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Flexoelectricity is the generation of electric polarization by the application of a non-uniform

mechanical strain field, i.e., a strain gradient. This phenomenon is exhibited by all elastic dielec-

trics, but is expected to be significant only at very small scales. Energy harvesting is a potential

future application area of flexoelectricity to enable next-generation ultra-low-power MEMS/NEMS

devices by converting ambient vibrations into electricity. In this paper, an electroelastodynamic

framework is presented and analyzed for flexoelectric energy harvesting from strain gradient fluctu-

ations in centrosymmetric dielectrics, by accounting for the presence of a finite electrical load

across the surface electrodes as well as two-way electromechanical coupling, and capturing the size

effect. The flexoelectric energy harvester model is based on the Euler-Bernoulli beam theory and it

assumes the main source of polarization to be static bulk flexoelectricity. Following recent efforts

on the converse flexoelectric effect in finite samples, the proposed model properly accounts for

thermodynamically consistent, symmetric direct and converse coupling terms. The transverse mode

flexoelectric coupling coefficient (k) is obtained analytically as a direct measure of energy conver-

sion; its dependence on the cantilever thickness and a material Figure of Merit (FoM) is shown.

Size effects are further demonstrated by simulations of the electromechanical frequency response

for a Strontium Titanate (STO) energy harvester at different geometric scales. It is obtained that

the flexoelectric coupling coefficient of an STO cantilever for the fundamental bending mode

increases from k � 3:5� 10�7 to k � 0:33 as the thickness is reduced from mm- to nm-level. A

critique of the experimentally identified large flexoelectric coefficient for Barium Strontium

Titanate (BST) from the literature is also given with a coupling coefficient perspective. Published
by AIP Publishing. [http://dx.doi.org/10.1063/1.4976069]

I. INTRODUCTION

Microelectromechanical systems (MEMS) and nanoe-

lectromechanical systems (NEMS) have received growing

attention in the last decade for various applications including

mechanical energy harvesting at very small scales.1–4 The

mechanical energy in this context spans from structure-borne

vibrations5 and waves6,7 to rigid-body motions,8,9 acoustic

energy,10–12 as well as aeroelastic13,14 and hydroelastic15,16

vibrations. In harvesting various forms of mechanical

energy, piezoelectricity remains arguably the most widely

studied transduction method with examples ranging from

PZT-based (lead zirconate titanate) ferroelectric thin-films3

to piezoelectric nanowires4 employing non-ferroelectrics,

such as ZnO (zinc oxide). It is well known that the electro-
mechanical coupling17 of piezoelectric materials diminishes

dramatically in thin films18 and polymers.19 Piezoelectric

polymers, such as PVDF (polyvinylidene fluoride), are envi-

ronmentally benign as compared to ceramics but they are

poor power generators due to low electromechanical cou-

pling. Bulk piezoelectric ceramics (such as PZT-5A and

PZT-5H) are relatively brittle and less reliable for powering

sensor systems in harsh environments. Moreover, lead con-

tent in most piezoelectric ceramic compositions is a major

environmental issue.20 Furthermore, several of the high elec-

tromechanical coupling materials lose their piezoelectricity

at moderate to high temperatures, where self-powered sen-

sors are most needed.

Recent efforts at small scales21 suggest that the effective
electromechanical properties of elastic dielectrics can be

enhanced dramatically under non-uniform strain fields due to

an entirely different phenomenon called flexoelectricity.22–27

Flexoelectricity describes the generation of electric polariza-

tion in elastic dielectrics by the application of a mechanical

strain gradient.23,25,28 The phenomenon of flexoelectricity in

solids is a higher-order effect and is expected to be rather

weak except for very small (sub-micron) dimensions, mak-

ing the concept of interest mainly for potential MEMS and

especially NEMS applications.

Following the early efforts by Mashkevich and

Tolpygo,29 Kogan,30 and Indenbom et al.,31 the first compre-

hensive theoretical discussion of the flexoelectric effect was

presented by Tagantsev.22 The research field of flexoelectric-

ity has been active for liquid crystals32 and biological mat-

ter33 for decades. However, it was only in early 2000s the

flexoelectric effect in solids has received suddenly growing

attention especially after the experiments by Ma and

Cross34–39 on elastic dielectrics, specifically high-K materi-

als such as ferroelectric perovskites (see the review article

by Cross40). In addition to experimental efforts by Ma and
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Cross34–39 and others41–43 for samples with high dielectric

constants, atomistic simulations28 were presented to extract

flexoelectric coefficients. Importantly, a substantial differ-

ence (several orders of magnitude) was reported between the

simulated and identified flexoelectric coefficients.39 The

experimental samples34–39 (of �mm thickness) used in the

identification efforts were typically far from the thickness

levels of interest (�nm) in flexoelectricity. A comprehensive

article on the flexoelectric effect in solids by Yudin and

Tagantsev25 presents a detailed discussion on the subject

matter along with a historical account. It is no surprise that,

with its promise of increased electromechanical coupling at

small scales, flexoelectricity is of great interest for submi-

cron level energy harvesting44,45 to power next-generation

nanoscale sensors and other extremely low-power small elec-

tronic components.

Other than the mismatch in the order of magnitude of

flexoelectric coupling between atomistic simulations28 and

experimental measurements,34–39 one of the issues in flexo-

electric transduction and energy conversion has been the lack

of a clear understanding and modeling of the converse effect,

as the subject has created confusion since the converse effect

is represented by a polarization gradient.46–48 In a recent work

focusing on finite samples, Tagantsev and Yurkov49 presented

a consistent and symmetric converse effect representation and

its justification. In the present work, we combine the direct

effect of flexoelectricity and this symmetric converse effect49

within a distributed-parameter electroelastodynamic frame-

work and provide a modal analysis solution for vibration

energy harvesting from base excitation of dielectric cantile-

vers. In addition to closed-form expressions for the electrome-

chanically coupled voltage across the electrical load and the

shunted vibration response (that accounts for the effect of the

electrical load), the size-dependent flexoelectric coupling

coefficient is extracted analytically, and a figure of merit is

identified. Simulation case studies are given for transverse

vibrations of a cantilevered Strontium Titanate (STO) energy

harvester at different geometric scales to explore the effect of

thickness on flexoelectric energy conversion as well as the

effect of power generation on the harvester structure due to

converse coupling.

II. DIRECT AND CONVERSE FLEXOELECTRIC
EFFECTS

We consider the problem of a centrosymmetric thin can-

tilever under mechanical base excitation (Fig. 1) for linear

transverse (bending) vibrations, i.e., linear electroelastic

material behavior and geometrically small oscillations are

assumed in this continuum framework. The surface electro-

des of the cantilever are shunted to a resistive electrical load

to quantify the electrical power output in the harvester

model. The sample geometry justifies thin beam assump-

tions, such that the width (b) and the thickness (h) of the rect-

angular cross section are much smaller than the overhang

length (L). “Static” flexoelectricity25 is applicable since the

thickness (smallest dimension) of the beam is much smaller

than the wavelength at vibration frequencies of interest in

this work for the first few bending modes. In the following,

the focus is placed on static bulk flexoelectricity, and there-

fore, the surface effects24,25 are excluded.

The polarization including the direct flexoelectric effect

can be written as

P3 ¼ v33E3 þ l1133

@S11

@x3

; (1)

where P3 is the polarization in the thickness direction (3-

direction is the thickness direction and 1-direction is the axial

direction in Fig. 1), E3 is the electric field, S11 is the axial

strain, v33 is the dielectric susceptibility (which has the units

of F/m, and should not be confused with the dimensionless

electric susceptibility form �v33, v33 ¼ �v33e0, where e0 is the

vacuum permittivity), and l1133 is the transverse flexoelectric

coefficient. Note that the fourth-rank static flexoelectric coeffi-

cient tensor is defined as24,25 lklij ¼ ð@Pi=@ð@Skl=@xjÞÞE¼0

and we stick to this complete index notation, while some

authors39 use the contracted notation l12 for the transverse

mode flexoelectric coefficient l1133 (for detailed discussions

of flexoelectric tensors and symmetry arguments, see recent

papers by Quang and He,50 and Shu et al.51).

The mechanical stress accounting for the converse flexo-

electric effect can be expressed as

T11 ¼ c1111S11 þ f1133

@P3

@x3

(2)

or alternatively

T11 ¼ c1111S11 þ l1133

@E3

@x3

; (3)

where T11 is the axial stress, c1111 is the elastic modulus (under

short-circuit condition of the electrodes), and f1133 is the trans-

verse mode “flexocoupling coefficient”25 (f1133 ¼ v33
�1l1133).

FIG. 1. Base-excited centrosymmetric dielectric cantilever with surface electrodes (that are perpendicular to the thickness direction) connected to a resistive

electrical load for energy harvesting, and a cross-sectional view. The transverse displacement of the beam relative to the moving base is wrel and the voltage

output across the resistive load is v.
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Note that the approximate flexocoupling coefficient order of

magnitude24 is 1–10 V based on Kogan’s estimate30

f � q=ð4pe0aÞ, where q and a are the lattice charge and spac-

ing, respectively (this order of magnitude is in agreement

with recently presented upper bounds by Yudin et al.52).

III. FLEXOELECTRIC EULER-BERNOULLI BEAM
MODEL FOR ENERGY HARVESTING

A. Flexoelectrically coupled mechanical equation
and modal analysis

The partial differential equation governing the forced

vibration of a uniform cantilevered centrosymmetric thin

dielectric beam under transverse base excitation (Fig. 1) is

� @
2M x1; tð Þ
@x1

2
þ csI

@5wrel x1; tð Þ
@x1

4@t
þ ca

@wrel x1; tð Þ
@t

þ m
@2wrel x1; tð Þ

@t2
¼ �m

d2wb tð Þ
dt2

; (4)

where wbðtÞ is the base excitation (in the form of displace-

ment), wrelðx1; tÞ is the transverse displacement of the beam

(reference surface, or neutral axial level) relative to its base

and Mðx1; tÞ is the internal bending moment at position x1

and time t, ca is the viscous air damping coefficient (as a

mass-proportional dissipative term), cs is the strain-rate

damping coefficient (as a stiffness-proportional dissipative

term), and m is the mass per unit length of the beam

(m ¼ qbh where q is the mass density of the beam material).

In the same vein as cantilevered piezoelectric energy har-

vester counterparts,53,54 the linear damping operators in Eq.

(4) satisfy the proportional damping condition so that the

mode shapes of the corresponding undamped system can be

used in modal analysis (implementation of nonlinear intrin-

sic and extrinsic damping mechanisms is beyond the scope

of this work – see Leadenham and Erturk,55,56 among others,

for the resonant modeling of quadratic solid55 and fluid56

damping).

The internal bending moment in Eq. (4) is the first

moment of the axial stress field over the cross-section

Mðx1; tÞ ¼ b

ðh=2

�h=2

T11x3dx3: (5)

The axial strain component is due to bending only and it

can be expressed as

S11 x1; x3; tð Þ ¼ �x3

@2wrel x1; tð Þ
@x1

2
: (6)

It is clear from Eqs. (1) and (6) that the strain gradient
@S11=@x3 in this model is nothing but the negative curvature
of the uniform Euler-Bernoulli beam (assuming the effect of

the gradient @S11=@x1 to be negligible).

Substituting Eqs. (2) and (6) into the internal bending

moment in Eq. (5) gives

M x1; tð Þ ¼ b

ðh=2

�h=2

c1111S11x3dx3 þ
ðh=2

�h=2

f1133

@P3

@x3

x3dx3

0
B@

1
CA:

(7)

Following Tagantsev and Yurkov,49 for a finite sample

in which the polarization in the thickness direction varies

continuously from its bulk value to zero at the top and bot-

tom surfaces of the cantilever at x3 ¼ h=2 and x3 ¼ �h=2

(based on the blocking boundary condition assumption—see

Fig. 12(a) in Yudin and Tagantsev25), the second right-hand-

side term can be evaluated using integration by parts to iden-

tify the role of this term in the moment equation

bf1133

ðh=2

�h=2

@P3

@x3

x3dx3 ¼ �bf1133

ðh=2

�h=2

P3dx3 ¼ �bf1133hhP3i;

(8)

where hP3i is the average polarization induced by the elec-

tric field in the beam. The spatial scale of the polarization

variation at the dielectric-electrode interface is much

smaller than that in the overall thickness h; therefore, this

average polarization is approximately the polarization in

the bulk25,49

hP3i � v33E3; (9)

and it is useful to recall from Eqs. (2) and (3) that the dielec-

tric susceptibility v33 is

v33 ¼
l1133

f1133

: (10)

The electric field E3 can be given in terms of the voltage

(v) across the surface electrodes and the electrode spacing as

E3 ¼ �v=h (where it is assumed that the electrode thickness

is negligible). The flexoelectric term in Eq. (8) is only a

function of time, and therefore, we multiply it by ½Hðx1Þ
�Hðx1 � LÞ� (where Hðx1Þ is the Heaviside function), to

ensure the survival of this term when the bending moment is

substituted into Eq. (4), for full electrode coverage (Fig. 1)

from the clamped end (x1 ¼ 0) to the free end (x1 ¼ L). The

internal bending moment is then

M x1; tð Þ ¼ �YI
@2wrel x1; tð Þ

@x1
2

þ l1133bv tð Þ H x1ð Þ � H x1 � Lð Þ
� �

; (11)

where the flexural rigidity YI for the rectangular cross section

(under short-circuit condition) is

YI ¼ c1111bh

12

3

: (12)

The flexoelectrically coupled centrosymmetric Euler-

Bernoulli beam equation for transverse vibrations can then

be obtained from Eq. (4) as
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YI
@4wrel x1; tð Þ

@x1
4

þ csI
@5wrel x1; tð Þ
@x1

4@t
þ ca

@wrel x1; tð Þ
@t

þ m
@2wrel x1; tð Þ

@t2
� l1133bv tð Þ

dd x1ð Þ
dx1

� dd x1 � Lð Þ
dx1

� �

¼ �m
d2wb tð Þ

dt2
; (13)

where dðx1Þ is the Dirac delta function that satisfies the fol-

lowing equation for a smooth test function cðx1Þ:

ð1
�1

d nð Þd x1 � pð Þ
dx

nð Þ
1

c x1ð Þdx1 ¼ �1ð Þn dc nð Þ pð Þ
dx

nð Þ
1

: (14)

The vibration response (transverse displacement of the

reference surface) relative to the moving base in Fig. 1 can

be expressed as

wrelðx1; tÞ ¼
X1
r¼1

/rðx1ÞgrðtÞ: (15)

Here, grðtÞ is the modal mechanical coordinate and /rðx1Þ is

the mass-normalized eigenfunction (obtained from the short-

circuit problem) for the r-th vibration mode

/r x1ð Þ ¼
ffiffiffiffiffiffiffi
1

mL

r
cos

krx1

L
� cosh

krx1

L

�

þrr sin
krx1

L
� sinh

krx1

L

� ��
; (16)

where

rr ¼
sin kr � sinh kr

cos kr þ cosh kr
; (17)

and the eigenvalues (kr > 0; r ¼ 1; 2; :::) are the roots of the

characteristic equation (for the short-circuit and clamped-

free boundary conditions)

1þ cos k cosh k ¼ 0: (18)

The mass-normalized eigenfunctions in Eq. (15) satisfy the

following orthogonality conditions:

ðL
0

m/r x1ð Þ/s x1ð Þdx1 ¼ drs;

ðL
0

YI/r x1ð Þ
d4/s x1ð Þ

dx4
1

dx1 ¼ drsx
2
r ;

(19)

where drs is the Kronecker delta and xr is the undamped nat-

ural frequency of the r-th vibration mode under short-circuit

conditions ðRl ! 0Þ

xr ¼ k2
r

ffiffiffiffiffiffiffiffiffi
YI

mL4

r
; (20)

which can also be denoted by xsc
r , the short-circuit natural

frequency of the r-th mode.

The mechanical equation in modal coordinates can be

obtained after substituting Eq. (15) into Eq. (13) (then

multiplying the latter by the mode shape, integrating over

the beam length, and applying the orthogonality conditions)

as

d2gr tð Þ
dt2

þ 2frxr
dgr tð Þ

dt
þ xr

2gr tð Þ � hrv tð Þ ¼ fr tð Þ; (21)

where the modal electromechanical coupling term due to

flexoelectricity is

hr ¼ l1133b
d/r x1ð Þ

dx1

				
x1¼L

; (22)

and modal mechanical forcing function can be expressed as

fr tð Þ ¼ �m
d2wb tð Þ

dt2

ðL
0

/r x1ð Þdx1: (23)

B. Flexoelectrically coupled electrical circuit equation

In order to obtain an electrical circuit equation in the

presence of a finite electrical load impedance, it is useful to

express the electric displacement that is compatible with the

polarization form of Eq. (1) through the well-known dielec-

tric relationship

D3 ¼ P3 þ e0E3: (24)

Substituting Eq. (1) into Eq. (24), the non-zero electric dis-

placement component for transverse vibrations of the thin

beam configuration with surface electrodes shown in Fig. 1

becomes

D3 ¼ e33E3 þ l1133

@S1

@x3

; (25)

where e33 is the dielectric permittivity e33 ¼ e0 þ v33

¼ ð1þ �v33Þe0 (note that for high-K materials, which are of

interest in flexoelectricity, �v33 � 1, and e33 � v33).

In the presence of a finite resistive load connected across

the electrodes of the beam, the flexoelectrically coupled cir-

cuit equation can be obtained from the integral

d

dt

ð
A

D � ndA

 !
¼ v tð Þ

Rl
; (26)

where D is the vector of electric displacement components, n

is the unit outward normal of the electrodes, and the integra-

tion is performed over the electrode area A. The only contri-

bution to the inner product of the integrand is from D3 given

by Eq. (25).

Using Eq. (25) in Eq. (26), the following circuit equa-

tion (current balance) is obtained:

C
dv tð Þ

dt
þ v tð Þ

Rl
þ l1133b

ðL
0

@3wrel x1; tð Þ
@x1

2@t
dx1 ¼ 0; (27)

where the capacitance (C) is
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C ¼ e33bL

h
: (28)

Note that, it is possible to introduce dielectric losses by

changing the real-valued capacitance to Cð1� j tan dÞ where

tan d is the loss tangent.

Equation (15) can be substituted into Eq. (28) to obtain

C
dv tð Þ

dt
þ v tð Þ

Rl
þ
X1
r¼1

hr
dgr tð Þ

dt
¼ 0: (29)

Here, the modal electromechanical coupling (hr) due to the

direct flexoelectric effect is the same as Eq. (22) that was

obtained for the converse effect, which further confirms the

symmetry in the fully coupled governing electroelastody-

namic equations, which are Eqs. (13) and (27) in physical

coordinates, or Eqs. (21) and (29) in modal coordinates.

Flexoelectric power generation as a result of voltage output

across the resistive load is due to Eq. (27), and simulta-

neously the voltage output sends a feedback to the mechani-

cal domain due to the voltage term in Eq. (13), as a

manifestation of the thermodynamic consistency resulting

from the two-way coupling.

C. Closed-form voltage response and vibration
response at steady state

For harmonic base excitation with wbðtÞ ¼ W0ejxt, the

modal forcing function given by Eq. (23) can be expressed

as frðtÞ ¼ Fre
jxt, where the amplitude Fr is

Fr ¼ x2mW0

ðL
0

/rðx1Þdx1: (30)

Then, the steady-state modal mechanical coordinate of

the beam and the steady-state voltage response across the

resistive load are also harmonic at the same frequency as grðtÞ
¼ Hre

jxt and vðtÞ ¼ Vejxt, respectively, where the amplitudes

Hr and V are complexed valued. Therefore, Eqs. (21) and (29)

yield

ðx2
r � xr þ j2frxrxÞHr � hrV ¼ Fr; (31)

1

Rl
þ jxC

� �
V þ jx

X1
r¼1

hrHr ¼ 0; (32)

where fr is the modal mechanical damping ratio (due to

purely mechanical dissipation) that can easily be related to cs

and ca as 2frxr ¼ csIx2
r=YI þ ca=m.

The steady-state voltage response is obtained from Eqs.

(31) and (32) as

v tð Þ ¼

X1
r¼1

�jxhrFr

x2
r � x2 þ j2frxrx

1

Rl
þ jxCþ

X1
r¼1

jxh2
r

x2
r � x2 þ j2frxrx

ejxt: (33)

Once the voltage across the electrical load is obtained, the

current and power output can be calculated easily. For the

case of a real-valued electrical load (i.e., resistive load), the

current delivered to the load is iðtÞ ¼ vðtÞ=Rl and the instan-

taneous power output is PðtÞ ¼ v2ðtÞ=Rl.

The steady-state modal mechanical response of the

beam (that accounts for the converse effect) can be obtained

as

wrel x1; tð Þ

¼
X1
r¼1

Fr � hr

X1
r¼1

jxhrFr

x2
r � x2 þ j2frxrx

1

Rl
þ jxCþ

X1
r¼1

jxh2
r

x2
r � x2 þ j2frxrx

0
BBBB@

1
CCCCA

2
66664

�
/r x1ð Þejxt

x2
r � x2 þ j2frxrx

3
77775: (34)

IV. SIZE EFFECTS ON MODAL ELECTROMECHANCIAL
COUPLING COEFFICIENT

One direct measure of energy conversion is the electro-

mechanical coupling coefficient “k” as commonly used in

piezoelectricity.17,57 It is possible to analytically extract the

transverse mode electromechanical coupling coefficient due

to bulk flexoelectricity for the centrosymmetric cantilever

of Fig. 1. A dynamic definition of the modal electrome-

chanical coupling coefficient can be obtained based on the

difference between the open-circuit and short-circuit natu-

ral frequencies17,57

k2 ¼ xoc
rð Þ2 � xsc

rð Þ2

xoc
rð Þ2

; (35)

where k is the flexoelectric coupling coefficient for the r-th

vibration mode (the focus in the simulations of this work

will be placed on the fundamental mode, r ¼ 1). Square of

the coupling coefficient, as well known from piezoelectric

energy conversion problems, is a measure of how much of

the mechanical work is converted to electrical energy, or

vice versa in electrical actuation problems. A similar argu-

ment and an analogous expression can be given in terms of

the open- and short-circuit stiffness terms under quasistatic

conditions.17,57

In order to express the coupling coefficient using Eq.

(35), recall that the undamped short-circuit natural frequency

of the r-th vibration mode is

xsc
r ¼ xr ¼ k2

r

ffiffiffiffiffiffiffiffiffi
YI

mL4

r
: (36)

Then, for modal vibrations (dominated by the r-th mode) and

under open-circuit conditions, Eq. (29) can be reduced to

v tð Þ ¼ �hrgr tð Þ
C

; Rl !1: (37)

064110-5 A. G. Moura and A. Erturk J. Appl. Phys. 121, 064110 (2017)



Substituting Eq. (37) into the modal mechanical equation,

Eq. (21), the undamped open-circuit natural frequency of the

r-th vibration mode becomes

xoc
r


 �2 ¼ xsc
r


 �2
1þ h2

r

x2
r C

 !
(38)

yielding

k2 ¼

h2
r

x2
r C

 !

1þ h2
r

x2
r C

 ! ¼ h2
r

x2
r Cþ h2

r

: (39)

Here, the capacitance is given by Eq. (27) and the modal

coupling term can be expressed as

hr ¼ l1133b
d/r x1ð Þ

dx1

				
x1¼L

¼ l1133b
1ffiffiffiffiffiffiffi
mL
p kr

L
ar; (40)

where

ar ¼ �sin kr � sinh kr þ
sin kr � sinh kr

cos kr þ cosh kr
cos kr � cosh krð Þ:

(41)

Equation (39) then becomes

k2 ¼ 1

c1111e33

l2
1133

k2
r

12a2
r

h2 þ 1

; (42)

which clearly captures the thickness dependence of the

modal flexoelectric coupling coefficient. Note that the funda-

mental (first) bending vibration mode (r ¼ 1) is typically

of interest for energy harvesting using a linear cantilever

under base excitation,53,54 yielding k1 ¼ 1:87510407 and

a1 ¼ �1:46819102 for the simulations in this work (the first

mode shape is shown in Fig. 2(a)). It is worth mentioning

that energy harvesting at higher vibration modes requires

using segmented electrodes to avoid charge cancellation.53,54

The fundamental bending mode results in no cancellation

for continuous electrode coverage since the curvature is in

phase throughout the length of the beam (Fig. 2(c)), i.e.,

there are no inflection points. Note that, 85% of the electric

charge is produced by the first half of the cantilever, i.e.,

0 	 x1 	 L=2, according to Fig. 2(b) (since the integral of

curvature is related to the electric charge according to cur-

rent balance Eq. (27) and the curvature is maximum near

the clamped end in Fig. 2(c)). From the electromechanical

coupling standpoint, 85% of the modal electromechanical

coupling h1 (which determines the coupling coefficient k)

is due to the region 0 	 x1 	 L=2, in view of Eq. (22) and

Fig. 2(b).

In terms of the size effect, Eq. (42) shows that with

decreased thickness (h) the coupling coefficient (k) increases.

This equation also shows the effect of the material properties

on the coupling coefficient. The Figure of Merit (FoM) in

flexoelectric energy conversion is

FoM ¼ l2
1133

c1111e33

; (43)

or l2
1133=c1111v33, and as FoM!1, k2 ! 1 which is the

limit of 100% mechanical-to-electrical energy conversion

within the structure (note that it is not the percentage energy

delivered to the electrical load, hence not an overall effi-

ciency). Since l1133 ¼ v33f1133 and FoM / f 2
1133v33=c1111, the

alternative FoM forms are f 2
1133v33=c1111 or f 2

1133v33s1111

(where s1111 is the short-circuit elastic compliance).

According to FoM / f 2
1133v33s1111, for a fixed flexocoupling

coefficient (e.g., f � q=ð4pe0aÞ based on Kogan’s esti-

mate30), softer materials with high dielectric permittivity

should be preferred for increased FoM. For resonant energy

harvesting purposes, the quality factor (Q) of the material is

also important, and k2Q should be used for comparing

flexoelectric energy harvesting performance of different

materials (and soft materials tend to be more lossy, yielding

low Q values as a tradeoff). However, to explore size

effects in the same single material, the coupling coefficient

alone is sufficient assuming size-independent loss charac-

teristics for simplicity (in fact, favorably, the intrinsic qual-

ity factor is expected to increase with reduced thickness

according to recent molecular dynamics simulations58 at

the nanoscale).

FIG. 2. Normalized (a) displacement, (b) slope, and (c) curvature distributions

of a thin cantilever for the fundamental bending vibration mode (r ¼ 1). The

maximum curvature is near the clamped end. The region 0 	 x1 	 L=2 produ-

ces 85% of the modal electromechanical coupling from Eq. (22) and Fig. 2(b).
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V. CASE STUDIES AND RESULTS

A. Electromechanical coupling coefficient and size
effects

The electromechanical coupling coefficient due to flexo-

electric energy conversion, or simply the transverse mode

flexoelectric coupling coefficient, k, is plotted for a range of

FoM values and cantilever thicknesses in Fig. 3. The focus is

placed on the fundamental bending vibration mode (r ¼ 1),

and the beam thicknesses in the simulations range from 1 mm

to 1 nm. Typical atomistic simulations28 result in flexoelectric

coefficient values on the order of 10�9 C/m while the experi-

mentally identified values (by Cross et al.36,39,59 for mm-scale

samples) are as high as 10�4 C/m. As stated previously based

on Eq. (42), the coupling coefficient increases with decreased

thickness. This is now illustrated graphically in Fig. 3. The

coupling coefficient also increases with increased flexoelectric

FoM defined by Eq. (43). As a specific instance, for typical

Strontium Titanate (STO) elastic60,61 and dielectric24,62 prop-

erties of c1111 ¼ 318 GPa and e33 ¼ 2:66 nF=m (for the room

temperature relative permittivity24,42,62 e33=e0 ¼ 300 – it

should be mentioned that the atomistic simulations28 typically

assume zero temperature), and using the atomistic flexoelec-

tric coefficient value28 of l1133 ¼ �3:75� 10�9 C=m, the

resulting FoM is around l2
1133=c1111e33 ¼ 1:66� 10�20 m2,

yielding negligible coupling coefficient values except at the

nanoscale according to Fig. 3.

Next, consider the experimental value of l1133 ¼ 100

�10�6 C=m (the authors of the original paper36 reported a

positive value) for Barium Strontium Titanate (BST) from the

experiments by Ma and Cross36 for mm-thick samples. The

elastic modulus and permittivity values of BST were reported

in another work by the same group59 as c1111 ¼ 166 GPa and

e33 ¼ 0:1594 lF=m, respectively. The thickness dependence

of the transverse mode coupling coefficient for these proper-

ties of BST is shown in Fig. 4 (solid line), along with that of

STO (dashed line) based on the aforementioned atomistic val-

ues by Maranganti and Sharma28 to demonstrate the order of

magnitude difference between available experiments and

atomistic simulations, although the materials are not identical.

As expected, with decreased thickness, the coupling

coefficient gradually approaches unity, indicating increased

energy conversion with reduced thickness. Importantly, Fig. 4

reveals that, for l1133 ¼ 100� 10�6 C=m, the coupling coeffi-

cient is nearly unity for all submicron thickness levels, which

makes the validity of this value (identified from mm-thick

samples36) as a bulk flexoelectric coefficient questionable.

Such an order of magnitude in the bulk flexoelectric coeffi-

cient (�10�4 C/m) suggests very high conversion even for

micron-thick non-piezoelectric cantilevers, which, obviously,

is not the case. This observation definitely encourages rigor-

ous experiments at much smaller scales (ideally less than

10 nm thickness) and conditions under which the effects other

than bulk flexoelectricity can be eliminated or controlled. The

trend in the second curve (dashed line) based on atomistic

simulations28 of STO (with l1133 ¼ �3:75� 10�9 C=m) is

more reasonable, as it reveals that the coupling coefficient

exceeds 0.1 only when the cantilever thickness is a few nano-

meters. Overall, reducing the thickness from 1 mm to 1 nm

increases the flexoelectric coupling coefficient by nearly 6

orders of magnitude in the STO cantilever.

B. Electromechanical frequency response in energy
harvesting

In this section, the electromechanical frequency

response of a cantilevered flexoelectric energy harvester

under base excitation is simulated with a focus on the first

bending mode (r ¼ 1) for a broad range of electrical load

resistance values. Three different geometric scales are

explored, spanning from mm-scale to nm-scale thickness.

For each case, the length/width/thickness aspect ratio is fixed

at 100/5/1. The cantilever is made of STO and has perfectly

conductive surface electrodes on the faces that are perpen-

dicular to the direction of transverse base excitation (Fig. 1).

The previously mentioned atomistic value28 of l1133 ¼
�3:75� 10�9 C=m is used in the following simulations

FIG. 3. Transverse mode flexoelectric coupling coefficient vs. cantilever

thickness and figure of merit in flexoelectric energy conversion (for the fun-

damental bending vibration mode).

FIG. 4. Flexoelectric coupling coefficient (k) vs. thickness (h) plots obtained

using sample flexoelectric coefficient (l1133) values identified by Ma and

Cross36 for BST (experimental) and calculated by Maranganti and Sharma28

for STO (atomistic). The order of magnitude of the experimentally identified

value for BST results in unrealistically high values of the coupling coeffi-

cient for all submicron thickness levels, suggesting that this coefficient iden-

tified in mm-thick samples is probably not static bulk flexoelectricity, and is

not valid for small scales.
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along with the relevant material properties:60,61

c1111 ¼ 318 GPa, e33 ¼ 2:66 nF=m, and q ¼ 5116 kg=m3. A

mechanical quality factor (Q) of �50 is assumed, yielding an

approximate modal mechanical damping ratio of 1% of the

critical damping (i.e., f1 ffi 1=2Q ¼ 0:01 for the first bending

mode). Three cases with thicknesses of 1 mm, 1 lm, and

1 nm are analyzed to explore the effect of thickness while

keeping the L/b/h aspect ratio fixed at 100/5/1. The mechani-

cal excitation is harmonic base acceleration,

d2wbðtÞ=dt2 ¼ �x2W0ejxt. Therefore, the results are given

in the form of frequency response magnitude maps normal-

ized by the base acceleration quantified in terms of the gravi-

tational acceleration (g ¼ 9:81 m=s2). A wide range of

electrical load resistance values spanning from short- to

open-circuit conditions (100 X to 1 GX) are simulated for

each case study to capture the optimal load in power genera-

tion and the respective trends with changing load.

The voltage output (per base acceleration) frequency

response map (obtained from Eq. (33) via jvðtÞ=�x2W0ejxtj
as the magnitude form) for the 1 mm-thick STO beam

(100 mm� 5 mm� 1 mm) is shown in Fig. 5(a). The base

excitation frequency is normalized with respect to the funda-

mental short-circuit natural frequency in the vertical axis.

With increased electrical load resistance, the voltage output

increases monotonically at all frequencies, as a typical trend

in energy harvesting.54 It is shown that the resonance fre-

quency for the 1 mm-thick STO cantilever is unaffected by

the change in resistive load, i.e., the frequency of peak mag-

nitude does not change as the electrical load resistance value

is swept from short- to open-circuit conditions. This indi-

cates very low electromechanical coupling such that the

feedback in the mechanical domain due to induced low volt-

age is negligible. The flexoelectric coupling coefficient for

the 1 mm thickness level and STO material property combi-

nation is obtained from Eq. (42) or Fig. 4 as k � 3:5� 10�7,

confirming negligible electromechanical coupling. The beam

thickness is then decreased to 1 lm while keeping the

same aspect ratio (i.e., the dimensions are now

100 lm� 5 lm� 1 lm) and the analysis is repeated. The

voltage output frequency response map for this case is shown

in Fig. 5(b). As with the 1 mm thickness case, the 1 lm-thick

STO cantilever shows no noticeable change in the funda-

mental resonance frequency with changing load resistance.

The flexoelectric coupling coefficient of this simulation case

is k � 3:5� 10�4, which, again, indicates very weak electro-

mechanical coupling. Next, the beam thickness is further

decreased to 1 nm and the analysis is repeated for a 100 nm x

5 nm x 1 nm sample. As shown by the voltage output fre-

quency response map in Fig. 5(c), this nm-thick beam exhib-

its a certain shift in resonance frequency from short- to open-

circuit conditions, which is a manifestation of significant

electromechanical coupling according to Eq. (35).

Decreasing the thickness of the cantilever (while keeping the

same volumetric aspect ratio) results in increased electro-

mechnical coupling, hence increased mechanical to electrical

energy conversion. The electromechanical coupling for this

thickness level is k � 0:33, which is in agreement with

nearly 5.6% difference between the values of the fundamen-

tal short- and open-circuit resonance frequencies in Fig. 5(c).

This can easily be confirmed using Eq. (35) (for xsc
1 , xoc

1 ,

and k relationship), since the resonance frequencies (fre-

quencies of peak forced response magnitude) are very close

to the natural frequencies in the lightly damped setting with

f1 ¼ 0:01.

The electric current flowing to the resistive load is sim-

ply obtained from the voltage output using Ohm’s law. The

current output (per base acceleration) frequency response

maps (calculated using jvðtÞ=�Rlx2W0ejxtj) are also gener-

ated for the STO cantilever configurations of each geometric

scale using the previously mentioned fixed volumetric aspect

ratio as displayed in Fig. 6. The electric current decreases

monotonically with increased electrical load resistance at all

frequencies, which is the opposite trend as compared to the

voltage output. At all frequencies, the maximum current is

achieved under short-circuit conditions of the surface elec-

trodes. As with the voltage output frequency response maps,

similar trends are observed for each case study in terms of

the flexoelectric coupling coefficient. The thickness levels of

1 mm and 1 lm show no noticeable shift in resonance

FIG. 5. Voltage output frequency response vs. load resistance maps (in mag-

nitude form and per base acceleration) for cantilevered STO harvesters with

a fixed aspect ratio of 100/5/1 (L/b/h) for three different geometric scales

with the following thickness (h) values: (a) 1 mm, (b) 1 lm, and (c) 1 nm.
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frequency (Figs. 6(a) and 6(b)), indicating negligible electro-

mechanical coupling, whereas the 1 nm thickness case results

in significant frequency shift (Fig. 6(c)), revealing strong

electromechanical coupling as discussed previously for the

voltage output.

As a product of two quantities which have opposite

trends with changing load resistance, the electrical power

output exhibits more interesting trends, such as the presence

of an optimal electrical load resulting in the maximum power

output at a given frequency. The electrical power output is

calculated using jvðtÞ=�x2W0ejxtj2=Rl (which is nothing but

the product of the voltage and current figures) for each of the

three geometric scales and the fixed aspect ratio discussed

previously. The resulting graphs are shown in Fig. 7. Note

that, since the output voltage and current are individually

proportional to the base acceleration, the power output is

proportional to base acceleration squared (hence normalized

by g2), i.e., doubling the base acceleration increases the

power output by a factor of 4 under the linear system

assumption. The optimal load for peak power output can be

determined for each case from the power output frequency

response maps. For instance, the cases of both 1 mm and

1 lm-thick harvesters result in a peak power output around 1

MX (Figs. 7(a) and 7(b)). As with the previous frequency

response maps, the 1 mm and 1 lm power output frequency

response maps show the resonance frequency to be insensi-

tive to the resistive load due to very low electromechanical

coupling. Consequently, a single optimal load is observed in

the power map for the fundamental vibration mode. On the

other hand, the 1 nm case study exhibits two peak values for

two distinct optimal electrical loads, 100 kX and 10 MX,

respectively, at the short-circuit and open-circuit resonance

frequencies, yielding the same power output. The existence

of two peaks in the power output is also the case in strongly

coupled and lightly damped piezoelectric energy harvest-

ers.54,63,64 The same power output can be extracted at the

short-circuit resonance frequency (�xsc
1 ) for a lower electri-

cal load resistance or at the open-circuit resonance frequency

(�xoc
1 ) for a larger electrical load resistance. As a result, the

FIG. 6. Current output frequency response vs. load resistance maps (in mag-

nitude form and per base acceleration) for cantilevered STO harvesters with

a fixed aspect ratio of 100/5/1 (L/b/h) for three different geometric scales

with the following thickness (h) values: (a) 1 mm, (b) 1 lm, and (c) 1 nm.

FIG. 7. Power output frequency response vs. load resistance maps (in mag-

nitude form and per base acceleration squared) for cantilevered STO har-

vesters with a fixed aspect ratio of 100/5/1 (L/b/h) for three different

geometric scales with the following thickness (h) values: (a) 1 mm, (b) 1 lm,

and (c) 1 nm.
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former optimal condition results in larger current and lower

voltage, while the latter gives larger voltage and lower cur-

rent, which can also be confirmed with Figs. 5 and 6. On the

practical side of energy harvesting implementation, in some

cases higher voltage is preferred, such as in AC-DC conver-

sion using a rectifier, in order to overcome forward bias volt-

age of diodes, when charging a storage component. In other

scenarios (if the voltage output is not an issue), higher cur-

rent may be preferred, e.g., to charge a storage component

faster. Note that, with reduced thickness from mm to nm in

Fig. 7, the resonant electrical power magnitude for a fixed

base acceleration intensity decreases substantially (by 13

orders of magnitude); however, the volume also decreases

(by 18 orders of magnitude); hence, the power density

increases by a factor of about 105 if the mechanical base

acceleration magnitude is kept the same.

Finally, it is of interest to explore what happens to the

structural response of the STO cantilever while generating

electricity from strain gradient fluctuations in response to

mechanical base excitation. The motion of the cantilever can

be evaluated at any position (x1) using Eq. (34), while the

focus is typically placed on the tip (x1 ¼ L). Figure 8 shows

the tip displacement map (per base acceleration input via

jwrelðL; tÞ=�x2W0ejxtj) for the cantilevers of all three geo-

metric scales using the same load resistance and normalized

excitation frequency ranges discussed previously. For the

cases of 1 mm and 1 lm thickness levels, as another manifes-

tation of very weak electromechanical coupling at these geo-

metric scales, the vibration response of the cantilever is

insensitive to changing electrical load resistance (Figs. 8(a)

and 8(b)). That is, although some power output is delivered

to the electrical load according to Figs. 7(a) and 7(b), the

level of this electrical output is so small that it is negligible

as compared to mechanical (vibrational) energy of the har-

vester (confirmed by the coupling coefficient values); and

this tiny level of electricity production does not alter the

vibration response although the converse effect is taken into

account in the model (i.e., the converse flexoelectric effect is

negligible at these geometric scales). Therefore, as a result

of weak electromechanical coupling, Joule heating in the

resistive load does not create any significant dissipation in

the vibration response of the STO cantilever. However, for

the cantilever with 1 nm thickness, as we know from the pre-

vious electrical output graphs (Figs. 5(c), 6(c), and 7(c)), the

electromechanical coupling is relatively strong, and there-

fore, mechanical to electrical energy conversion is rather sig-

nificant. As a consequence, the response of the harvester is

sensitive to changing electrical load in Fig. 8(c) in the vicin-

ity of the resonance. Certain load resistance values result in

significant shunt damping, analogous to piezoelectric shunt

damping,65 confirming thermodynamic consistency of the

fully coupled electroelastodynamic model.

VI. CONCLUSIONS

An electroelastodynamic framework is developed and

analyzed for flexoelectric energy harvesting from strain gra-

dient fluctuations in centrosymmetric dielectrics, by account-

ing for the presence of a finite electrical load across the

surface electrodes as well as two-way electromechanical

coupling. The flexoelectric energy harvester model presented

in this work is based on the Euler-Bernoulli beam theory and

it assumes the main source of polarization to be static bulk

flexoelectricity. Following recent efforts on the converse

flexoelectric effect in finite samples, the proposed model

properly accounts for thermodynamically consistent, sym-

metric, direct and converse coupling terms, and it captures

the size effect on the coupling coefficient.

Based on a modal analysis procedure, closed-form solu-

tions of the electromechanical frequency response functions

(voltage across the electrical load and coupled vibration

response) are given. Results of an extensive analysis are pre-

sented at different geometric scales (mm, lm, and nm thick-

ness levels with a fixed aspect ratio) for a Strontium Titanate

(STO) cantilever that is shunted to a resistive electrical load

for quantifying the electrical power output and its feedback

on the vibration response due to the converse effect.

Harmonic excitation is assumed and the focus of the

FIG. 8. Tip displacement frequency response vs. load resistance maps (in

magnitude form and per base acceleration) for cantilevered STO harvesters

with a fixed aspect ratio of 100/5/1 (L/b/h) for three different geometric

scales with the following thickness (h) values: (a) 1 mm, (b) 1 lm, and (c)

1 nm.
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numerical study is placed on the fundamental bending mode,

which is the most flexible mode and it results in no charge

cancellation when continuous surface electrodes are

employed. However, the model can be employed for higher

vibration modes, segmented electrodes, as well as other

deterministic or random mechanical excitation forms.

The transverse mode flexoelectric coupling coefficient,

k, (as a direct and compact measure of energy conversion) is

analytically extracted from the short- and open-circuit natu-

ral frequencies. Dependence of the coupling coefficient on

the thickness and material parameters (figure of merit) is dis-

cussed in detail. The flexoelectric energy conversion and har-

vesting become significant only at nm thickness levels for

typical flexoelectric coefficients obtained from atomistic

simulations (with an order of magnitude �10�9 C/m). For

instance, the negligible flexoelectric coupling of an STO

cantilever at the mm thickness level increases by 6 orders of

magnitude (from k � 3:5� 10�7 to k � 0:33) when the

thickness is reduced to nm-level. It is no surprise that the

flexoelectric power output of an individual nanoscale centro-

symmetric dielectric cantilever is very low (Fig. 8).

However, the quantitative understanding of this size depen-

dence provided by the presented framework could help the

designer tailor the individual beam dimensions (cross section

for bending vibrations) and fabricate a cluster of flexoelectric

energy harvesters to maximize energy conversion under the

constraints of a fixed material volume, target frequency

range, among other parameters.

Substantially high values of flexoelectric coefficients

(�10�4 C/m) reported in the literature based on experiments

conducted with mm-thick samples result in extremely high

values of the coupling coefficient (k), yielding values nearly

unity for all submicron thickness levels, and therefore sug-

gesting very high energy conversion even at the lm thick-

ness level, which is not the case in reality. This observation

confirms that the identified constants for certain mm-thick

samples probably do not represent bulk flexoelectricity and

are not valid at other scales (and cannot be used in the pro-

posed model). Therefore, the need for rigorous experiments

at smaller scales is pointed out (at submicron scales, and

preferably for less than 10 nm sample thickness, by eliminat-

ing or controlling the effects other than bulk flexoelectricity).

Overall, the proposed framework can be used not only for

flexoelectric energy harvesting, but also for sensing, actua-

tion, and parameter identification in experiments conducted

at various geometric scales within the limits of continuum

electroelastodynamics. While this work has considered static

bulk flexoelectricity alone, future electroelastodynamic

modeling efforts may consider incorporating surface piezo-

electricity and flexoelectricity,24,25 as well as size-

dependence of the quality factor due to intrinsic dissipation

mechanisms58 (since k2Q is a more complete figure of merit

for resonant energy harvesting).
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