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Abstract Inherent nonlinearities of piezoelectric
materials are pronounced in various engineering appli-
cations such as sensing, actuation, combined applica-
tions for vibration control, and energy harvesting from
dynamical systems. The existing literature focusing on
the dynamics of electroelastic structures made of piezo-
electric materials has explored such nonlinearities sep-
arately for the problems of mechanical and electrical
excitation. Similar manifestations of softening non-
linearities have been attributed to purely elastic non-
linear terms, coupling nonlinearities, hysteresis alone,
or a combination of these effects by various authors.
In order to develop a unified nonlinear nonconserv-
ative framework with two-way coupling, the present
work investigates the nonlinear dynamic behavior of a
bimorph piezoelectric cantilever under low to moder-
ately high mechanical and electrical excitation levels
in energy harvesting, sensing, and actuation. The high-
est voltage levels, for near resonance investigation, are
well below the coercive field. A distributed parame-
ter electroelastic model is developed by accounting for
softening and dissipative nonlinearities to analyze the
primary resonance of a soft (e.g., PZT-5A, PZT-5H)
piezoelectric cantilever for the fundamental bending
mode using the method of harmonic balance. Excellent
agreement between the model and experimental inves-
tigation is found, providing evidence that quadratic
stiffness, damping, and electromechanical coupling
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effects accurately model predominantly observed non-
linear effects in geometrically linear vibration of piezo-
electric cantilever beams. The backbone curves of both
energy harvesting and actuation frequency responses
for a PZT-5A cantilever are experimentally found to
be dominantly of first order and specifically governed
by ferroelastic quadratic softening for a broad range
of mechanical and electrical excitation levels. Cubic
and higher-order nonlinearities become effective only
near the physical limits of the brittle and stiff (geomet-
rically linear) bimorph cantilever when excited near
resonance.

Keywords Piezoelectricity · Nonlinear analysis ·
Energy harvesting · Sensing · Actuation

1 Introduction

Nonlinearities of piezoelectric materials are manifested
in various engineering applications such as sensing,
actuation, as well as their combined applications for
vibration damping and control, and most recently,
energy harvesting from dynamical systems. Literature
dealing with the dynamics of electroelastic structures
made of piezoelectric materials has explored such non-
linearities in a disconnected way for the separate prob-
lems of mechanical and electrical excitation, such that
nonlinear resonance trends have been assumed to be
due to different additional terms in constitutive equa-
tions by different researchers. Similar patterns of soft-
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ening nonlinearities have been attributed to purely elas-
tic nonlinear terms, coupling nonlinearities, or both of
these effects by various authors. After early investi-
gation by Maugin [1] and Tiersten [2] into nonlinear
electromechanical effects of piezoelectric materials,
the nonlinear analysis of actuated piezoelectric beams
started to gain momentum. Aurelle et al. [3] studied the
contribution of strain and electromechanical coupling
to the nonlinear response of an actuated beam under low
electric field excitation with stress (T1) modeled as,

T1 = c11S1 − e31 E3 + α111S2
1 + γ311S1 E3,

where S1 is the strain, E3 is the electric field, c11

and e31 represent the linear elastic and piezoelectric
constants in the standard form [1], while α111 and
γ311 are the nonlinear constants. Experimentally shown
attenuations in amplitude beyond linear damping was
attributed to the electromechanical coupling term γ311.
Guyomar et al. [4] justified the approach used by
Aurelle et al. [3] by showing that a term proportional
to the square of electric field was negligible. Recently,
Abdelkefi et al. [5,6] used the constitutive equations
suggested by Aurelle et al. [3] for nonlinear piezoelec-
tric energy harvester modeling and simulations. Study-
ing both weak and high electric fields, Wang et al.
[7], showed how deviating from weak electric fields
increased the effect of electromechanical nonlinearities
through third-order elasticity and second-order elec-
tric field with a cross S1 E3 expression in the stress
equation. This work also attributed high actuation level
attenuation toward nonlinear damping dependent on
the electric field. Albareda et al. [8] only considered
higher-order elasticity nonlinearities in the formulation
of the thermodynamic potential (free electric enthalpy
density or the Gibbs free energy density). Priya et al.
[9] analyzed high electric field nonlinear elastic and
electromechanical nonlinearities, but found that the
electromechanical terms depended on the square of the
strain amplitude. Wolf and Gottlieb [10] also attributed
the nonlinear phenomenon of an actuated cantilever in
both symmetric (bimorph) and asymmetric (unimorph)
configurations to elasticity by considering an electric
enthalpy density of

H = 1

2
c11S2

1 −e31 E3S1− 1

2
ε33 E2

3 + 1

6
c3S3

1 + 1

24
c4S4

1 ,

which results in second- and third-order elastic depen-
dence in the stress equation related to c3 and c4

(depending on the bimorph or unimorph arrangement,
i.e., symmetry with respect to the reference surface)
along with a linear dependence on electric field and
electromechanical coupling. This model was experi-
mentally applied by Usher et al. [11] Von Wagner and
Hagedorn [12] derived an electric enthalpy density for-
mula to take into account quadratic and cubic nonlin-
earities of strain and coupling. The resulting electric
enthalpy density expression was

H = 1

2
c0S2

1 + 1

3
c1S3

1 + 1

4
c2S4

1 − γ0S1 E3

−1

2
γ1S2

1 E3 − 1

3
γ2S3

1 E3 − 1

2
ν2 E2

3 ,

where c1, c2, γ1, and γ2 represent the nonlinear para-
meters. Also taking a purely geometric nonlinearity
approach, Mahmoodi et al. [13] analyzed a MEMS
piezoelectrically coupled cantilever. This was validated
by assuming low electric field and that material non-
linearities due to strain were an order of magnitude
larger than coupling parameters. The analysis shows
the importance of the backbone curve, which tracks
peak amplitude for increasing voltage excitation lev-
els, in the identification of nonlinear parameters.

From this review of nonlinear actuation models, it is
evident that a consistent approach has yet to be devel-
oped. Even in cases with weak electric field, it is unclear
whether nonlinear electromechanical coupling can be
excluded. Additionally, proper modeling is typically
avoided when deriving the constitutive equation pair
from a higher-order form of electric enthalpy. Further
efforts are due to the analysis of the energy harvesting
problem as summarized next.

Hu et al. [14] analyzed the nonlinear behavior of
a shear vibration piezoelectric energy harvester by
applying the cubic theory of the displacement gradi-
ent initially introduced by Maugin [1] and Tiersten [2].
Higher-order electromechanical coupling and electric
field terms were neglected due to the weak electric field
assumption. Stanton et al. [15,16] studied the results of
higher order strain and electromechanical coupling and
attributed experimentally shown peak attenuation at
higher excitation levels to a nonlinear quadratic damp-
ing term [17]. Later, considering weak electric fields in
energy harvesting, the same group [18] reanalyzed the
energy harvesting problem by removing higher-order
electromechanical coupling and considering only elas-
tic nonlinearities up to fifth order,
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Bimorph piezoelectric cantilever for energy harvesting, sensing, and actuation 1729

T1 = c11S1 − e31 E3 + c3S2
1 + c4S3

1 + c5S4
1 + c6S5

1 ,

and this approach was suggested to be more consis-
tent, since the electric field levels in energy harvesting
are not as high as those in actuation. As an alterna-
tive to the aforementioned models developed by von
Wagner [12] and Stanton et al. [15], Goldschmidtboe-
ing et al. [19] recently explored the effect of ferroelas-
tic (stress–strain) hysteresis on piezoelectric cantilever
beams. This group chose to ignore higher-order nonlin-
ear elasticity and nonlinear coupling terms, and instead
attribute observed nonlinear effects entirely to hys-
teresis. This resulted in a constitutive equation of the
form,

T1 = c11 (1 − α|S1|) S1 − e31 E3,

and per cycle energy density dissipation relation,

Udis = 4

3
γ c11|S1|3,

where |S1| is the strain amplitude, and α and γ are
parameters quantifying the hysteretic softening and dis-
sipation effects (not be confused with ferroelectric or
dielectric hysteresis effects [20–22], since electric field
levels in energy harvesting are well below the coer-
cive field). The modeling of ferroelastic hysteresis [19]
provided a single physical explanation for both the
observed nonlinear stiffness and damping effects.

The discrepancy within and between the actuation
and energy harvesting nonlinear analyses shows that
a unified model of a piezoelectrically coupled beam
that works for both problems of two-way coupling
does not yet exist. A reliable nonlinear constitutive
equation for a given piezoelectric material is expected
to be rather unique and valid regardless of the appli-
cation, e.g., actuation, sensing, or energy harvesting.
A systematic approach focusing on the two-way cou-
pling can result in a sound mathematical framework.
To this end, the present work investigates the nonlinear
dynamic behavior of a bimorph piezoelectric cantilever
under low to moderately high mechanical and electri-
cal excitation levels (yielding electric fields well below
the coercive field) in energy harvesting, sensing, and
actuation. Building on previous work, both hysteretic,
elastic, and electromechanical coupling nonlinearities
are considered. A mathematical framework is devel-
oped by using the method of harmonic balance and
compared to experiments to identify the nonlinear sys-
tem parameters and validate the proposed model for
a broad range of mechanical and electrical excitation

levels within the structural failure limits of a PZT-5A
bimorph cantilever.

2 Nonlinear, nonconservative electroelastic
modeling

The system to be studied consists of a symmetric piezo-
electric bimorph cantilever with two piezoelectric lay-
ers on either side of a metal central layer. The piezo-
electric layers are poled in the thickness direction, with
the top and bottom surfaces forming the electrodes.
A diagram of the bimorph for energy harvesting from
base motion and dynamic actuation with fixed base is
shown in Fig. 1 for the series and parallel connection
cases of the piezoelectric layers. The cantilever used
in this work exhibits high stiffness, resulting in small
deflections and slopes for all practical excitation lev-
els within the structural failure limits. This ensures that
geometric nonlinearity is negligible, making observa-
tion and identification of the electroelastic nonlineari-
ties of interest possible. Considering the work of von
Wagner and Hagedorn [12] and Goldschmidtboeing
et al. [19], the following nonlinear electric enthalpy
density expression is proposed along with a nonlinear
structural dissipation term:

Fig. 1 Schematic representation of a piezoelectric bimorph for
operation in base motion energy harvesting and actuation with
series and parallel wiring configurations
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Fig. 2 Response of an oscillator with quadratic (a) and cubic (b)
softening stiffness nonlinearity. Response curves at various exci-
tation amplitudes are shown by solid blue lines. The backbone
curve is shown by a dashed red line

H = 1

2
c11S2

1 + 1

3
c111S3

1 sgn(S1)− e31S1 E3

− 1

2
e311S2

1 sgn(S1)E3 − 1

2
ε33 E2

3 (1)

Udis ∝ |S1|3. (2)

As discussed previously, common practice currently is
to express the enthalpy as a polynomial in the strain and
electric field. When applying such a model to a sym-
metric structure, terms proportional to second-order
nonlinear coefficients vanish, making third-order non-
linear terms necessary to predict any nonlinear behav-
ior. In this work, an electric enthalpy density expressed
as a polynomial in the strain magnitude, rather than
the strain itself, is proposed. In this way, second-
order terms do not vanish unlike the previous efforts
[12,15]. For illustration, Fig. 2 shows behavior due to
quadratic and cubic stiffness nonlinearities. While both
quadratic and cubic stiffness models can exhibit the
same type of nonlinearities (hardening or softening) as
an experimentally observed system, the two models are
qualitatively different. This is apparent by examining
the backbone curve, which connects the peaks of fre-
quency response curves at all excitation amplitudes. A
quadratic stiffness model, e.g.,

ẍ + 2ζ ẋ + x − x2 sgn(x) = f (t),

predicts a backbone curve that changes linearly with
the response amplitude as in Fig. 2a. A cubic stiffness
model, e.g.,

ẍ + 2ζ ẋ + x − x3 = f (t),

predicts a quadratic variation of the peak response
frequency with response amplitude as in Fig. 2b. As
shown by Goldschmidtboeing et al. [19], stiff piezo-
electric bimorphs display a linear decrease in peak
response frequency with increased excitation level. In
fact, other published experimental data in the litera-
ture also exhibit first-order backbone curve trends in
soft piezoelectrics, e.g., Fig. 4 in Usher and Sim [11]
and Fig. 5 in Mahmoodi et al. [13], among others,
while the respective models predict second-order back-
bone curves. Therefore, a model is required that does
not allow second-order stiffness and electromechanical
coupling terms to vanish. As for nonlinear dissipation,
only mechanical (ferroelastic) hysteresis is assumed
with Eq. (2), since the present work is intended for
low to moderate excitation levels near resonance, yield-
ing electric fields well below of the coercive field of
piezoelectric layers. Therefore, ferroelectric (polariza-
tion electric field) and dielectric (electric displacement
field) hysteresis effects [21] and resulting high-field
losses are excluded in this framework.

3 Distributed parameter model derivation

From the electric enthalpy density expression, the lon-
gitudinal stress, T1, and the transverse electric displace-
ment, D3, can be found using the following relations:

T1 = ∂H

∂S1
, D3 = − ∂H

∂E3
, (3)

yielding,

T1 = c11S1 + c111S2
1 sgn(S1)

− e31 E3 − e311S1 sgn(S1)E3 (4)

D3 = e31S1 + 1

2
e311S2

1 sgn(S1)+ ε33 E3, (5)

which satisfy,

∂T1

∂E3
= −∂D3

∂S1
. (6)

Deformations are assumed to be small (in agree-
ment with the experiments for the stiff and brittle sam-
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ple explored in this work); therefore, axial strain in
the beam is modeled using Euler–Bernoulli theory,
namely

S1 = −x3u′′
3(x1, t), (7)

where u3(x1, t) is the transverse deflection of the beam
from equilibrium, and ( )′ denotes the spatial deriva-
tive, ∂/∂x1. For the case of series connected piezoelec-
tric laminates, the transverse electric field is modeled
as

E3 = − λ̇

2hp
sgn(x3), (8)

whereλ is a electric flux linkage coordinate [15,18,23],
hp is the thickness of each piezoelectric layer, and ˙( )
denotes the time derivative, ∂/∂t . The time derivative
of flux linkage represents the electrode voltage, which
will be substituted in later in the analysis. For the case
of parallel connected electrodes, the electric field is
modeled as

E3 = − λ̇

hp
sgn(x3). (9)

The total kinetic energy of the beam undergoing pre-
scribed transverse base motion is,

T = 1

2

∫ l

0
m̂

[
u̇3 + ż(t)

]2dx1. (10)

The base velocity is denoted by ż(t), and m̂ represents
the mass per unit length of the bimorph. The total poten-
tial energy of the piezoelectric bimorph is the sum of
the potential energies of the substrate, Us, and piezo-
electric laminates, Up:

U = Us + Up. (11)

The substrate strain energy can be expressed as,

Us = 1

2

∫ l

0

csbh3
s

12

(
u′′

3

)2 dx1, (12)

where cs is the substrate Young’s modulus, b is the
width of the beam, and hs is the thickness of the
substrate layer. The piezoelectric laminate potential
energy is volumetric integral of the electric enthalpy
density, H .

Up =
∫

Vp

HdVp =
∫ l

0

{∫ b
2

− b
2

[∫ hs
2 +hp

hs
2

Hdx3

+
∫ − hs

2

− hs
2 −hp

Hdx3

]
dx2

}
dx1 (13)

Performing the spatial integration over the cross section
yields the following potential energy expression:

U = 1

2

∫ l

0

{
k̂1

(
u′′

3

)2 + 1

3
k̂2

(
u′′

3

)3 sgn(u′′
3)

−
[
2θ̂1u′′

3 + θ̂2
(
u′′

3

)2 sgn(u′′
3)

]
λ̇

}
dx1 − 1

2
C λ̇2

(14)

The distributed mass and stiffness coefficients are given
as:

m̂ = b(ρshs + 2ρphp)

k̂1 = 1

12
csbh3

s + 1

6
c11bhp

(
4h2

p + 6hphs + 3h2
s

)

k̂2 = 1

2
c111bhp

(
2h3

p + 4h2
phs + 3hph2

s + h3
s

)
(15)

For series connected electrodes, the electromechanical
coupling coefficients and harvester capacitance are

θ̂1 = 1

2
e31b

(
hp + hs

)

θ̂2 = 1

12
e311b

(
4h2

p + 6hphs + 3h2
s

)

C = bl∗ε33

2hp
. (16)

For parallel connected electrodes, the electromechani-
cal coupling coefficients and harvester capacitance are

θ̂1 = e31b
(
hp + hs

)

θ̂2 = 1

6
e311b

(
4h2

p + 6hphs + 3h2
s

)

C = 2bl∗ε33

hp
. (17)

In both series and parallel connected electrode cases,
the capacitance, C , depends on the effective length of
the bimorph, l∗, rather than the overhanging cantilever
length, l. In this work, the total length is used for l∗.

To generate governing partial differential equations
and boundary conditions, Hamilton’s principle is used.∫ t1

t0
(δL + δWnc) dt = 0 (18)

The Lagrangian, L , is the difference of kinetic and
potential energy, T −U , and δWnc is the nonconserva-
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tive virtual work. The variation of the Lagrangian can
be expressed using the chain rule,

δL
(
u̇3, u′′

3, λ̇
) = ∂L

∂ u̇3
δu̇3 + ∂L

∂λ̇
δλ̇+ ∂L

∂u′′
3
δu′′

3. (19)

The nonconservative virtual work is comprised of
three parts: first-order structural damping, second-
order structural damping due to Eq. (2), and dissipation
due to Joule heating of the load resistance.

δWnc = −
∫ l

0

[
b̂1u3 sgn(u3)+ b̂2u2

3

]

× sgn(u̇3)δu3dx1 − λ̇

R
δλ (20)

Integrating by parts results in a variational expres-
sion for the governing partial differential equations and
boundary conditions.∫ t1

t0

{[
− ∂

∂t

(
∂L

∂ u̇3

)
+ ∂2

∂x2
1

(
∂L

∂u′′
3

)

−
∫ l

0

[
b̂1u3 sgn(u3)+ b̂2u2

3

]
sgn(u̇3)dx1

]
δu3

+
[
− ∂

∂t

(
∂L

∂λ̇

)
− λ̇

R

]
δλ

+
[
− ∂

∂x1

(
∂L

∂u′′
3

)]
δu3|l0 + ∂L

∂u′′
3
δu′

3|l0
}

dt = 0

(21)

The first portion governs the mechanical domain for
arbitrary δu3:

− ∂

∂t

(
∂L

∂ u̇3

)
+ ∂2

∂x2
1

(
∂L

∂u′′
3

)

−
∫ l

0

[
b̂1u3 sgn(u3)+ b̂2u2

3

]
sgn(u̇3)dx1 = 0, (22)

and results in the PDE:

m̂ü3 +
(

b̂1u3 sgn(u3)+ b̂2u2
3

)
sgn(u̇3)+ k̂1u(4)3

+ k̂2

[
u′′

3u(4)3 +
(

u(3)3

)2
]

sgn(u′′
3)

−
{
θ̂1

[
δ′(x1)− δ′(x1 − l)

]

+ θ̂2u(4)3 sgn(u′′
3)

}
λ̇ = −m̂z̈(t). (23)

Here, δ′ represents the first spatial derivative of the
Dirac delta function. The second portion of the varia-
tional expression for arbitrary δλ governs the electrical
domain:

− ∂

∂t

(
∂L

∂λ̇

)
− λ̇

R
= 0, (24)

and results in the ODE:

C λ̈+ λ̇

R
+

∫ l

0

[
θ̂1 + θ̂2u′′

3 sgn(u′′
3)

]
u̇′′

3dx1 = 0. (25)

Substituting voltage, v, for the time derivative of the
flux linkage coordinate, λ, yields the following pair of
governing differential equations for the piezoelectric
bimorph:

m̂ü3 +
(

b̂1u3 sgn(u3)+ b̂2u2
3

)
sgn(u̇3)+ k̂1u(4)3

+ k̂2

[
u′′

3u(4)3 +
(

u(3)3

)2
]

sgn(u′′
3)

−
{
θ̂1

[
δ′(x1)− δ′(x1 − l)

]

+ θ̂2u(4)3 sgn(u′′
3)

}
v = −m̂z̈(t) (26)

C v̇ + v

R
+

∫ l

0

[
θ̂1 + θ̂2u′′

3 sgn(u′′
3)

]
u̇′′

3dx1 = 0.

(27)

4 Discretization

To reduce the partial differential equations to ordinary
differential equations, Galerkin’s method is applied. A
single-mode solution is used for the first bending mode,
namely

u3(x1, t) = x(t)φ(x1). (28)

Here, x(t) = u3(l, t) is the deflection of the cantilever
tip relative to equilibrium, and φ(x1) is the unit nor-
malized shape function, i.e.,

φ(l) = 1. (29)

Substitution of Eq. (28) into Eq. (26), multiplying by
φ(x1), and integrating over the length, yields the fol-
lowing ordinary differential equation for the mechani-
cal behavior of the bimorph,

mẍ +
(

b1x sgn(x)+ b2x2
)

sgn(ẋ)

+ k1x + k2x2 sgn(x)

− [
θ1 + θ2x sgn(x)

]
v = −m̄z̈(t). (30)

Substitution of Eq. (28) into Eq. (27) results in the
governing equation for the electrical behavior of the
bimorph,
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C v̇ + v

R
+ [
θ1 + ψ2x sgn(x)

]
ẋ = 0. (31)

The spatially discretized model is parameterized by the
following values:

m = m̂
∫ l

0
φ2dx1

m̄ = m̂
∫ l

0
φ dx1

b1 = b̂1

∫ l

0
φ2dx1

b2 = b̂2

∫ l

0
φ3 sgn(φ)dx1

k1 = k̂1

∫ l

0
φ(4)φ dx1

k2 = k̂2

∫ l

0

[
φ′′φ(4) +

(
φ(3)

)2
]
φ sgn(φ′′)dx1

θ1 = θ̂1φ
′(l)

θ2 = θ̂2

∫ l

0
φ(4)φ sgn(φ′′)dx1

ψ2 = θ̂2

∫ l

0

(
φ′′)2 sgn(φ′′)dx1. (32)

In this analysis, the first mode shape of a purely
mechanical Euler–Bernoulli cantilever beam is chosen
for φ, i.e.,

φ(x1) = 1

2

{
cosh

(
βx1

l

)
− cos

(
βx1

l

)

− σ
[

sinh

(
βx1

l

)
− sin

(
βx1

l

)] }
, (33)

with

β = 1.87510407

σ = 0.7341.
(34)

With this choice of φ, the forward and backward
quadratic electromechanical coupling coefficients, θ2

and ψ2 are equal, similar to the result shown by Stan-
ton et al. [15]

θ2 = ψ2 (35)

4.1 Energy harvesting and sensing

For the case of energy harvesting and sensing, the
bimorph is subjected to a transverse base acceleration,
z̈(t), and the electrodes are shunted by a load resistance,

R. The lumped parameter dynamical model for energy
harvesting is represented as,

mẍ +
(

b1x sgn(x)+ b2x2
)

sgn(ẋ)+ k1x

+ k2x2 sgn(x)− [
θ1 + θ2x sgn(x)

]
v = −m̄z̈(t)

(36)

C v̇ + v

R
+ [
θ1 + θ2x sgn(x)

]
ẋ = 0. (37)

The coordinates, x and v, are the relative tip dis-
placement of the cantilever and the voltage across the
electrodes. Here, m̄ and m are base acceleration forc-
ing constant and the effective mass of the beam. The
parameters, b1, k1, and θ1, are the linear damping,
stiffness, and electromechanical coupling constants,
respectively. The parameters k2, b2, and θ2 represent
the nonlinear stiffness, damping, and electromechan-
ical coupling effects. The equivalent capacitance, C ,
is the value measured across the electrodes of the
bimorph.

4.2 Dynamic actuation

The dynamic actuation case refers to the piezolectric
bimorph fixed from one end to a rigid base and a
prescribed dynamic voltage, v(t), applied to the elec-
trodes. The lumped parameter dynamical model for
dynamic actuation is represented as,

mẍ +
(

b1x sgn(x)+ b2x2
)

sgn(ẋ)

+ k1x + k2x2 sgn(x) = [
θ1 + θ2x sgn(x)

]
v(t) (38)

C v̇ + i + [
θ1 + θ2x sgn(x)

]
ẋ = 0. (39)

The model differs from the energy harvesting case in
that the electromechanical coupling is now the forcing
term on the right-hand side of Eq. (38), and the cur-
rent through the bimorph, i , is supplied by the power
source, rather than related to the voltage across the load
resistance by Ohm’s Law. The model parameters are the
same as in Sect. 4.1, making Eqs. (36–39) a global set of
nonlinear nonconservative equations in physical coor-
dinates for energy harvesting, sensing, and dynamic
actuation for geometrically linear deformations.

5 Harmonic balance analysis

The method of harmonic balance has been used exten-
sively to analyze periodic solutions of nonlinear ordi-
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nary differential equations. A Fourier series solution is
assumed, replacing the ordinary differential equations
with algebraic equations. The error of the approximate
solution is minimized in the Galerkin method sense.
The resulting system of algebraic equations is solved
iteratively, with a method such as the Newton-Raphson
method. In this analysis, a single-term harmonic bal-
ance solution is sufficient to approximate the steady-
state response to harmonic excitation.

5.1 Energy harvesting and sensing

For the energy harvesting and sensing configuration,
base acceleration is taken to be harmonic with constant
amplitude, i.e.,

z̈(t) = A cos(Ωt) (40)

The unknown steady-state tip displacement and voltage
responses are assumed to be of the form:

x(t) = X1 cos(Ωt)+ X2 sin(Ωt)

v(t) = V1 cos(Ωt)+ V2 sin(Ωt) (41)

The amplitude of x is given by X =
√

X2
1 + X2

2. Sub-
sitution of Eqs. (40) and (41) into Eqs. (36) and (37)
and application of the harmonic balance method yields
the following set of algebraic equations in X1, X2, V1,
and V2:

−mΩ2 X1 +
(

2

π
b1 + 4

3π
b2 X

)
X2

+
(

k1 + 8

3π
k2 X

)
X1 − θ1V1

− 4

3π
θ2

[(
2X2

1 + X2
2

)
V1 + X1 X2V2

X

]

+ m̄ A = 0

−mΩ2 X2 −
(

2

π
b1 + 4

3π
b2 X

)
X1

+
(

k1 + 8

3π
k2 X

)
X2 − θ1V2

− 4

3π
θ2

[
X1 X2V1 + (

X2
1 + 2X2

2

)
V2

X

]
= 0

CΩV2 + 1

R
V1 +

(
θ1 + 4

3π
θ2 X

)
ΩX2 = 0

CΩV1 − 1

R
V2 +

(
θ1 + 4

3π
θ2 X

)
ΩX1 = 0. (42)

5.2 Dynamic actuation

For the dynamic actuation configuration, the unknown
steady-state tip displacement is the same as in Eq. (41),
while the voltage is replaced by the expression:

v(t) = V cos(Ωt). (43)

The current flow through the piezoelectric bimorph is
assumed to be of the form:

i(t) = I1 cos(Ωt)+ I2 sin(Ωt). (44)

Substituting Eqs. (43) and (44) into Eqs. (38) and (39)
and application of the harmonic balance method yields
the follow set of algebraic equations in X1, X2, I1, and
I2:

−mΩ2 X1 +
(

2

π
b1 + 4

3π
b2 X

)
X2

+
(

k1 + 8

3π
k2 X

)
X1

−
[
θ1 + 4

3π
θ2

(
2X2

1 + X2
2

X

)]
V = 0

−mΩ2 X2 −
(

2

π
b1 + 4

3π
b2 X

)
X1

+
(

k1 + 8

3π
k2 X

)
X2

− 4

3π
θ2

(
X1 X2

X

)
V = 0

I1 +
(
θ1 + 4

3π
θ2 X

)
ΩX2 = 0

−I2 +
(
θ1 + 4

3π
θ2 X

)
ΩX1 + CΩV = 0. (45)

5.3 Quasi-static actuation

Low-frequency harmonic actuation can be analyzed
simply by setting the forcing frequency, Ω , equal to
zero in Eq. (45) yielding,(

2

π
b1 + 4

3π
b2 X

)
X2 +

(
k1 + 8

3π
k2 X

)
X1

−
[
θ1 + 4

3π
θ2

(
2X2

1 + X2
2

X

)]
V = 0

−
(

2

π
b1 + 4

3π
b2 X

)
X1 +

(
k1 + 8

3π
k2 X

)
X2

− 4

3π
θ2

(
X1 X2

X

)
V = 0. (46)
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Fig. 3 Sample cantilever in fixture mounted to shaker for energy
harvesting tests under base excitation (left) and mounted rigidly
to table for dynamic actuation tests (right). In the left photograph,

the accelerometer used for feedback control of the base acceler-
ation is shown. A magnified side view of the bimorph shows the
piezoelectric and brass substrate layers

6 Experimental validation

To validate the proposed model with quadratic non-
linearities in stiffness, damping, and electromechani-
cal coupling, energy harvesting and dynamic actuation
experiments are conducted.

6.1 Experimental setup

The test sample for the energy harvesting and dynamic
actuation tests consists of a brass-reinforced PZT-5A
piezoelectric cantilever bimorph (a Piezo Systems,
Inc. T226-A4-103X with PZT-5A layers connected in
series) secured in a custom fixture, shown in Fig. 3.
Geometric and material properties of the bimorph can
be found in Table 1 (the linear material parameters
are in agreement with standard PZT-5A data [24] and
manufacturer’s data). For base excitation during energy
harvesting tests, the fixture is mounted to a shaker
(Brüel and Kjær Type 4809). Forward and reverse fre-
quency sweeps at constant base acceleration ampli-
tude are conducted using a vibration control system
(APS Dynamics, Inc. VCS201) and accelerometer for
acceleration feedback (Kistler AG Type 8636C5). The
voltage across the cantilever electrodes are shunted
across a load resistance box (IET Labs, Inc. RS-
201W). Tip velocity measurements are made using a
laser Doppler vibrometer (Polytec, Inc. OFV-505) and
controller (Polytec, Inc. OFV-5000). Data is collected

Table 1 Material and geometric parameters

Overhang length l 26.7 mm

Total length l∗ 31.8 mm

Width b 3.16 mm

PZT-5A layer thickness (each) hp 0.265 mm

Brass layer thickness hs 0.125 mm

PZT-5A density ρp 7,800 kg

PZT-5A linear stiffness c11 66 GPa

PZT-5A nonlinear stiffness c111 −60 TPa

PZT-5A linear coupling e31 −11.6 C/m2

PZT-5A nonlinear coupling e311 −20 kC/m2

Permittivity ε33 14.6 nF/m

Brass density ρs 8,500 kg

Brass stiffness cs 100 GPa

using National Instruments NI 9215 and NI 9223 data
acquisition units. A schematic representation of the
experimental setup is shown in Fig. 4.

During dynamic actuation experiments, the fixture is
mounted to a rigid support. The actuation voltage signal
is generated by a National Instruments NI USB-4431
and amplified using a power amplifier (Trek, Inc. Model
2220). Output voltage and current data are collected
from the amplifier, as well as tip velocity measurements
from the laser Doppler vibrometer and recorded using
the NI USB-4431. A schematic representation of the
experimental setup is shown in Fig. 5.
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Fig. 4 Energy harvesting
experimental apparatus

Fig. 5 Dynamic actuation
experimental apparatus

6.2 Energy harvesting experiments and model
validation

Energy harvesting experiments consist of frequency
sweep tests at seven constant acceleration levels rang-
ing from 0.01 g RMS to 1.0 g RMS. Tests at each
acceleration level were repeated for nine load resis-
tance values ranging from 1k� to 10 M�, which cover
a broad range between short- and open-circuit condi-
tions. The upper limit for the base acceleration level
results in a tip displacement approximately 60 % of
the maximum allowable tip displacement given by the
manufacturer. The tests therefore span nearly the entire
safe operation limits for the cantilever bimorph. Fig-
ures 6, 7 and 8 display the RMS tip velocity and RMS
voltage for the cantilever for different base accelera-
tion and load resistance levels. The remaining results
of energy harvesting experiments and modeled behav-
ior is shown in the “Appendix”. The identified model

parameters are summarized in Table 2, from which the
nonlinear elastic (c111 = −60 TPa) and piezoelectric
(e311 = −20 kC/m2) constants are extracted (Table 1).

As shown in Fig. 6, the model and experiment show
excellent correlation at a low base acceleration level,
where linear behavior is expected. The model and
experiment only disagree for the voltage curves, when
the harvester voltage is below the noise floor of the data
acquisition unit, which is an experimental limitation.
Agreement of the model and experiment in the linear
behavior regime is important, but expected, as high-
fidelity models for the linear behavior of piezoelectric
cantilevers are readily available [24–26] to predict the
linear electroelastic dynamics using the relevant geo-
metric and material properties in Table 1.

Nonlinear behavior begins to appear at base acceler-
ation levels as low as 0.05 g RMS and is readily appar-
ent at 0.1 g RMS, as shown in Fig. 7. The short- and
open-circuit resonant frequencies drop from 428 and
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Fig. 6 Resistor sweep
energy harvesting test at
0.01 g RMS base
acceleration level for
resistance values of 1, 3, 10,
30, 100, 300, 1, 3, and
10 M�. Blue circles
represent experimental data,
and red curves represent
model predictions. Arrows
indicate direction of
increasing load resistance
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Fig. 7 Resistor sweep
energy harvesting test at 0.1
g RMS base acceleration
level for resistance values of
1, 3, 10, 30, 100, 300, 1, 3,
and 10 M�. Blue circles
represent experimental data,
and red curves represent
model predictions. Arrows
indicate direction of
increasing load resistance
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442 Hz to 426 and 440 Hz respectively. Similarly, an
increase in damping is observed as an order of mag-
nitude increase in base acceleration results in a less
than an order of magnitude increase in the responses.
At 1g RMS base acceleration (Fig. 8) the trend con-
tinues, with the short- and open-circuit resonant fre-
quencies falling to 415 and 430 Hz respectively, with
increased damping. Note that the maximum tip vibra-
tion amplitude in the base excitation experiments is
approximately 90µm or 0.3 % of the overhang length.
Therefore, the deformations are indeed geometrically
linear, and nonlinearities can be attributed to material

behavior. The early appearance of a softening nonlin-
ear behavior and its near linear increase with excita-
tion level is evidence that a negative cubic stiffness
alone improperly models the type of softening present
in this class of piezoelectric cantilevers. A cubic stiff-
ness nonlinearity yields a frequency correction that
rises quadratically with response amplitude, whereas
ferroelastic softening and dissipation provides a phys-
ical mechanism for the observed linear frequency cor-
rection and damping increase. The electromechanical
coupling nonlinearity causes an additional resonant fre-
quency shift that increases from short- to open-circuit
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Fig. 8 Resistor sweep
energy harvesting test at
1.0 g RMS base acceleration
level for resistance values of
1, 3, 10, 30, 100, 300, 1, 3,
and 10 M�. Blue circles
represent experimental data,
and red curves represent
model predictions. Arrows
indicate direction of
increasing load resistance
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Table 2 Discretized model parameters

Forcing mass m̄ 1.72e−4 kg

Effective mass m 1.10e−4 kg

Linear dissipation b1 1.40e1 N/m

Nonlinear dissipation b2 4.00e5 N/m2

Linear stiffness k1 7.96e2 N/m

Nonlinear stiffness k2 −6.44e5 N/m2

Linear coupling θ1 −3.69e−4 N/V

Nonlinear coupling θ2 −4.50e−1 N/Vm

Capacitance C 2.76e−9 F

conditions (low to high voltage). Importantly, the pro-
posed model shows very strong agreement at the low,
medium, and high base acceleration levels.

6.3 Dynamic actuation experiments and model
validation

Dynamic actuation tests are performed for voltages
ranging from 0.01 to 10 V and shown in Fig. 9. This
captures both the low voltage linear behavior and higher
voltage behavior near the structural safety limits of the
cantilever. These voltage levels result in electric fields
well below the coercive field (Ec = 12 kV/cm for PZT-
5A according to the manufacturer). However, resonant
actuation above 10 V amplitude in cantilever config-
uration is expected to result in mechanical failure of
the stiff and brittle sample. Once again, the maximum

tip vibration measured in the actuation experiments is
approximately 120µm or 0.4 % of the overhang length,
confirming that the observed nonlinearities are due to
the material. The model uses the same parameters as
shown in Table 2. The model and experiment show
strong agreement over the entire voltage range, except
in the cases where the consumed current is below the
noise floor of the amplifier’s current monitor output.
Between the low (0.01 V) and moderate (10 V) volt-
age actuation tests, the bimorph displayed a decrease
in resonant frequency from 429 to 413 Hz, match-
ing the behavior shown during the energy harvest-
ing tests at short-circuit conditions. This is expected,
because power amplifiers typically have very low out-
put impedance, and the velocity response amplitudes
for the corresponding dynamic actuation and energy
harvesting experiments are of the same order of mag-
nitude. As shown in Eq. (38), during dynamic actuation,
the electromechanical coupling nonlinearity appears
as a correction to the forcing amplitude. At moderate
response amplitudes, this can appear to have the same
effect as another quadratic dissipation effect,1 making
identification of the two parameters from the dynamic
actuation tests alone difficult. However, as shown in
Sect. 6.2, both effects are pronounced during the energy
harvesting tests. The proposed model for dynamic actu-

1 A set of actuation experiments conducted in vacuum (not
reported here) yield almost identical frequency response curves,
suggesting that the quadratic dissipation is an internal nonlinear
loss rather than due to air damping.
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Fig. 9 RMS tip velocity
and RMS actuation current
responses under dynamic
actuation for voltage
amplitudes of 0.01, 0.02,
0.05, 0.1, 0.2, 0.5, 1, 2, 5
and 10 V. Blue circles
represent experimental data,
and red curves represent
model predictions. Arrows
indicate direction of
increasing actuation voltage
amplitude
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ation, using the same parameters as in the energy har-
vesting tests, shows strong agreement at all voltage lev-
els reported in Fig. 9.

6.4 Experimental backbone curve

As discussed previously in Sect. 2, quadratic and cubic
nonlinearities model qualitatively different behaviors
that both can be described as softening. To confirm that
the type of geometrically linear, piezoelectric cantilever
bimorph studied in this work is better modeled with
quadratic nonlinearities than cubic nonlinearity alone,
the backbone curve is found from experimental data.
Shown in Fig. 10 are the open-circuit (10 M�) voltage
responses during base acceleration tests and tip veloc-
ity responses during actuation tests for a broad range
of excitation levels. For both the open-circuit energy
harvesting and dynamic actuation tests, the true back-
bone curve is generated by fitting a second- order poly-
nomial to the peak response points. To compare the
fidelity of quadratic and cubic models for nonlinear-
ity, purely linear and purely quadratic backbone curves
are fit as well. In both open-circuit energy harvesting
and dynamic actuation cases, the backbone curve is pri-
marily linear, indicating that until very close to the safe
operation limits of the cantilever, a quadratic stiffness
model is satisfactory. For the open-circuit base excita-
tion case, the purely linear backbone curve has an R2

value of 0.988, while the purely quadratic backbone
curve fits more poorly with an R2 value of 0.926. For
the dynamic actuation case, the linear backbone curve
again better describes the true behavior, with R2 values
of 0.998 and 0.887 for the purely linear fit and purely
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Fig. 10 Open-circuit voltage responses for various base accel-
eration levels (a) and tip velocity responses to various excitation
voltage levels (b). Experimental data are shown by blue circles.
Linear and purely quadratic backbone curve fits are shown by
green dashed and red dash-dot curves, respectively. The best fit
backbone curve with both linear and quadratic variation is shown
in black
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Fig. 11 Quasi-static (10 Hz) tip displacement versus actuation
voltage amplitude. Experimental data are shown by blue circles,
and model prediction is shown by the red curve

quadratic fit cases, respectively. Importantly, the exper-
imental backbone curve clearly does not cross the fre-
quency axis at a right angle, which is characteristic of
a purely cubic stiffness nonlinearity. Therefore, mod-
els in which quadratic terms vanish cannot accurately
model observed behavior.

6.5 Quasi-static actuation experiments

While the proposed models and analysis pertains
directly to the behavior of piezoelectric bimorph can-
tilevers near resonance, low frequency actuation tests
were conducted to evaluate the model’s performance
for quasi-static, high voltage actuation. Low-frequency,
off-resonant excitation allows for high voltage input
levels that would damage the brittle sample structurally
if applied near resonance. Using the same experimen-
tal apparatus as the dynamic actuation tests, the sample
cantilever was actuated with a 10 Hz harmonic voltage
with amplitudes ranging from 0.2 to 200 V. The high-
est voltage level of 200 V results in an electric field of
3.8 kV/cm for each piezoelectric layer (still below the
coercive field of 12 kV/cm, but closer in terms of the
order of magnitude as compared to the previous sec-
tion). Figure 11 displays the variation of tip displace-
ment amplitude with actuation voltage amplitude. For
actuation voltages of 20 V and below, the model accu-
rately predicts the relationship between actuation volt-
age and displacement, which is governed by the ratio
of electromechanical coupling to stiffness. For higher
voltages exceeding the levels achievable in energy har-

vesting applications or resonant actuation, the model
underpredicts the deflection. For the 200 V test, the
voltage is an order of magnitude higher than in the
highest resonant actuation test, while the maximum
deflections observed are on the same order of mag-
nitude (∼0.1 mm). Therefore, the error is likely due to
electromechanical coupling or excluded electric field
nonlinearities rather than stiffness. A model that can
more accurately predict both resonant and off-resonant
actuation should include linear and quadratic stiffness
terms and linear, quadratic, and cubic electromechan-
ical coupling terms. High-field hysteretic effects [21]
and resulting dissipation become important and should
be included for excitations close to the coercive field.

7 Conclusions

An experimentally validated, nonlinear, nonconserv-
ative model has been proposed to describe the energy
harvesting, sensing, and dynamic actuation behavior of
soft (e.g., PZT-5A, PZT-5H) piezoelectric cantilevers
for a wide (low to moderately high) range of mechani-
cal and electrical excitation levels. A set of governing
partial differential equations was derived using Hamil-
ton’s principle. Those equations were spatially dis-
cretized for the fundamental bending mode, creating
a lumped parameter model to be analyzed using the
method of harmonic balance. The model showed excel-
lent agreement to extensive experimental investigation
of energy harvesting and dynamic actuation over the
full range of structurally safe excitation levels of the
brittle PZT-5A bimorph cantilever near resonance. The
agreement of the model and experiment at all excita-
tion levels is evidence that the dominant stiffness and
electromechanical coupling nonlinearity apparent in
certain piezoelectric structures is quadratic in nature.
The backbone curves of both energy harvesting and
actuation frequency responses are reported to be dom-
inantly of first order for a broad range of mechanical
and electrical excitation levels, in agreement with the
experiments. While quadratic terms vanish during the
analysis of a symmetric bimorph when examining poly-
nomial electric enthalpy expansions in strain, a mod-
ified expansion form in strain amplitude retains those
quadratic terms. Therefore, nonlinear effects associ-
ated with ferroelastic softening and dissipation should
be given the priority in modeling of electroelastic non-
linearities in energy harvesting, sensing, and actuation
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for low to moderately nonlinear response forms with
electric fields well below the coercive field. It should
be noted that the focus has been placed on a soft piezo-
electric material (PZT-5A) in this work. Future efforts
may explore hard piezoelectric bimorphs (e.g., PZT-4,
PZT-8), for which the backbone curve trends may be
altered due to a higher mechanical quality factor.
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Appendix: Remaining energy harvesting experi-
ments and model validation

See Figs. 12, 13, 14 and 15.

Fig. 12 Resistor sweep
energy harvesting test at
0.02 g RMS base
acceleration level for
resistance values of 1, 3, 10,
30, 100, 300, 1, 3, and
10 M�. Blue circles
represent experimental data,
and red curves represent
model predictions. Arrows
indicate direction of
increasing load resistance
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Fig. 13 Resistor sweep
energy harvesting test at
0.05 g RMS base
acceleration level for
resistance values of 1, 3, 10,
30, 100, 300, 1, 3, and
10 M�. Blue circles
represent experimental data,
and red curves represent
model predictions. Arrows
indicate direction of
increasing load resistance
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Fig. 14 Resistor sweep
energy harvesting test at
0.20 g RMS base
acceleration level for
resistance values of 1, 3, 10,
30, 100, 300, 1, 3, and
10 M�. Blue circles
represent experimental data,
and red curves represent
model predictions. Arrows
indicate direction of
increasing load resistance
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Fig. 15 Resistor sweep
energy harvesting test at
0.50 g RMS base
acceleration level for
resistance values of 1, 3, 10,
30, 100, 300, 1, 3, and
10 M�. Blue circles
represent experimental data,
and red curves represent
model predictions. Arrows
indicate direction of
increasing load resistance

380 400 420 440 460 480
0

30

60

90

120

Frequency [Hz]

R
M

S 
T

ip
 V

el
oc

ity
 [

m
m

/s
]

380 400 420 440 460 480

10
−2

10
−1

10
0

10
1

Frequency [Hz]

R
M

S 
V

ol
ta

ge
 [

V
]

380 400 420 440 460 480

10
−1

10
0

10
1

Frequency [Hz]

R
M

S 
C

ur
re

nt
 [

µA
]

380 400 420 440 460 480
10

−2

10
−1

10
0

10
1

Frequency [Hz]

A
ve

ra
ge

 P
ow

er
 [µ

W
]

Experiment Model

References

1. Maugin, G.A.: Nonlinear Electromechanical Effects and
Applications, vol. 1. World Scientific, Singapore (1985)

2. Tiersten, H.F.: Electroelastic equations for electroded thin
plates subject to large driving voltages. J. Appl. Phys. 74,
3389–3393 (1993)

3. Aurelle, N., Guyomar, D., Richard, C., Gonnard, P., Eyraud,
L.: Nonlinear behavior of an ultrasonic transducer. Ultrason-
ics 34, 187–191 (1996)

4. Guyomar, D., Aurelle, N., Eyraud, L.: Piezoelectric ceram-
ics nonlinear behavior. Application to langevin transducer.
J. De Physique III(7), 1197–1208 1997)

5. Abdelkefi, A., Nayfeh, A.H., Hajj, M.R.: Effects of nonlin-
ear piezoelectric coupling on energy harvesters under direct
excitation. Nonlinear Dyn. 67, 1221–1232 (2011)

6. Abdelkefi, A., Nayfeh, A.H., Hajj, M.R.: Global nonlin-
ear distributed-parameter model of parametrically excited
piezoelectric energy harvesters. Nonlinear Dyn. 67, 1147–
1160 (2011)

7. Wang, Q.M., Zhang, Q.M., Xu, B.M., Liu, R.B., Cross,
L.E.: Nonlinear piezoelectric behavior of ceramic bending
mode actuators under strong electric fields. J. Appl. Phys.
86, 3352–3360 (1999)

8. Albareda, A., Gonnard, P., Perrin, V., Briot, R., Guyomar,
D.: Characterization of the mechanical nonlinear behavior

123



Bimorph piezoelectric cantilever for energy harvesting, sensing, and actuation 1743

of piezoelectric ceramics. IEEE Trans. Ultrason. Ferroelectr.
Freq. Control 47, 844–853 (2000)

9. Priya, S., Viehland, D., Carazo, A.V., Ryu, J., Uchino, K.:
High-power resonant measurements of piezoelectric mate-
rials: importance of elastic nonlinearities. J. Appl. Phys. 90,
1469–1479 (2001)

10. Wolf, K., Gottlieb, O.: Nonlinear Dynamics of a Can-
tilever Beam Actuated by Piezoelectric Layers in Symmetric
and Assymetric Configuration. Technion-Israel Institute of
Technology, Technical Report ETR-2001-02 (2001)

11. Usher, T., Sim, A.: Nonlinear dynamics of piezoelectric high
displacement actuators in cantilever mode. J. Appl. Phys. 98,
64102 (2005)

12. Von Wagner, U., Hagedorn, P.: Piezo-beam systems sub-
jected to weak electric field: experiments and modelling of
non-linearities. J. Sound Vib. 256, 861–872 (2002)

13. Mahmoodi, S.N., Jalili, N., Daqaq, M.F.: Modeling, nonlin-
ear dynamics, and identification of a piezoelectrically actu-
ated microcantilever sensor. IEEE-ASME Trans. Mecha-
tron. 13, 58–65 (2008)

14. Hu, Y., Xue, H., Yang, J., Jiang, Q.: Nonlinear behavior of a
piezoelectric power harvester near resonance. IEEE Trans.
Ultrason. Ferroelectr. Freq. Control 53, 1387–1391 (2006)

15. Stanton, S.C., Erturk, A., Mann, B.P., Inman, D.J.: Nonlin-
ear piezoelectricity in electroelastic energy harvesters: mod-
eling and experimental identification. J. Appl. Phys. 108,
74903 (2010)

16. Stanton, S.C., Erturk, A., Mann, B.P., Inman, D.J.: Resonant
manifestation of intrinsic nonlinearity within electroelastic
micropower generators. Appl. Phys. Lett. 97, 254101 (2010)

17. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley,
New York (2008)

18. Stanton, S.C., Erturk, A., Mann, B.P., Dowell, E.H., Inman,
D.J.: Nonlinear nonconservative behavior and modeling of
piezoelectric energy harvesters including proof mass effects.
J. Intell. Mater. Syst. Struct. 23, 183–199 (2012)

19. Goldschmidtboeing, F., Eichhorn, C., Wischke, M., Kroener,
M., Woias, P.: The influence of ferroelastic hysteresis on
mechanically excited PZT cantilever beams. In: Proceed-
ings of the 11th International Workshop on Micro and Nan-
otechnology for Power Generation and Energy Conversion
Applications, pp. 114–117 (2011)

20. Kamlah, M.: Ferroelectric and ferroelastic piezoceramics-
modeling of electromechanical hysteresis phenomena. Con-
tin. Mech. Thermodyn. 13, 219–268 (2001)

21. Damjanovic, D.: Hysteresis in piezoelectric and ferroelectric
materials. Sci. Hysteresis 3, 337–465 (2005)

22. Smith, R.C., Seelecke, S., Dapino, M., Ounaies, Z.: A unified
framework for modeling hysteresis in ferroic materials. J.
Mech. Phys. Solids 54, 46–85 (2006)

23. Crandall, S.H.: Dynamics of Mechanical and Electro-
mechanical Systems. McGraw-Hill, New York (1968)

24. Erturk, A., Inman, D.J.: Piezoelectric Energy Harvesting.
Wiley, New York (2011)

25. Dutoit, N.E., Wardle, B.L.: Experimental verification of
models for microfabricated piezoelectric vibration energy
harvesters. AIAA J. 45, 1126–1137 (2007)

26. Erturk, A., Inman, D.J.: An experimentally validated
bimorph cantilever model for piezoelectric energy harvest-
ing from base excitations. Smart Mater. Struct. 18, 025009
(2009)

123


	Unified nonlinear electroelastic dynamics of a bimorph piezoelectric cantilever for energy harvesting, sensing,  and actuation
	Abstract
	1 Introduction
	2 Nonlinear, nonconservative electroelastic modeling
	3 Distributed parameter model derivation
	4 Discretization
	4.1 Energy harvesting and sensing
	4.2 Dynamic actuation

	5 Harmonic balance analysis
	5.1 Energy harvesting and sensing
	5.2 Dynamic actuation
	5.3 Quasi-static actuation

	6 Experimental validation
	6.1 Experimental setup
	6.2 Energy harvesting experiments and model validation
	6.3 Dynamic actuation experiments and model validation
	6.4 Experimental backbone curve
	6.5 Quasi-static actuation experiments

	7 Conclusions
	Acknowledgments
	Appendix: Remaining energy harvesting experiments and model validation
	References


