to the 2nd reservoir.

3.2. Electromechanically coupled model

We choose the most widely used cantilever PEH as the study
object. The PEH consists of a unimorph beam with one end fixed
at the excitation source, and the other end attached with a mass
block (Fig. 2). This electromechanical coupling system is modeled
as an equivalent lumped-parameter SDOF dynamic system (Fig. 3)
with the dynamic equations

mẌ + cẊ + kX + θV = −mZ̈, (6)

CpV̇ +
1
R
V = θ Ẋ, (7)

where m, c, k, Cp, R and θ are the equivalent mass, damping,
stiffness, piezoelectric internal capacitance, external resistance
and piezoelectric coupling factor, respectively. V is the output
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Fig. 1. Energy flow in an piezoelectric energy harvesting system.
Fig. 2. A cantilever piezoelectric energy harvester under a base excitation.

Fig. 3. Schematic of a piezoelectric energy harvesting system.

voltage over the piezo element. X is the relative displacement
and Z is the base excitation. (̇) represents differentiation to time
‘‘t ’’. The value of the coupling factor θ can be identified by
either theoretical analysis [34,47,48] or experimentalmethod [49].
The governing equations can be derived from the piezoelectric
constitutive equations and Euler–Bernoulli beam theory, and have
been used for analyzing different PEHs [34,47,50–53]. Note that
the developed model does not account for the dielectric loss in
piezoelectric materials, and it does not work under ultra-low
frequency conditions.

A variety of electrical circuits have been proposed to treat the
AC current from PEHs, including various DC–DC converter topolo-
gies [54,55], SSHI [56], SSHI-MR [57], SECE [58], OSECE [59], bias-
flip interface circuit [60], single-supply pre-biasing circuit [61] and
so on. Each of them shows its own characteristics and has different
effects on the energy flow.Without loss of generality, we here con-
sider the simplest scenario: connecting PEHs with a resistor. This
is also the most commonly discussed circuit in the literature. Effi-
ciency of different energy harvesting circuits can be found in the
book [62]. We would not talk about it here.
To simplify the solving process,we introduce the followingnon-
dimensional variables into the governing equations,

τ = ωnt, ω̃ =
ω

ωn
, ξ =

c
2mωn

,

κ2
=
θ2

kCp
, α =

1
RCpωn

,

where ωn is natural angular frequency (ωn =
√
k/m); ω̃ is fre-

quency ratio; ξ is the damping ratio, κ2 is the coupling coeffi-
cient. It is increasingly recognized that most practical applications
of PEHs are with small coupling coefficients. Here we also intro-
duce r = 1/RCpω = α/ω̃, named resistance ratio, into the system.
The maximum power is extracted by the external electrical load at
the impedance matching condition, that is, r = 1 (weak coupling
systems). The solutions below can be greatly simplified with the
resistance ratio ‘r ’.

The nondimensional governing equations are

x′′
+ 2ξx′

+ x + κ2v = −z ′′

v′
+ αv = x′,

(8)

where x = X, z = Z, v = CpV/θ , and ()′ is differentiation to the
nondimensional time ‘‘τ ’’.

The harmonic base excitation is expressed as

z ′′
= A cos(ω̃τ ), (9)

which can also be expressed as Z̈ = ω2
nA cos(ωt).

Assume responses are also harmonic at the same frequency as
that of the excitation.

x = x1 sin(ω̃τ )+ x2 cos(ω̃τ )
x′

= x1ω̃ cos(ω̃τ )− x2ω̃ sin(ω̃τ )
x′′

= −x1ω̃2 sin(ω̃τ )− x2ω̃2 cos(ω̃τ ),
(10)

v = v1 sin(ω̃τ )+ v2 cos(ω̃τ )
v′

= v1ω̃ cos(ω̃τ )− v2ω̃ sin(ω̃τ ). (11)

Submitting Eqs. (9)–(11) into Eq. (8), we get

−x1ω̃2 sin(ω̃τ )− x2ω̃2 cos(ω̃τ )
+2ξ


x1ω̃ cos(ω̃τ )− x2ω̃ sin(ω̃τ )


+ x1 sin(ω̃τ )

+x2 cos(ω̃τ )+ κ2 
v1 sin(ω̃τ )+ v2 cos(ω̃τ )


= −A cos(ω̃τ )

v1ω̃ cos(ω̃τ )− v2ω̃ sin(ω̃τ )+ α

v1 sin(ω̃τ )+ v2 cos(ω̃τ )


=


x1ω̃ cos(ω̃τ )− x2ω̃ sin(ω̃τ )


.

(12)

Then, equating the coefficients of sin(ω̃t) and cos(ω̃t) on both
sides, we have

x1ω̃2
+ x22ξω̃ − x1 − κ2v1 = 0

x2ω̃2
− x12ξω̃ − x2 − κ2v2 = A

v2ω̃ − αv1 = x2ω̃
v1ω̃ + αv2 = x1ω̃.

(13)
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The solutions are

x1 = −
2ξω̃ +

ακ2ω̃
ω̃2+α2

Λ
A;

x2 =
ω̃2

− 1 −
κ2ω̃2

ω̃2+α2

Λ
A,

(14)

v1 =
αω̃ − (α + 2ξ)ω̃3

Λ(ω̃2 + α2)
A;

v2 =
ω̃4

− (1 + 2ξα + κ2)ω̃2

Λ(ω̃2 + α2)
A,

(15)

where Λ =


ω̃2

− 1 −
κ2ω̃2

ω̃2+α2

2
+


2ξω̃ +

ακ2ω̃
ω̃2+α2

2
=

ω̃2
− 1 −

κ2

1+r2

2
+


2ξω̃ +

κ2r
1+r2

2
.

3.3. Mechanical response

The displacement response is

x = Xap cos(ω̃τ + φx), (16)
where the displacement amplitude and the phase difference are

Xap =


x21 + x22 =

1
√
Λ

A, (17)

φx = tan−1 x1
x2

= tan−1
ω̃


2ξ +

ακ2

ω̃2+α2


κ2ω̃2

ω̃2+α2
+ 1 − ω̃2

= tan−1
ω̃


2ξ +

κ2r
1+r2


κ2

1+r2
+ 1 − ω̃2

. (18)

The magnification factor is

M =
Xap

Dbase
=

ω̃2
ω̃2 − 1 −

κ2

1+r2

2
+


2ξω̃ +

κ2r
1+r2

2
, (19)

where Dbase = A/ω̃2 is the displacement amplitude of the base
excitation.

For the short-circuit condition, we let the load resistor R → 0,
then we have

MR→0 =
ω̃2

ω̃2 − 1
2

+ (2ξω̃)2
. (20)

MR→0 reaches the maximum value when ω̃ =

1 − 2ξ 2 ≈ 1,

which is usually defined as the resonance frequency. For the open-
circuit condition, we let the load resistor R → ∞, then we have

MR→∞ =
ω̃2

ω̃2 − 1 − κ2
2

+ (2ξω̃)2
. (21)

MR→∞ reaches the maximum value when ω̃ =

1 + κ2 − 2ξ 2 ≈

√
1 + κ2, which is known as the anti-resonance frequency.

Resonance and anti-resonance points are very close to each other
in low-frequency and weak-coupling circumstances.

Fig. 4 shows the phase angle at different excitation frequency
points. Before the resonance state, the response tends to keep
a same pace with the excitation. After the resonance state, the
response tends to keep an opposite pace with the excitation.
Around the resonance point, a phase shift of 90° occurs no matter
what the damping ratio is. φx is in the range [0° 180°]. If the
coupling coefficient κ = 0, the phase difference is the same as the
expression for the mechanical SDOF systems (Eq. 3.77 in Ref. [63]).
3.4. Electrical response

We express the voltage response as

v = v1 sin(ω̃τ )+ v2 cos(ω̃τ ) = Vap cos(ω̃τ + φv). (22)

From Eq. (15), we get the response amplitude and phase difference

Vap =
ω̃

√
ω̃2 + α2

Xap =
ω̃

√
ω̃2 + α2

1
√
Λ

A

φv = tan−1 v1

v2
= tan−1 αω̃ − (α + 2ξ)ω̃3

ω̃4 − (1 + 2ξα + κ2)ω̃2
.

(23)

The power consumed by the external resistor is calculated as

Pout =


θv/Cp

2
R

=
θ2

C2
p R

ω̃2

ω̃2 + α2
X2
ap cos

2(ω̃τ + φv)

=
θ2

C2
p R

1
1 + r2

X2
ap cos

2(ω̃τ + φv). (24)

The frequency of the power response is upgraded to 2ω and thus
the cycle period becomes T = 2π/2ω. The electrical energy
generated per cycle is

Eout =

 2π
2ω

0
Poutdt =

π

ω

V 2
RMS

R
=
π

2
θ2

Cp

r
1 + r2

X2
ap, (25)

where VRMS refers to the root mean square voltage.

3.5. Input mechanical energy

Unlike the calculation process of the output electrical energy,
the input mechanical energy does not have a uniform definition.
A typical wrong definition is Pin = F ×


Ẋ + Ż


= m × Z̈ ×

Ẋ + Ż

. This definition goes against the facts in two ways. First,

the excitation force from the host to the PEH cannot be expressed
as mass multiplying acceleration. Supposing that the excitation
acceleration is kept constant in a full frequency range, the acting
force between the PEH and the host structure should keep constant
based on this definition. However, the fact is that the acting
force increases significantly around the resonance state. Secondly,
velocity in the power definition should refer to the velocity of
the point the force applied to, and it must be in the direction of
the force. The velocity of tip mass in a PEH is not the one of the
excitation point. Energy input to the PEH is from the point fixed on
the excitation. The velocity of the point is, therefore, the velocity
of the excitation source Ż .

There are three ways to define the input mechanical power.
Case 1: Pin = F × Ż = m × Z̈ × Ż .
Some assume that the whole structure vibrates at a same

acceleration as the host’s. This assumption is not appropriate
because there are relative motions in the system.

Case 2: Pin = F × Ż = m × Ẍ × Ż .
As the model in Fig. 2 indicates, a spring, a damper and a piezo

element are connected with the excitation base. Thus the force
of the load point is assumed to be equal to the damping force +

the spring force + the piezo force, which is also equally applied
to the tip mass, that is, m × Ẍ . Therefore, the input power can be
expressed as

Pin = −
1
2
mω2

nAXapω sin(2ωt + φx)

+
1
2
mω2

nAXapω sin(φx)

=
1
2
m


Ẍ

amp


Ż

amp (− sin(2ωt + φx)+ sin(φx)) . (26)
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Fig. 4. Variations of phase angle φx with the frequency ratio ω̃. The coupling coefficient κ2
= 0.0078.
If there is no relative displacement (X = 0), the tip mass moves
along with the base. The acceleration of the tip mass is equal to
that of the base. That means the tip mass experiences a periodic
force. However, no relative displacement means no spring, damp-
ing or piezo force, that is, no force applied to the mass block. The
self-contradiction indicates that this equation does not reflect the
real situation.

Case 3: Pin = F × Ż = m ×

Ẍ + Z̈


× Ż .

In this case, we do not face the self-contradiction issue in
Case 2. If there is no relativemotion, the tipmassmoves alongwith
the base at an acceleration of Z̈ . The applied force is equal to the
mass times the absolute acceleration.

Pin = −
1
2
mω2

nAXapω sin(2ωt + φx)

+


1
2
mω2

nAXapω sin(φx)


+ m

ω4
nA

2

2ω
sin(2ωt)

=
1
2
m


Ẍ

amp


Ż

amp (− sin(2ωt + φx)+ sin(φx))

+m
ω4

nA
2

2ω
sin(2ωt). (27)

There are sinusoidal functions in the power response equations,
of which average value is zero per period. The effective value is
only from the constant term sin(φx). Comparing Case 2 and Case 3,
we can find that the net input power is same, although the Case 3
shows a higher oscillation amplitude.

Using Eq. (27), we examine the power flow in both on- and off-
resonance conditions. Three conditions are considered here, case
1: ω̃ = 0.5, case 2: ω̃ = 1, case 3: ω̃ = 1.2. The phase shift is
clearly illustrated by the Lissajous curves (see Fig. 5).

• At low frequency (ω̃ = 0.5).
The positive work region is slightly larger than the negative
work region. As the excitation frequency goes smaller, the net
input tends to be naught. The displacement response and the
base vibration have a phase difference of ∼0°.

• At high frequency (ω̃ = 1.2).
The net mechanical energy that inputs to the mechanical
system tends to be naught, too. The displacement response and
the base vibration have a phase difference of ∼180°.

• At resonance frequency (ω̃ = 1).
Themaximum input power happenswhile the base velocity and
the response acceleration are in phase. That is the displacement
response and the base vibration has a 90° phase difference.
There is almost no negative work occurred in this situation.

The excitation does positive work to the energy harvesting
system (W+); it also does negative work to the energy harvesting
system (W−). That means actually not all mechanical energy input
to the system is utilized (damping heat & converted electrical
energy), but some of them flows back the excitation source. The
net input mechanical energy isW+–W−.

The net power is from the constant term which is determined
by the phase difference. At the resonance state (phase angle
90°), almost no energy flows back to the excitation source and
all mechanical energy is used by the PEH. When the excitation
frequency is far from the natural frequency of the PEH, the negative
and positive work cancels each other and there is a very little
amount of power input to the system, for compensating a variety of
damping loss. For base-excited vibration systems, it is inevitable to
do negativework for a certain period in each cycle in off-resonance
conditions. Nevertheless ways to sustain a 90° phase gap between
the excitation and response are worth exploring.

Work done by the external excitation on the system per cycle
T =

2π
2ω can be derived as

W =

 2π
2ω

0
Pindt =

π

2
mω2

nAXap sin(φx)

=
π

ω

1
2
m ×


Ẍ

amp ×


Ż

amp sin(φx), (28)

where φx ∈ [0° 180°]. The work done by the external excitation is
always positive.

The input mechanical energy is proportional to the mass,
response acceleration, excitation velocity, and is directly related
to the phase difference. The phase term sin(φx) peaks at resonance
and plunges once excitations deviate from resonance, as shown in
Fig. 6. At the resonance state sin(φx) = 1, we can easily calculate
the input energy by just measuring the excitation and response
velocity/acceleration.

3.6. Efficiency

As aforementioned, efficiency is the ratio of the net output
electrical energy (Eq. (25)) to the net input mechanical energy
(Eq. (28)).

η =
Eout
W

=

V 2
RMS


R

1
2m ×


Ẍ

amp ×


Ż

amp sin(φx)

. (29)

Eq. (29) interprets the definition of efficiency, and it can be applied
to different energy harvesters under base excitations.

For the defined linear system, we have

η =
κ2

2ξω̃
 1
r + r


+ κ2

=
κ2

2 ξ
α
ω̃2 + 2ξα + κ2

. (30)

Efficiency is mainly related to the electromechanical coupling
effect, damping effect, excitation frequency and electrical load. It
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Fig. 5. Phase shift illustration and energy flow of a PEH system. The red region denotes that energy flows to the energy harvesting system, named ‘‘positive work’’ here; the
blue region denotes that energy flow is from the energy harvesting system to the outside, named ‘‘native work’’ here. (φx = 0.0563; 1.57; 2.9189). (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 6. Variations of sin(φx) at different excitation frequency points.
is noteworthy that here κ2 is also related to the structural stiffness
and the capacitance of the employed piezoelectric element.
Therefore, to gain a high efficiency, we need take full consideration
of the structure, material, excitation and electrical load.

The maximum efficiency occurs while the resistance ratio r =

1/RCpω = 1. However, to keep r = 1 at different frequency points,
we have to actively adjust the load resistance, which requires great
efforts and may consume energy. Usually in experiments, a fixed-
value load resistance R = 1/Cpωn is selected. If more complex
conditioning circuits are added, the expression of efficiency and
optimum impedance will be changed. For example, if a full bridge
rectifier and a smoothing capacitor are added between the PEH and
the load resistor, the resistance ratio for the maximum efficiency
and power output is r =

π
2 /RCpω.

4. Experimental validation

To validate the defined efficiency, we have fabricated a
prototype as shown in Fig. 7, which specifications are listed in
Table 2. The active material used here is soft piezoceramic PZT-
5A. The static capacitance Cp and loss tan δ were measured to be
13.18 nF and 0.015, respectively. Fig. 7 shows the experimental
platform. The PEH prototype was mounted vertically on an
electromagnetic shaker that supplied a harmonic excitation while
operating. Excitation parameters were set via a PC interface and
loaded to a controller. The controller regulated the vibration of the
shaker via a signal amplifier based on the instructions from the
PC and the feedback signal from an accelerometer. The electrical
and mechanical responses were monitored using an oscilloscope
and a laser Doppler vibrometer, respectively. All experimentswere
conducted on a vibration isolation platform to reduce unwanted
interference. The excitation acceleration was maintained constant
at 0.3 g (g = 9.8 m/s2) in the testing.

To calculate the efficiency of the PEH using Eq. (29), we first
need to identify the involved parameters. The equivalent mass m
of the structure can be roughly calculated with

m =
33
140

Mbeam + Mtip. (31)

The equivalent mass of the fabricated prototype is m = 16.4 g.
The coupling coefficient is = 0.0883, decided using the
experimental method. The damping ratio of the system is ξ =

0.021, which was determined using the logarithmic decrement
method. [49]. By doing the frequency-sweep testing, we find that
there is not a big difference between the open-circuit resonance
frequency and the short-circuit one of the constructed system;
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Fig. 7. Experimental setup and the fabricated prototype.

Table 2
Geometric and material properties of the PEH prototype.

Name Value

Substructure length 73 mm
Substructure width 21 mm
Substructure thickness 0.5 mm
Substructure Young’s modulus 69 GPa
Substructure density 2.73 g/cm3

Piezo plate length 37.6 mm
Piezo plate width 15.1 mm
Piezo plate thickness 0.50 mm
Tip mass 15.6 g
Dielectric constant ϵ11 1680
Piezoelectric charge constant, d31 −180 ∗ 10−12 C/N
Piezoelectric voltage constant, g31 −11.3 ∗ 10−3 Vm/N

both are around 28.4 Hz (ωn = 178.6). The matching resistance
R = 400 k� is identified following the method in Ref. [49]. The
resistancewas kept constant in thewhole experiments.With these
parameters in hand, we can calculate the efficiency value of the
system via Eq. (30).

We got the voltage data from the oscilloscope and used Eq. (25)
to calculate the electrical energy per cycle. To get inputmechanical
energy, the relative acceleration and base velocity are needed.
We used the laser vibrometer to measure the absolute velocity of
the tip mass and base velocity, and derived the input mechanical
energy at each frequency point. The tests have been repeatedly
conducted for many times to ensure the validity and accuracy of
the measured data.

Fig. 8 shows the measured efficiency compared with the
estimated value. The comparison indicates that the developed
theory can estimate efficiency very well. The efficiency of the
fabricated PEH is about 6%–12%. Both experimental and theoretical
studies manifest that the energy conversion efficiency of energy
harvesters tends to decrease as the excitation frequency rises.
Efficiency values of off-resonance states are not alwaysmuch lower
than those of the on-resonance states. For example, the efficiency
is about 11% at 20 Hz in this case as shown in Fig. 8, which
is higher than that (<10%) at the resonant state (28 Hz). Also,
one should note that conditions to attain the maximum power
transfer (around resonant points) do not coincide with conditions
to achieve the highest energy conversion efficiency.

The phase difference between the excitation and the system
response is observed in experiments, which matches the model
estimation (Fig. 4). As shown in Fig. 9, in low-frequency conditions,
the response tends to keep a same pace with the base excitation.
When it comes to resonance, roughly a 90° phase lag appears. In
high-frequency conditions, the response lags behind the excitation
about 180°. Thatmeanswhen the host goes to one direction, the tip
mass of the PEH, instead of following the excitation, moves to the
opposite direction.

5. Linear systems

5.1. Validation via the energy flow analysis

From the perspective of energy flow, the mechanical energy
in the energy harvesting system finally is consumed by the
damping effects and extracted by the external load. Therefore
we should have W = Eout + Wdamping . This formula has been
used to analyze efficiency of energy harvesters as aforementioned.
Here, we examine if the derived efficiency expression meets this
deduction.
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ap (32)
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The derived efficiency expression is validated from the perspective
of the energy flow.

5.2. Parametric study

According to Eq. (30), efficiency is mainly affected by the load
resistance, damping and electromechanical coupling effect. Next,
we talk about the effects of these parameters on efficiency.

As illustrated in Fig. 10, load resistance has a significant
effect on the energy conversion efficiency. As the load resistance
increases, the efficiency peaks around the matching resistance
points (resistance ratio r = 1), and then drops dramatically. With
a same resistance, a PEH under a low-frequency excitation shows
high efficiency.

Fig. 11 Shows the effect of the structural damping on efficiency
in both on- and off-resonance states.

Efficiency variation becomes increasingly small as damping
ascends. That means the efficiency value tends to keep constant,
uncorrelated to damping variation once damping turns strong.
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Fig. 8. Efficiency at different frequency points collocated from the experimental data and estimated by the developed model. The resonance frequency is about 28 Hz.
Fig. 9. Velocity responses of the tip end and the base of the PEH under different excitations. Black line: base velocity; red line: tip velocity. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 10. Effect of the load resistance on efficiency. (κ2
= 0.0078, ζ = 0.021).

Fig. 11. Damping effect on efficiency (κ2
= 0.0078, α = 1).

Also, the coupling coefficient κ2 plays a decisive role in the
exhibited efficiency of a PEH. Fig. 12 illustrates the effect of the
coupling coefficient on efficiency. As expected, the higher the
coupling coefficient is, the more efficiently the PEH behaves. The
slopes of the response curves get increasingly larger as we increase
k2. That means for systems with a weak coupling effect, efficiency
Fig. 12. Effect of the coupling coefficient on efficiency (α = 1, ζ = 0.021).

is prone to keep unchanged as the excitation frequency varies.
In contrast, systems with a relatively strong coupling effect, the
efficiency value experiences a big difference. It is worth noting that
the coupling coefficient is inversely proportional to the structural
stiffness and the internal piezoelectric capacitance. Thus, designs
with soft structures and small internal capacitance tend to exhibit
high efficiency.

6. Nonlinear systems

As discussed before, linear systems experience a 90° phase
difference at resonance states and shift phase nearly 180° when
frequency is much higher than the resonant one. We can utilize
this characteristic to obtain the efficiency value of linear energy
harvesters. To broaden the frequency bandwidth, researchers have
introduced nonlinear vibration into energy harvesting systems
[15,43,64,65] It is unclear whether the phase difference of these
nonlinear systems will match the linear ones.

To study the phase shift phenomenon in nonlinear PEHs, we
constructed two prototypes as shown in Fig. 13. The nonlinear
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Fig. 13. Nonlinear PEHs: (a) hardening, (b) softening.

magnetic force was utilized to provoke nonlinear dynamic
responses. By adjusting the magnet layout, we achieved both
hardening and softening nonlinear responses. When there is a soft
repulsive force between themoving and fixedmagnets, the system
shows thehardeningnonlinearity;when there is an attractive force
between the moving and the fixed magnets, the system shows the
softening nonlinearity.

The prototype was fabricated with a high carbon spring steel
beam of 70 × 7 × 0.25 mm3. As shown in Fig. 13, a small
piezoelectric element was attached near to the fixed end of the
steel beam (13.7 mm to the end). The piezoelectric element was
made of PZT-5A and its dimension is 7 × 8 × 0.2 mm3. A
Neodymiummagnet (φ8.31×2mm) (Grade N42) was attached at
the free end of the steel beam, facing a pair of same-size magnets
fixed on the base. The experimentswere conducted on theplatform
described before, and the excitation frequency was swept upward
and downward with a constant rate of 0.1 Hz/s.

Take the upward frequency-sweep case of the hardening
nonlinear PEH for example, as the excitation frequency rises
constantly from 10 Hz, we can see a slight increase in the
velocity response. When the excitation frequency approaches to
the resonance (20.4 Hz), the response starts to increases quickly.
Once it passes the resonant frequency (i.e., jump frequency), the
response jumps down and decreases slowly ever since. The phase
difference, likewise, keeps nearly zero at frequency points before
the resonance and quickly passes 90° and rises to ∼180° while
the frequency is swept through the resonance. For the downward
frequency-sweep case, the phase difference stays around 180°
and drops quickly to 0° around the jump-up frequency point
(∼18.5 Hz). It is noticeable that a distinct hysteresis loop exists in
the nonlinear systems, which is not observed in the linear systems.
The softening nonlinear system shows a same type of phase shift
as the hardening nonlinear system. Comparing the phase angle
figures of linear systems (Fig. 4) and nonlinear systems (Fig. 14), we
find that linear and nonlinear systems act in a very similar way and
all reverse around the resonance points. The former energy flow
analysis can also be applied to the nonlinear systems.

For both hardening and softening nonlinear PEHs, there exists a
roughly 90° phase shift between excitations and responses around
the jump points. Consequently, we can easily calculate the input
mechanical energy and further efficiency using Eq. (29).

7. Discussions

We have presented a comprehensive framework for discussing
the efficiency of piezoelectric energy harvesters. Parameters
that affect the harvesters’ efficiency have been identified and
quantitatively analyzed. It is noted that efficiency is directly related
to the phase difference between excitation and response, which
complicates the efficiency calculation.

In order to take advantage of the unique 90° phase shift at
resonance, we suggest comparing different PEHs at the resonance
states while evaluating their efficiency values. The reasons are as
follows.
1. The on-resonance efficiency is easy to be calculated experimen-
tally and theoretically.

2. To generate high-power output, most PEHs are designed to
work around the resonance states. Therefore, the on-resonance
efficiency reflects the real working performance well.

3. Efficiency has an approximate monotonically decreasing re-
lationship with the excitation frequency. Consequently, effi-
ciency values at other points can be extrapolated with the on-
resonance efficiency in hand.

Note that the resonance state here means the point of the maxi-
mum power output. It is known that optimal power output condi-
tions (frequency, resistance, damping, etc.) do not coincide with
those of the optimal efficiency, especially for strongly-coupling
systems. As the analysis and experiments indicate, systems with
weak damping effects and low-frequency excitations always show
high efficiency, regardless the energy harvesting capability. There-
fore, it is more reasonable to discuss efficiency values at the maxi-
mumpower output conditions, not at the optimal efficiency points.

It is worth noting that solely pursuing maximum efficiency
may result in a significant drop on power output, and misguide
the development of new PEHs. When evaluating different PEHs,
we suggest to use a set of figures of merit, including efficiency,
power density, excitation-normalized power density, frequency
bandwidth, etc., instead of one performance metric. Meanwhile,
the working conditions such as volume, mass and excitation
strength ought to be considered seriously.

8. Summary

In this paper, we theoretically and experimentally studied
PEHs’ efficiency of convertingmechanical input energy to electrical
energy dissipated by a load resistance.We reviewed representative
work on efficiency and analyzed the energy flow in the energy
harvesting process. We derived an analytical efficiency expression
based on a SDOF model for the most commonly used cantilever
PEHs, and validated the efficiency expression experimentally.
The study indicates that efficiency is mainly related to the
electromechanical coupling effect, damping effect, excitation
frequency and electrical load. Light damping and strong coupling
effects help improve efficiency. In contrast, both small and large
resistors lead to a significant drop in efficiency; efficiency peaks
with a modest matching impedance. Both experimental and
theoretical studies show that the energy conversion efficiency
decreases as the excitation frequency increases.

Depending on the period of time in each cycle, the work done
by the excitations on the PEHs can either be positive or negative,
which is characterized by the phase difference between excitations
and responses. The phase shifts nearly 180° as the excitation
frequency ramps up and down. Around the resonance frequency,
a phase difference is 90° for both linear PEHs and nonlinear PEHs.
A 90° phase difference means the excitation always does positive
work in eachworking period. This characteristic yields exceptional
convenience in calculating the efficiency value of the energy
conversion process. Efficiency at resonance states reflects the real
working performance well and is easily calculated. Therefore,
while discussing different PEHs we suggest to use the efficiency
at the resonance condition.
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Fig. 14. Experimental amplitude and phase responses of the hardening and softening nonlinear PEHs. Both experiments were done with a constant excitation of 0.2 g
acceleration. (a) The hardening system is under an excitation of 10–30 Hz; (b) the softening system is under an excitation of 20–40 Hz.
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