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Over the past few years, nonlinear oscillators have been given growing attention due to their
ability to enhance the performance of energy harvesting devices by increasing the frequency
bandwidth. Duffing oscillators are a type of nonlinear oscillator characterized by a symmetric
hardening or softening cubic restoring force. In order to realize the cubic nonlinearity in a

is imposed, since the inherent geometric nonlinearity would otherwise require impractically
high excitation levels to be pronounced. As an alternative to magnetoelastic structures
and other complex forms of symmetric Duffing oscillators, an M-shaped nonlinear bent beam
with clamped end conditions is presented and investigated for bandwidth enhancement
under base excitation. The proposed M-shaped oscillator made of spring steel is very easy to
fabricate as it does not require extra discrete components to assemble, and furthermore, its
asymmetric nonlinear behavior can be pronounced yielding broadband behavior under low
excitation levels. For a prototype configuration, linear and nonlinear system parameters
extracted from experiments are used to develop a lumped-parameter mathematical model.
Quadratic damping is included in the model to account for nonlinear dissipative effects. A
multi-term harmonic balance solution is obtained to study the effects of higher harmonics
and a constant term. A single-term closed-form frequency response equation is also extracted
and compared with the multi-term harmonic balance solution. It is observed that the single-
term solution overestimates the frequency of upper saddle-node bifurcation point and
underestimates the response magnitude in the large response branch. Multi-term solutions
can be as accurate as time-domain solutions, with the advantage of significantly reduced
computation time. Overall, substantial bandwidth enhancement with increasing base excita-
tion is validated experimentally, analytically, and numerically. As compared to the 3 dB
bandwidth of the corresponding linear system with the same linear damping ratio, the
M-shaped oscillator offers 3200, 5600, and 8900 percent bandwidth enhancement at the
root-mean-square base excitation levels of 0.03g, 0.05g, and 0.07g, respectively. The
M-shaped configuration can easily be exploited in piezoelectric and electromagnetic energy
harvesting as well as their hybrid combinations due to the existence of both large strain and
kinetic energy regions. A demonstrative case study is given for electromagnetic energy
harvesting, revealing the importance of higher harmonics and the need for multi-term
harmonic balance analysis for predicting the electrical power output accurately.
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1. Introduction

Research on energy harvesting methods and technologies has received growing attention over the last decade [1,2]. The
motivation in vibration-based energy harvesting is to power small electronic devices (such as wireless sensor networks used
in passive and active monitoring applications) by using the vibrational energy available in their environments. Researchers
have reported their work on modeling and applications of vibration-based energy harvesting using electromagnetic [3–5],
electrostatic [6–8], piezoelectric [9–11] and magnetostrictive [12,13] transduction mechanisms, as well as electronic and
ionic electroactive polymers [14,15]. In particular, due to the high power density and ease of application of piezoelectric
materials, piezoelectric energy harvesting has received the most attention [1,16–19].

The most commonly used piezoelectric energy harvester configuration is a cantilever with piezoceramic layers located
on a vibrating host structure for electrical power generation from bending vibrations under resonance excitation. Such a
design that operates effectively only at its linear resonance frequency is called a resonant energy harvester. Theoretical and
experimental aspects of the linear cantilever design have been investigated extensively in the literature [9,10,20,21]. A major
limitation of the commonly employed resonant energy harvester configuration is that the effective power generation
performance of the device is limited to resonance excitation. If the excitation frequency deviates slightly from the
fundamental resonance frequency of the energy harvester (due to changing excitation or environmental conditions or
manufacturing imperfections of the harvester device), the electrical power output is reduced by orders of magnitude. In
order to overcome the bandwidth issue of the conventional cantilever configuration, researchers [22] have recently
considered exploiting nonlinear dynamic phenomena [23,24].

Implementations of the hardening stiffness of the monostable Duffing oscillator for increasing the frequency bandwidth were
discussed by Burrow et al. [25] andMann and Sims [26] for electromagnetic energy harvesting. Use of the hardening stiffness in the
monostable form of the Duffing oscillator was also discussed by Ramlan et al. [27] along with snap-through behavior in a bistable
mass-spring-damper mechanism. Random excitation of monostable Duffing oscillators was theoretically investigated by Daqaq [28]
and Green et al. [29]. Bidirectional increase of the frequency bandwidth was studied by combining the softening and the hardening
stiffness effects in the device proposed by Stanton et al. [30]. The bistable form of the Duffing oscillator was discussed by Cottone
et al. [31] and Gammaitoni et al. [32] for noise excitation. Additionally, the concept of stochastic resonance in bistable systems was
pointed out by McInnes et al. [33] for use in energy harvesting. Stanton et al. [34] theoretically investigated the bifurcations of a
bistable configuration similar to the one tested by Cottone et al. [31] and also presented harmonic balance analysis using a single
harmonic [35]. Another important aspect of the bistable Duffing oscillator has been pointed out by Erturk et al. [36] for piezoelectric
energy harvesting using a magnetoelastic structure [37]. Large-amplitude interwell oscillations [24] on high-energy orbits of the
bistable configuration have been shown to increase the power output by an order of magnitude at several frequencies [38]. Other
than magnetoelastic interactions [30,34–36,38,39], purely elastic buckling was also considered for bandwidth and performance
enhancement in energy harvesting [40–42]. A bistable electromagnetic energy harvester was theoretically and experimentally
explored by Mann and Owens [43]. In electrostatic energy harvesting, MEMS bistable spring arrangements for bandwidth
enhancement were presented by Nguyen et al. [44]. Random excitation of bistable energy harvesters have been studied by using
analytical [45–47], numerical [48–50], and experimental [50] methods. Recent efforts also include the investigation of nonlinear
damping for extending the dynamic range in energy harvesters [51]. An extensive review on the use of nonlinearities in vibration
energy harvesting can be found in a recent article by Daqaq et al. [22]. Other review articles on broadband energy harvesting
methods are due to Tang et al. [52], Pellegrini et al. [53], Twiefel and Westermann [54], and Harne and Wang [55].

Most of the existing literature of energy harvesting at meso-scale exploits magnetoelastic interactions with discrete
components (e.g. magnets) and buckled structures to create nonlinearities [30,34–36,38,40–43]. Furthermore, energy harvesters
employing purely elastic [40–42] or magnetoelastic [30,34–36,38] buckling often require significantly large excitation levels (on
the order of 1g) to fully exploit large-amplitude nonlinear dynamic phenomena. The present work focuses on the meso-scale
implementation, experimentally validated modeling, and analysis of a nonlinear spring architecture formerly used in MEMS-
scale [56,57] electrostatic energy harvesting.

Fig. 1 summarizes the physical motivation for the M-shaped oscillator explored in this work and its advantages over the
standard clamped�clamped monostable and bistable configurations. A clamped�clamped beam with no compressive
preload, as shown in Fig. 1a, can exhibit hardening nonlinearity to increase response bandwidth as well as protect against
dangerously large strains in attached piezoelectric laminates. However, since hardening is due to the relatively large axial
stiffness opposing extensional deformation, maximum deflections will be small, severely limiting power generation
Fig. 1. Clamped–clamped beams under base excitation: (a) monostable configuration with no compressive preload (exhibits limited stretching capability);
(b) bistable configuration due to compressive axial preloading (requires large excitation for interwell oscillations); and (3) pre-bent nonlinear M-shaped
monostable configuration (exhibits large stretching capability) studied in this work. Solid blue lines indicate the static equilibrium configurations. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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capabilities. As depicted in Fig. 1b, introducing a compressive axial preload to induce buckling yields a structure that can
snap between two large deflection configurations (as long as the potential wells [58] are overcome in response to dynamic
excitation), greatly increasing power output while still maintaining upper limits on piezoelectric laminate deformation.
Dynamic snap-through behavior [40–42] typically requires large excitation levels, limiting bistable energy harvesters to
high excitation applications. A pre-bent monostable beam structure, the M-shaped configuration shown in Fig. 1c, can
exhibit both limited maximum deflections to protect piezoelectric laminates and advantageous nonlinear dynamic behavior
at low excitation levels due to large stretching capabilities. In the present work, the nonlinear dynamic behavior of the
system is explored through experiments and multi-term harmonic balance modeling, in addition to presenting a simple
platform for broadband piezoelectric and electromagnetic energy harvesting as well as their hybrid configurations.

In the following, first the M-shaped bent beam configuration with clamped end conditions is described for broadband
vibration energy harvesting under base excitation. The focus is placed on the experimental system and identification of the
linear and nonlinear system parameters for modeling and nonlinear analysis. The force�displacement relationship of the
M-shaped beam with a central lumped mass attachment is experimentally obtained and asymmetric nonlinear behavior is
verified. Linear and nonlinear system parameters extracted from experiments are used to develop a lumped-parameter
mathematical model. A multi-term harmonic balance solution is obtained to study the effects of higher harmonics and a
constant steady-state term resulting from asymmetry. A single-term closed-form frequency response equation is also
extracted and compared with the multi-term harmonic balance solution. Finally, a case study is given for electromagnetic
energy harvesting to further demonstrate the importance of higher terms in the harmonic balance analysis.
2. M-shaped nonlinear oscillator and energy harvester configurations

Top and isometric views of the M-shaped oscillator configuration along with its clamp and shaker mount are shown in
Fig. 2. Although this configuration can be fabricated at different geometric scales, the M-shaped oscillator analyzed in this
work consists of a beam made from 25.4 mmwide by 0.254 mm thick AISI 1075 spring steel. The steel is cut and bent using
common sheet metal tools. The bend angles used are small enough to allow near zero radius bends without first heating the
metal. The lumped mass attachment consists of eight 12.7�12.7�3.18 mm3 permanent magnets, half on each side of the
spring. Magnets are chosen due to their ease of attachment to the steel spring, rather than to subject the system to any
magnetic force effects, therefore the lumped mass does not have to be made of magnets, and likewise the M-shaped
structure does not have to be ferromagnetic. The total lumped mass attachment is 30.4 g. Both ends of the oscillator are
clamped. The clamp and shaker mount are made from 6061 aluminum.

While the present work is focused mainly on the nonlinear oscillator structure, electrical power generation can be achieved
by adding proper electromechanical coupling interface elements to the elastic oscillator. Fig. 3a shows the M-shaped oscillator
with four piezoelectric patches bonded near the clamps (resulting in two bimorphs). Dynamic bending of the spring causes
tensile and compressive strains on the piezoelectric layers, yielding an alternating voltage via the direct piezoelectric effect,
which is then connected to an electrical load for AC power generation or rectified and conditioned in an energy harvesting circuit
to obtain a stable DC signal for charging a storage component [59–62]. If a permanent magnet is used as the proof mass, power
may be generated by attaching a coil to the base of the oscillator, as shown in Fig. 3b. The motion of the permanent magnet
relative to the coil creates a changing magnetic field inside the coil, which according to Faraday's law produces a current in the
coil. The AC electrical output is then connected to the load or a proper electromagnetic energy harvesting circuit. Both of these
electromechanical coupling methods can be employed simultaneously. The resulting hybrid piezoelectric�electromagnetic
energy harvester is shown in Fig. 3c. In the present effort, focus is predominantly placed on the purely mechanical nonlinear
dynamics of the M-shaped structure.
Fig. 2. (a) Top and (b) isometric model views of M-shaped oscillator with its fixture. Vibration input is provided from the shaker mount (arrows indicating
the direction of mechanical base excitation).



Fig. 4. (a) Overview and (b) detail pictures of experimental setup: (1) M-shaped oscillator; (2) long-stroke shaker; (3) amplifier; (4) controller; (5) laser
vibrometers; and (6) accelerometer. The M-shaped oscillator is attached to the armature of the shaker through its fixture for horizontal base excitation.

Fig. 3. M-shaped piezoelectric and/or electromagnetic energy harvester configurations employing (a) piezoelectric patches attached to high strain energy
regions, (b) a coil-magnet arrangement attached to high kinetic energy region, and (c) combination of the previous two to form a hybrid design. Terminals
of the piezoelectric patches and/or coil are connected to electrical loads or a more complex energy harvesting circuit.
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3. Experimental system, mathematical model, and parameter identification

This section introduces the experimental system used for testing and analyzing the M-shaped nonlinear oscillator
prototype. The stiffness, mass, and damping properties of the M-shaped oscillator are identified and tabulated prior to
nonlinear modeling and analyses in the next sections.

3.1. Experimental setup

Experiments are conducted using an APS-113 seismic shaker driven by an APS-125 amplifier and controlled by a
SPEKTRA VCS-201 controller. These devices allow for the sample to be subjected to harmonic base acceleration at specified
amplitudes and frequencies. Tests consist of up and down frequency sweeps at a constant kinematic variable (in this case
base acceleration amplitude) necessary for frequency response analysis of the nonlinear system. Base acceleration measured
by a Kistler model 8636C50 ICP accelerometer is used for feedback to the VCS-201 controller. A Polytec PDV-100 Portable
Digital Vibrometer is used to measure the base velocity. The velocity and displacement of the lumped mass (i.e. center of the
M-shaped oscillator) are measured using a Polytec OFV-505 sensor head and OFV-5000 controller with a displacement
decoder. Data is acquired using a National Instruments NI USB-4431 unit. Overview and detail views of the experimental
setup are shown in Fig. 4.

3.2. Mathematical model

The M-shaped oscillator is modeled as a single-degree-of-freedom system with linear viscous and quadratic damping
terms along with a nonlinear elastic restoring force undergoing base excitation (Fig. 5). The equation of motion of such a
system is

m€zþ2ζmωn _zð1þγ j _zj Þþ f ðzÞ ¼ �m0 €y (1)

where m is the equivalent mass of the oscillator, m0 is the effective mass that causes the forcing term due to base excitation
(m0 ¼m if the spring mass is negligible as compared to the lumped mass attachment), ζ is the linear viscous damping ratio,
γ is a constant that accounts for the quadratic damping, ωn is the linear natural frequency, f ðzÞ is the nonlinear elastic
restoring force, yðtÞ is the base displacement measured in an inertial frame, zðtÞ is the displacement of the oscillator relative



Fig. 6. Experimental static force–displacement relationship and third-order polynomial curve fit.

Fig. 5. (a) Lumped-parameter model and (b) device schematics of the M-shaped nonlinear oscillator under base excitation (stiffness and damping
components are nonlinear).
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to the moving base, and an overdot represents differentiation with respect to time. Note that the displacement of the
mass relative to the fixed reference frame is denoted by xðtÞ in Fig. 5, therefore the displacement relative to the base is
zðtÞ ¼ xðtÞ�yðtÞ.
3.3. Parameter identification

In order to investigate the nonlinear system dynamics theoretically, it is necessary to identify the relevant parameters of
the M-shaped oscillator. First the relationship between deflection and restoring force, f ðzÞ, is extracted. To this end, the
oscillator is bolted to the rigid optical table vertically (to set y¼0 so that x¼z). With the lumped mass attachment removed
(to avoid any sag due to gravity), weights are suspended from the center of the spring. Deflection is measured using the
OFV-5000 displacement decoder of the laser vibrometer. The sample is turned over and the process repeated. It is assumed
that the weight of the spring itself is negligible compared to the suspended weights. Reasonably, it is also assumed the
removal of the mass attachments does not change the stiffness characteristics of the spring. As shown in Fig. 6, a third-order
polynomial of the following form is fit to the measured force–displacement data:

f ðzÞ ¼ k1zþk2z2þk3z3 (2)

where k1¼229.61 N/m, k2¼8289.4 N/m2, and k3¼�750,840 N/m3 are constant coefficients on the first, second, and third-
order terms, respectively (in particular, k1 ¼mω2

n). Any constant term (coefficient of zeroth-order term) of the polynomial
fit is set to be zero, as the force–displacement relationship should pass through the origin. The linear coefficient can
be interpreted as the linear spring stiffness, and the cubic and quadratic coefficients as the symmetric and asymmetric
nonlinear stiffness terms, respectively. Note that the inflection point of the curve occurs in Fig. 6 at a deflection of
approximately 5 mm. The amount of asymmetry depends on the overall structural design and geometric parameters. While
the much smaller asymmetry leads to an expectation of more classical Duffing oscillator behavior, the asymmetry is present,
and further investigation on the relationship between the multiple geometric parameters of the spring design and its force–
displacement characteristics is of interest for future research.

In order to identify the linear damping and linear natural frequency of the system, the M-shaped oscillator (with mass
attachments) is clamped horizontally to the table (to eliminate any displacements and sag due to gravity in the presence of
the proof mass) and given a small initial excitation. The measured displacement time series for the linear free vibration test
is shown in Fig. 7. It is known from the elementary theory of vibrations [63,64] that the natural response of a linear



Fig. 7. Time series of free vibration for linear parameter identification.

Table 1
Identified linear and nonlinear model parameters.

k1 229.61 N/m
k2 8289.4 N/m2

k3 750840 N/m3

ωn 84.3 rad/s
ζ 0.0011
γ 1 s/m
m 0.0323 kg
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underdamped system decays in an exponential envelope as

xðtÞ ¼ Xe�ξωnt cos ðωdt�ϕÞ (3)

where ωd ¼ωn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ζ2

q
is the damped natural frequency. Fitting an exponential curve to the peaks of the time series yields

ζωn. The damped natural frequency is found from the period of oscillation. Damping for this system is extremely light, so
the approximation ωnffiωd is used safely. Therefore the values of ωn¼84.3 rad/s and ζ¼0.0011 are obtained for the natural
frequency and damping ratio, respectively.

The equivalent mass is obtained from the linear stiffness component and natural frequency as m¼ k1=ω2
n ¼ 0:0323 kg.

This identified equivalent mass of 32.3 g is consistent with the value of the attached mass of 30.4 g. The proof mass
attachment indeed makes up the majority of the equivalent mass as intended, and the contribution from the effective spring
mass is minor.

Finally, the quadratic damping term (γ) in Eq. (1) is found to be necessary, as without it, the model tended to
overestimate the amplitude and frequency of the upper saddle-node bifurcation point at which the jump phenomenon [24]
takes place in the up sweep in the frequency response curves. The physical justification of quadratic (or velocity-squared)
damping is nonlinear fluid damping (see, for instance, Bandstra [65], among others). It is indeed plausible that nonlinear air
damping [65] would be significant, as velocities in excess of 1 m/s were observed in the experiments (see Eq. (1) and note
that the identified value of nonlinear damping term is γ¼1 s/m, i.e. the linear and nonlinear dissipation components are on
the same order of magnitude). The value of γ is estimated from the comparison of experimental and simulated response
curves discussed in Section 5.1. The identified linear and nonlinear model parameters are summarized in Table 1.
4. Nonlinear analysis using the method of harmonic balance

The second-order nonlinear equation of motion, Eq. (1), can be expressed in the form of two nonlinear first-order
equations for time-domain numerical simulations (e.g. by using ode45 in MATLAB). However, numerical simulation in time
domain to generate frequency response curves is undesirable, since the process can be computationally lengthy, numerical
errors may build up over the course of the simulation, and little insight into the underlying mathematics of the problem
is gleaned. A number of approximate solution and perturbation methods exist for the analysis of nonlinear ordinary
differential equations, such as the Poincaré–Lindstedt method, the method of multiple scales, the Krylov–Bogoliubov
averaging method, and the method of harmonic balance [66]. The system studied here exhibits a high degree of nonlinearity
and therefore it is required to explore multi-harmonic solutions for enhanced accuracy. Harmonic balance is the analysis
method that most easily accommodates multi-term approximate solutions. In the following, first the multi-harmonic
solution is given by accounting for higher harmonics and a DC (constant) component, and then the single-harmonic solution
with a closed-form frequency response equation is presented.
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4.1. Multi-harmonic solution

The base excitation term is assumed to be harmonic of the form

€yðtÞ ¼ A cos ðΩtÞ (4)

where A is the acceleration amplitude and Ω is the driving frequency. A Fourier series solution with the same period as the
forcing is assumed for the vibration response (zðtÞ ¼ xðtÞ�yðtÞ) relative to the moving base (see Fig. 5). The displacement,
velocity, and acceleration of the mass relative to the moving base are then

zðtÞ ¼ a0þ ∑
1

n ¼ 1
½an cos ðnΩtÞþbn sin ðnΩtÞ� ¼ a0þ ∑

1

n ¼ 1
Zn cos ðnΩtþϕnÞ (5)

_zðtÞ ¼ ∑
1

n ¼ 1
nΩ½�an sin ðnΩtÞþbn cos ðnΩtÞ� ¼ � ∑

1

n ¼ 1
ðnΩÞZn sin ðnΩtþϕnÞ (6)

€zðtÞ ¼ ∑
1

n ¼ 1
�ðnΩÞ2½an cos ðnΩtÞþbn sin ðnΩtÞ� ¼ � ∑

1

n ¼ 1
ðnΩÞ2Zn cos ðnΩtþϕnÞ (7)

which is an exact representation with infinitely many terms. Note that the relative displacement given by Eq. (5) accounts
for the constant term a0 resulting from the asymmetric system behavior. In order to obtain an approximate solution,
Eqs. (5)–(7) have to be truncated to include finite number of terms (harmonics). The truncated form of Eq. (5) is

zNðtÞ ¼ a0þ ∑
N

n ¼ 1
½an cos ðnΩtÞþbn sin ðnΩtÞ� ¼ a0þ ∑

N

n ¼ 1
Zn cos ðnΩtþϕnÞ (8)

which includes N harmonics. As the system has both quadratic and cubic stiffness nonlinearities, which are associated with
the generation of predominant second and third harmonics in the response under hard forcing [23], the truncated Fourier
series representation should contain sufficient terms (N¼3 is used in this work).

As mentioned in Section 3.3, the observed nonlinear damping was characterized as quadratic and attributed to air
damping [65]. While numerical simulation easily handles the non-smooth absolute value function present in the physical
model, it is required for the multi-term harmonic balance analysis to introduce an equivalent viscous damping coefficient c
and re-express the equation of motion as

m€zþc_zþk1zþk2z2þk3z3þm€y¼ 0 (9)

where the viscous damping coefficient is obtained by calculating the energy dissipated in the system by considering only the
dominant harmonic as an approximation:

c¼ 2ζmωn 1þγ
8Ω2Z1

3π

 !
(10)

Then, substitution of the truncated Fourier series into the equation of motion yields the residual function:

RðtÞ ¼m€zNþc_zNþk1zNþk2z2Nþk3z3NþmA cos ðΩtÞ (11)

Using the Galerkin method of mean weighted residuals, a system of algebraic equations in the harmonic amplitudes is
generated: Z 2π=Ω

0
RðtÞdt ¼ 0 (12)

Z 2π=Ω

0
RðtÞ cos ðnΩtÞdt ¼ 0 (13)

Z 2π=Ω

0
RðtÞ sin ðnΩtÞdt ¼ 0 (14)

The choice to include a constant term (a0) and three harmonics (an; bn;n¼ 1;2;3) in the assumed solution yields a root
finding problem of 7 equations for 7 unknowns:

8k3a20�6k3b
2
1a2þ6k3a21a2þ12k3a0b

2
3þ12k3a0a22þ12k3a0b

2
2þ12k3a0a23

þ12k3a0a21þ12k3a0b
2
1þ8k1a0þ4k2b

2
2þ4k2a23þ4k2b

2
3þ4k2a21þ4k2b

2
1

þ4k2a22þ8k2a20þ12k3b1a2b3þ12k3a1b2b3þ12k3a1a2a3þ12k3a1b1b2�12k3b1b2a3 ¼ 0 (15)

4k1a1þ4mAþ3k3a31þ3k3a1b
2
1þ6k3a1b

2
3þ6k3a1b

2
2þ6k3a1a23þ6k3a1a22þ12k3a0b1b2

þ12k3a0a2a3þ12k3a0b2b3þ6k3a1b1b3þ3k3a21a3þ4k2a1a2�3k3b
2
2a3þ3k3a22a3�3k3b

2
1a3

þ4k2b2b3þ4k2a2a3þ4k2b1b2þ4cb1Ωþ8k2a0a1þ12k3a20a1þ12ka0a1a2þ6k3a2b2b3

aerturk3
Line
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�4ma1Ω
2 ¼ 0 (16)

12k3a0a1b2�12k3a0b2a3þ12k3a0a2b3�12k3a0b1a2þ6k3a2b2a3�6k3a1b1a3þ6k3b1b
2
2

�3k3a22b3þ3k3a21b1þ12k3a20b1þ4k2a2b3�4k2b2a3þ4k2a1b2�4k2b1a2þ8k2a0b1þ3k3a21b3

þ6k3b1a22�3k3b
2
1b3þ6k3b1a23þ6k3b1b

2
3�4mΩ2b1�4cΩa1þ3k3b

3
1þ4k1b1 ¼ 0 (17)

4k1a2þ3k3a32þ2k2a21�2k2b
2
1þ4k2b1b3þ3k3a2b

2
2þ6k3b

2
1a2þ6k3a21a2þ6k3a0a21

�6k3a0b
2
1þ8cb2Ωþ8k2a0a2þ4k2a0a2þ4k2a1a3�16ma2Ω

2þ12k3a20a2þ6k3a2b
2
3

þ6k3a2a23þ6k3a1a2a3þ6k3b1b2a3�6k3b1a2b3þ6k3a1b2b3þ12k3a0b1b3þ12k3a0a1a3 ¼ 0 (18)

4k1b2�16mΩ2b2�8cΩa2þ3k3b
3
2þ4k2a1b3þ4k2a1b1�4k2b1a3þ3k3a22b2

þ6k3b2b
2
3þ6k3b

2
1b2þ6k3b2a23þ6k3a21b2þ12k3a20b2þ8k2a0b2þ12k3a0a1b1

�6k3a1b2a3þ6k3a1a2b3þ6k3b1a2a3þ6k3b1b2b3þ12k3a0a1b3�12k3a0b1a3 ¼ 0 (19)

12k3a0a1a2�12k3a0b1b2þ6k3b1a2b2þk3a31þ4k1a3þ3k3a33�36ma3Ω
2

þ12k3a20a3þ3k3a3b
2
3þ12cb3Ω�3k3a1b

2
1�3k3a1b

2
2þ3k3a1a22þ6k3a21a3

þ4k2a1a2þ6k3b
2
2a3þ6k3a22a3þ6k3b

2
1a3�4k2b1b2þ8k2a0a3 ¼ 0 (20)

3k3b
3
3þ4k1b3�k3b

3
1þ6k3a1a2b2�12cΩ�36mΩ2b3þ3k3b1b

2
2

þ6k3a22b3þ6k3b
2
2b3þ3k3a21b1þ4k2a1b2þ4k2b1a2þ6k3a21b3�3k3b1a22

þ6k3b
2
1b3þ8k2a0b3þ3k3a23b3þ12k3a20b3þ12k3a0a1b2þ12k3a0b1a2 ¼ 0 (21)

Since a closed-form solution is impossible, the multivariate Newton–Raphson method is employed to solve for the
unknowns. The problem is cast into vector form, with x!i being the ith iterate of the vector of a0, an, and bn:

f
!ð x!Þ¼ 0

!
(22)

x!iþ1 ¼ x!i�½Jð x!iÞ��1 f
!ð x!iÞ (23)

It should be highlighted once again that the main reason for keeping higher harmonics (n¼2, 3) is to explore the effect
of these terms in the frequency response with comparisons to experimental measurements and numerical simulations.
Otherwise including more than one harmonic term drastically complicates the resulting system of algebraic equations.
Nevertheless this procedure of accounting for higher harmonics in the harmonic balance analysis is more efficient than
time-domain numerical simulations. For systems with low damping, time-domain numerical simulations must involve large
numbers of cycles to converge to steady-state response, whereas only a few iterations of the Newton–Raphson method yield
convergent harmonic balance. Depending on the choice of simulation parameters, time-domain simulations may take an
order of magnitude or more time than the multi-term harmonic balance method solved with the Newton–Raphson method.

4.2. Single-harmonic closed-form solution

If the constant term (a0) is neglected and only a single harmonic term is used in Eq. (8), the resulting algebraic equation is
simplified dramatically and it is possible to obtain a closed-form frequency response equation. Eqs. (12)–(14) reduce toZ 2π=Ω

0
RðtÞ cos ðΩtþϕÞdt ¼ 0 (24)

Z 2π=Ω

0
RðtÞ sin ðΩtþϕÞdt ¼ 0 (25)

and the assumed response form to be used in the residual expression is

zðtÞ ¼ Z1 cos ðΩtþϕÞ (26)

yielding

k1Z1�mZ1Ω
2þ3

4 k3Z
3
1þmA cos ϕ¼ 0 (27)

�cZ1ΩþmA sin ϕ¼ 0 (28)

The phase term in Eqs. (27) and (28) can then be eliminated to give the frequency response equation:

k1Z1�mZ1Ω
2þ3

4 k3Z
3
1

� �2
þðcZ1ΩÞ2 ¼ ðmAÞ2 (29)
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which is the same result that can be obtained using alternative perturbation methods [23,66] for this simplified case of
using a single harmonic. It should be noted that the quadratic nonlinearity term vanishes in this single-term approximation.
Therefore the error in single-term approximation is expected to grow with increasing contribution from the quadratic
stiffness term.

5. Experimental results, model validation, and case study

Using the experimental setup shown in Fig. 4, up and down frequency sweep experiments are conducted at fixed base
acceleration levels to extract the nonlinear frequency response functions of the M-shaped harvester for verification of
broadband behavior and validation of the mathematical model and its solution. Effects of higher harmonics in harmonic
balance analysis is discussed and also demonstrated in a case study for electromagnetic energy harvesting.

5.1. Model validation at different excitation levels

By using the feedback shaker system (Fig. 4), up and down frequency sweep experiments are conducted at rms (root-
mean-square) base acceleration levels of 0.03g, 0.05g, and 0.07g. The results of these experiments are shown in Fig. 8. The
displacement frequency response curves discussed in this section are relative to the inertial frame, i.e. the displacement x
(see Fig. 5) is plotted in the frequency response graphs.

In Fig. 8, the bottom, middle, and top rms displacement response relationships correspond to low base acceleration rms
values of 0.03g, 0.05g, and 0.07g, respectively. The system exhibits significant nonlinear behavior in all three cases. As the
base acceleration level increases, the increase in peak displacement amplitude becomes saturated, while the bandwidth of
the response continues to grow. The system shows 3 dB (half-power point) bandwidths of 1.0 Hz, 1.7 Hz, and 2.7 Hz for the
respective excitation levels. As a fraction of the linear resonant frequency, the bandwidths are 7.5, 12.7, and 20.1 percent,
respectively. To compare, an ideal linear system with the same linear parameters would have a 3 dB bandwidth of
approximately 0.03 Hz (with a much higher maximum amplitude due to the very light linear damping). Consequently the
M-shaped harvester offers 3200, 5600, and 8900 percent bandwidth enhancement at the rms base excitation levels of 0.03g,
0.05g, and 0.07g, respectively. The nonlinear system displays substantial bandwidth enhancement even for these low base
acceleration levels.

In order to validate the mathematical model presented in this work, both time-domain numerical simulations (using
ode45 in MATLAB) and harmonic balance (Section 4) results are obtained and compared with experiments. For the lowest
base excitation level of 0.03g rms, experimental, numerical, and harmonic balance results are shown in Fig. 9 along with
a detail view of the large response branch. The harmonic balance results are given for 1-term and 3-term solutions. It is
observed that the agreement between the harmonic balance and time-domain numerical simulations is improved
substantially as the number of harmonics is increased from N¼1 to N¼3. Specifically the 1-term harmonic balance
solution underestimates the response amplitude over the large-amplitude branch and overestimates the frequency of the
upper saddle-node bifurcation point. Overall, the 3-term solution exhibits much better agreement with the experimental
results and time-domain numerical solution as compared to the 1-term solution.

Further comparisons are given for the excitation levels of 0.05g and 0.07g rms. For all excitation levels, the 3-term
harmonic balance solution agrees closely with the time-domain numerical simulation. In the neighborhood of the up-sweep
jump in the frequency response, both deviate from the experimental result. The numerical results overestimate the
response, likely due to additional unmodeled dissipation and stiffness effects. Damping is assumed to be well-modeled by a
combination of linear viscous and quadratic damping in the lumped-parameter model, while other dissipative effects may
be significant. Terms of higher order may also start to be significant in the elastic restoring force. In all cases, the time-
domain simulation and 3-term harmonic balance solution provide a better estimate of the frequency at which the
bifurcation in the upper branch occurs as compared to the 1-term harmonic balance solution (Figs. 10 and 11).
Fig. 8. Experimental displacement frequency response curves of the M-shaped oscillator at 0.03g, 0.05g, and 0.07g rms base acceleration levels (up- and
down-sweep curves are shown together).



Fig. 10. Displacement frequency response curves of the M-shaped oscillator at 0.05g rms base acceleration level for up and down sweep: experimental
measurement, time-domain numerical simulation, and harmonic balance solutions (1-term and 3-term).

Fig. 11. Displacement frequency response curves of the M-shaped oscillator at 0.07g rms base acceleration level for up and down sweep: experimental
measurement, time-domain numerical simulation, and harmonic balance solutions (1-term and 3-term).

Fig. 9. Displacement frequency response curves of the M-shaped oscillator at 0.03g rms base acceleration level for up and down sweep: experimental
measurement, time-domain numerical simulation, and harmonic balance solutions (1-term and 3-term).
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Overall, the experimental and simulated data are observed to be in very close agreement. The 0.03g and 0.05g cases show
agreement at all frequencies, while the 0.07g case shows a discrepancy between the magnitude and frequency of the top
of the upper branch. The simulation predicts a maximum rms amplitude of 12.8 mm at a frequency of 17.5 Hz. The
experimental values are 12.1 mm at 18.1 Hz. Increasing the value of γ would reduce the error of the maximum amplitude,
but would increase the error of the maximum amplitude frequency. The value of γ¼1 s/m is deemed acceptable for this
model for all excitation levels covered in this work.

Experimental evidence of high bandwidth behavior at remarkably low excitation amplitudes is of particular interest.
Studies involving the nonlinear vibrations of magnetoelastic oscillators showed only very slight nonlinear behavior at
excitation levels around 0.1g and required levels of 0.3–0.5g to display pronounced nonlinear behavior [30,34–36,38]. The
M-shaped oscillator presented here suggests substantial reduction in the required excitation level from magnetoelastic
oscillators by an order of magnitude. Additionally, the configuration presented in this work exhibits the desired broadband
behavior due to a simpler arrangement of components without any magnetoelastic restoring force.



S. Leadenham, A. Erturk / Journal of Sound and Vibration 333 (2014) 6209–6223 6219
5.2. On the effect of static component and higher harmonics

Further details regarding the effect of higher harmonics are discussed next, focusing on different kinematic forms of the
response. Electromechanical coupling is more closely related to velocity than displacement in basic energy harvesting
techniques [1,2] (e.g. piezoelectric transduction and electromagnetic induction). Fig. 12 displays the contributions of the
different harmonics to the displacement, velocity, and acceleration responses at the 0.07g rms base acceleration level. For
the M-shaped oscillator explored in this work, the nonlinearities are related to either displacement or velocity according to
Eq. (1); and as shown in Fig. 12, the first harmonic dominates all other components of the displacement and velocity
responses by at least an order of magnitude. The small magnitude of the DC component of the displacement as well as
the higher harmonics does not, however, mean that they can be ignored in harmonic balance analysis. These different
harmonics are coupled in Eqs. (15)–(21), and ignoring seemingly insignificant higher harmonics in the response can lead to
considerable errors in the prediction of important characteristics of the system, such as the frequency and magnitude of the
response at the saddle-node bifurcation point in the upper branch.

Additionally, since the structure is intended for vibrational energy harvesting, the inclusion of higher harmonics may be
even more important. Compared with the relative contribution of the different harmonics to displacement, the contribution
of each successive harmonic to the velocity increases linearly with harmonic number. For energy harvesting systems,
velocity is the variable that couples the electrical and mechanical domains, e.g. due to linear piezoelectricity and Faraday's
law of induction, making higher harmonics very significant, as demonstrated next.
Fig. 12. Magnitudes of the harmonic balance terms versus frequency for different kinematic forms of the response: (a) displacement; (b) velocity; and
(c) acceleration.
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5.3. Case study for electromagnetic energy harvesting

In order to demonstrate the potential of the M-shaped configuration for broadband electrical power generation, and to
illustrate the effects of higher harmonics in the power output, consider an electromagnetic energy harvesting implementa-
tion for the case of negligible coil inductance and linear electromechanical coupling as in Mann and Sims [26]. We further
assume zero internal (coil) resistance for simplicity. The governing electromechanical equations are then

m€zþ2ζmωn _zð1þγ j _zj Þþk1zþk2z2þk3z3�θi¼ �m0 €y (30)

Rliþθ_z¼ 0 (31)

where iðtÞ is the electric current, θ is the electromechanical coupling, and Rl is the electrical load resistance. Eqs. (30) and
(31) can then be combined to give

m€zþðcmþceÞ_zþk1zþk2z2þk3z3 ¼ �m0 €y (32)

Here, cm is the mechanical viscous damping coefficient including the equivalent quadratic damping according to Eq. (10),
cm ¼ 2ζmωnð1þ8Ω2γZ1=3πÞ, while ce is the electrical damping coefficient, ce ¼ θ2

=Rl. The average electrical power output is
calculated using

Pave ¼ i2rmsRl ¼
θ_zrms

Rl

� �2

Rl ¼ ce _z
2
rms (33)

which can be analyzed for a range of ce values by using multi-term and single-term harmonic balance expressions for the
vibration response given by Eqs. (8) and (26), respectively. The only modification required in the harmonic balance analysis
of Section 4 is to update the damping coefficient given by Eq. (10) to account for the electrical damping:

c¼ cmþce ¼ 2ζmωn 1þγ
8Ω2Z1

3π

 !
þθ2

Rl
(34)

For instance, the single-term solution for the average electrical power is

Pave ¼ 1
2 ceΩ

2Z2
1 (35)

where Z1 is obtained from

k1Z1�mZ1Ω
2þ3

4 k3Z
3
1

� �2
þðcmþceÞ2ðZ1ΩÞ2 ¼ ðmAÞ2 (36)

For a set of electrical damping coefficient values in the range of 0oce=cmo2, average power output frequency response
curves are plotted based on the 3-term harmonic balance solution in Fig. 13a for 0.07g rms base excitation. The two-
dimensional view of the average power frequency response curves in Fig. 13b reveals that the maximum power output
corresponds to the case of ce¼cm as in linear electromagnetic energy harvesters (with linear electromechanical coupling) in
the absence of internal load resistance [67]. More importantly, Fig. 13b clearly shows that the frequency bandwidth of large
amplitude response shrinks monotonically with increased electrical damping. Wide bandwidths correspond to low values of
electrical damping (0oce=cm⪡1); however, low values of ce/cm are associated with low power output as the fundamental
trade-off. The maximum power output is obtained for ce¼cm with reduced bandwidth as compared to the cases of
0oce=cmo1. Further increase in the electrical damping to the range of ce=cm41 results in both reduced power output and
reduced frequency bandwidth, gradually eliminating the advantages of the nonlinear M-shaped design over is linear
counterpart.

Finally, the comparison of 1-term and 3-term solutions of the power frequency response curves for the case of ce¼cm is
given in Fig. 14. Recall from the previous graphs (Section 5.1) that the 3-term solution agrees very well with the time-
domain numerical solution. As can be seen from this figure, in agreement with the discussion given in Section 5.2, the
harvested power can be very sensitive to higher harmonics of the M-shaped oscillator. The upper saddle-node bifurcation
point is predicted by the 1-term harmonic balance solution as 15.42 Hz, overestimating the 3-term solution of 15.04 Hz.
Therefore the electrical power predictions of the 1-term harmonic balance solution between these two frequencies would
be off by several orders of magnitude (since only the lower branch exists in the more accurate 3-term solution between
15.04 Hz and 15.42 Hz). The large-amplitude branch of the 3-term harmonic balance solution lies in the frequency range of
13.78 Hz to 15.04 Hz. In this frequency range, the 1-term solution underestimates the power output by more than 20
percent. For instance, the errors in the 1-term solution relative to 3-term solution at the frequencies of 14 Hz, 14.5 Hz, and
15 Hz are 29, 25, and 21 percent, respectively. Clearly the M-shaped energy harvester requires multi-term harmonic balance
analysis for the accurate representation of its dynamics and prediction of the harvested power output.

6. Conclusions

An M-shaped bent beam with clamped end conditions is investigated theoretically and experimentally for bandwidth
enhancement in vibration energy harvesting from base excitation. The proposed M-shaped oscillator made of spring steel is

aerturk3
Line

aerturk3
Line



Fig. 14. Comparison of average electrical power output frequency response curves obtained from the 1-term and 3-term harmonic balance solutions for
ce¼cm (0.07g rms base acceleration).

Fig. 13. Average electrical power output frequency response curves for different values of the normalized electrical damping coefficient ce/cm: (a) 3-D view
of power output versus frequency and normalized electrical damping and (b) 2-D view to visualize the maximum power case that corresponds to ce¼cm
and the monotonic shortening of the frequency bandwidth of large-amplitude branch with increased electrical damping (0.07g rms base acceleration).
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simpler to fabricate as it does not require extra discrete components to assemble. Furthermore the asymmetric
nonlinear behavior of this configuration can easily be pronounced to yield broadband behavior under low excitation levels.
Linear and nonlinear system parameters extracted from experiments are used to develop a lumped-parameter mathema-
tical model. A quadratic damping term is included in the model and observed to be sufficient in order to account for
nonlinear dissipative effects. In the absence of such a nonlinear dissipative term, the model tends to overestimate the
frequency and amplitude of the upper saddle-node bifurcation point. A multi-term harmonic balance solution is
developed to study the effects of higher harmonics and a constant term. Additionally, a single-term closed-form frequency
response equation is also extracted and compared with the multi-term harmonic balance solution. Specifically, it is observed
that the single-term solution overestimates the frequency of upper saddle-node bifurcation point and underestimates the
response amplitude in the large response branch. Multi-term harmonic balance solutions can be as accurate as time-domain
solutions, and offer the advantage of substantially reduced computation time. Overall, very good agreement is observed
between the model predictions and experimental measurements of the nonlinear frequency response under different
base excitation levels. Substantial bandwidth enhancement with increasing base excitation is validated experimentally,
analytically, and numerically. As compared to the 3 dB bandwidth of the corresponding linear system (with the same
damping linear ratio), the M-shaped oscillator offers 3200, 5600, and 8900 percent bandwidth enhancement at the root-
mean-square base excitation levels of 0.03g, 0.05g, and 0.07g, respectively. A case study is also given for electromagnetic energy
harvesting, revealing the importance of higher harmonics and the need for multi-term harmonic balance analysis for
predicting the power output accurately. Due to the existence of multiple regions of large strain and kinetic energy, the
M-shaped oscillator can be conveniently employed in piezoelectric and electromagnetic energy harvesting as well as hybrid
combinations thereof.
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