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The last two decades have witnessed several advances in microfabrication technologies
and electronics, leading to the development of small, low-power devices for wireless
sensing, data transmission, actuation, and medical implants. Unfortunately, the actual
implementation of such devices in their respective environment has been hindered by the
lack of scalable energy sources that are necessary to power and maintain them. Batteries,
which remain the most commonly used power sources, have not kept pace with the
demands of these devices, especially in terms of energy density. In light of this challenge,
the concept of vibratory energy harvesting has flourished in recent years as a possible
alternative to provide a continuous power supply. While linear vibratory energy harvest-
ers have received the majority of the literature’s attention, a significant body of the cur-
rent research activity is focused on the concept of purposeful inclusion of nonlinearities
for broadband transduction. When compared to their linear resonant counterparts, non-
linear energy harvesters have a wider steady-state frequency bandwidth, leading to a
common belief that they can be utilized to improve performance in ambient environments.
Through a review of the open literature, this paper highlights the role of nonlinearities in
the transduction of energy harvesters under different types of excitations and investigates
the conditions, in terms of excitation nature and potential shape, under which such nonli-
nearities can be beneficial for energy harvesting. [DOI: 10.1115/1.4026278]

Keywords: nonlinear, energy harvesting, monostable, bistable, low frequency, piecewise
linear

1 Introduction

Humans have historically relied on harnessing ambient energy
to fill their basic energy needs using windmills, sailing ships, and
waterwheels. While we still rely on such techniques to fill a por-
tion of the ever-increasing energy demand, our continuously
changing technological trends necessitate adapting or even revolu-
tionizing these old concepts. In particular, as we continue to build
compact and scalable electronic devices across different fields of
technology, the power requirements of such systems continue to
decrease. Wireless sensors, data transmitters, controllers, and
medical implants are only a few examples of technologies that
have evolved in recent years to effectively function with submilli-
watt power levels. For instance, wireless transponders for data
transmission can now operate efficiently with less than 1 mW of
power [1,2]; electronic microchips for health monitoring that con-
sist of a sensing unit and a microcontroller have an average power
consumption of approximately 50 uW [3,4].

Unfortunately, further evolution of such technologies has been
hindered by the lack of a continuous scalable energy source.
Batteries, which remain the most common power choice, have not
kept pace with these devices’ demands, especially in terms of
energy density [5]. In addition, batteries must be regularly
recharged or replaced, which can be very costly and cumbersome.
Such challenges combined with the low-power consumption of
many new critical devices have propelled several new innovations
in energy-harvesting technologies. Among such technologies,
micropower generators have been introduced as a new concept to
transform the smallest amounts of available ambient energy into
electricity [6-8]. These scalable and compact energy harvesters
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aim to provide a continuous power supply that permits an autono-
mous operation process of many electronic devices.

Within the vast field of micropower generation, vibratory
energy harvesting has flourished as a major thrust area. Vibratory
energy harvesters (VEHs) exploit the ability of active materials
(e.g., piezoelectric, magnetostrictive, and ferroelectric) and
electromechanical coupling mechanisms (e.g., electrostatic and
electromagnetic) to generate an electric potential in response to
mechanical stimuli and external vibrations [6—8]. Such sources of
power are currently finding applications in different fields of tech-
nology, including, but not limited to, in vivo biomedical implants
and health monitoring of structures and machines. For medical
implants, such as pacemakers [9,10], spinal stimulators [11], and
electric pain relievers [12], the availability of reliable and nonin-
vasive power supply is of utmost importance to eliminate replace-
ment of batteries, which has been shown to pose a significant risk
of infection. It has been reported that 1.2% of the 40,000 people
who annually replace batteries for pacemakers develop risky com-
plications [13]. For structural health monitoring, vibratory energy
harvesting is also envisioned to play a critical role in further evo-
lution of these technologies. During the last two decades, more
than 500 bridge failures have been reported in the United States
[14], some of which, similar to the Saint Anthony Falls bridge
(I-35W) collapse in 2007, were sudden catastrophic failures
claiming human lives and resulting in millions of dollars in dam-
age. One approach to avoid such disasters centers on an early
warning system using structural health-monitoring sensor net-
works. Traditionally, information is gathered using sensors that
are hard wired to data acquisition systems. However, this conven-
tional approach has many drawbacks, including high installation
and maintenance costs. To avoid such issues, wireless health-
monitoring sensor networks have been recently proposed and are
currently being implemented as a replacement for the older hard-
wired systems. Such networks provide similar functionalities at a
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much lower cost and, because of the absence of wires, provide
higher spatial density of sensor’s distribution [2]. Nonetheless,
these wireless sensor networks still require a source of power, and
it has been recently demonstrated that the energy harvested from
vibrations caused by the flow of traffic over bridges or the sway-
ing of a building due to wind loading provides a feasible approach
to power such networks [15,16].

1.1 Vibratory Energy Harvesting: Basic Concept and
Outstanding Issues. The most prolific VEH consists of a cantile-
ver metallic beam with piezoelectric patches attached near its
clamped end, as shown in Fig. 1. External environmental excita-
tions, ay(7), applied at the base set the beam in motion, producing
large strains near the clamped end, thereby straining and produc-
ing a voltage difference across the piezoelectric patches. By
designing the proper circuitry, this electric potential is then used
to create a current, thus converting mechanical energy from the
environment to electrical energy.

In general, traditional VEHs, including the cantilever beam
shown in Fig. 1, operate based on the basic principle of linear res-
onance. When the base excitation is harmonic with a fixed fre-
quency, maximum energy transduction from the environment to
the electric device can be achieved by tuning one of the beam’s
modal frequencies, usually the first, to be equal, or very close, to
the excitation frequency. This resonant interaction can be used
to set the beam into large-amplitude oscillations but also places
critical limitations on its broadband performance characteristics.
Since linear VEHSs are usually designed to be very lightly damped
such that the steady-state peak amplitude is maximized, their
steady-state frequency bandwidth is very narrow. Therefore, man-
ufacturing tolerances, variations in the design parameters around
their nominal values, and/or variations in the nature of the excita-
tion source can easily detune the harvester from the excitation fre-
quency, further reducing the already small energy outputs, which
limits the applicability and usefulness of VEHs that operate based
on the principle of linear resonance.

The bandwidth issue becomes more pressing when one realizes
that most realistic excitations seen in the environment are often
not harmonic but have broadband or nonstationary (time-varying)
characteristics, in which either the energy is distributed over a
wide spectrum of frequencies or the dominant frequency varies
with time. For instance, environmental excitations to which a
bridge is subjected are generally random, resulting from wind
loadings in which frequency and intensity vary depending on the
atmospheric conditions and moving vehicles in which number,
speed, weight, etc. vary at different times during a given day.
Common sources for oscillations in microsystems have white
noise characteristics due to nonequilibrium thermal fluctuations,
shot, and low-frequency noise [17-19]. Thus, tuning a linear VEH
to an excitation frequency becomes very challenging and usually

35
3.0
25
2.0
15

+V -
05
0'00.6 0.8 1.0 12 14
Qfw,
ap(t) - / .
Piezoelectric patch Boam

Fig. 1 Schematic of a linear cantilevered piezoelectric energy
harvester and its steady-state voltage response curve. Here,
ap(t) refers to the base acceleration, Q is the excitation fre-
quency, and o, is the first modal frequency of the beam.
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yields inefficient transduction properties, especially outside a lab-
oratory setting.

1.2 Nonlinearity as a Solution to the Bandwidth Problem.
To remedy this problem, initial solutions called for designing lin-
ear VEHs with tunable characteristics and for utilizing arrays of
harvesters. Tuning mechanisms use passive/active design means
to alter the fundamental frequency of the harvester to match the
dominant frequency of the excitation [20-26]. Following a num-
ber of research investigations, it became evident that tunable
VEHs are not efficient under random or rapidly varying frequency
inputs [20]. Additionally, tuning mechanisms usually require
external power or complex design means, which can reduce the
efficiency of the harvester. The design of arrays of harvesters,
each with a different fundamental frequency, was also proposed to
allow at least one of the harvesting elements to have a matching
fundamental frequency such that it resonates and harvests energy
from the corresponding excitation’s component [23,25,26]. This,
however, reduces power density and adversely affects the scalabil-
ity of the harvester.

The ability of nonlinearities to extend the coupling between the
excitation and a harmonic oscillator to a wider range of frequen-
cies has recently led many researchers to exploit them as a means
to enhance the transduction of VEHs under broadband excitations.
Nonlinearities can be inherently present in the dynamics of a
VEH due to its geometric or material properties. Usually, they
can arise from the nonlinear strain deflection relationships due to
large deformations [27] or can result from a nonlinear electrome-
chanical coupling mechanism, as in the nonlinear constitutive
relationships of piezoelectricity [28]. However, these inherent
nonlinearities are usually of limited value for energy harvesting
because they result from the internal response characteristics of
the harvester and cannot be easily controlled. More recently, the
intentional introduction of nonlinearities into the design of VEHs
has been a topic that received wide attention. The basic concept
lies in using external design means in order to purposefully intro-
duce and control the magnitude and nature of the nonlinearity in
VEHs. The most common approach to the design of such systems
introduces a nonlinear restoring force using, for example, mag-
netic or mechanical forces [29-32].

For the sake of demonstration, consider the same cantilever-
type piezoelectric harvester shown in Fig. 1, but this time, a mag-
net is attached to the tip of the cantilever while a second magnet
is fixed in the reference frame. These magnetic components intro-
duce nonlinearities into the VEH, even for vibration amplitudes
for which the beam itself operates in its linear regime. Under
external base excitations, the tip magnet oscillates inside the
potential of the other fixed magnet and the restoring force
becomes a nonlinear function of the tip deflection, as shown in
Fig. 2. The magnitude and nature of the nonlinearity can be
altered through the design of the system. For instance, dependence
of the restoring force on the tip deflection can be changed by
changing the distance between the magnets or their strength. As
shown in Fig. 2(b), the restoring force can be of the softening na-
ture if the force decreases with the tip deflection or of the harden-
ing type if it increases with the deflection. If the system possesses
two stable equilibrium points, it is said to be bistable. As illus-
trated in the figure, the bistable design has a negative stiffness for
small tip deflections and exhibits two additional equilibria that
correspond to offset states.

Over the last couple of years, research results have indicated
that, when carefully introduced, nonlinearity can be favorable for
energy harvesting because it extends the bandwidth of the har-
vester and, hence, allows for more efficient transduction under the
ambient random and nonstationary sources [29-32]. Uncertainty
propagation analysis served to further reinforce these findings by
showing that, under harmonic excitations, a linear device is much
more sensitive to uncertainties arising from imprecise characteri-
zation of the host environment and/or from manufacturing
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Fig. 2 (a) Schematic of a nonlinear cantilevered piezoelectric
energy harvester. (b) Variation of the restoring force due to the
nonlinearity.

tolerances [33]. Through a critical review of these results and
detailed discussions on the influence of nonlinearities on the
dynamics of mechanical oscillators, this paper reviews current
research results in the literature and provides a more complete
understanding of the role that nonlinearities play in the transduc-
tion of VEHSs under different types of excitations. To achieve this
goal, Sec. 2 introduces a basic electromechanical model that can
be used to build a qualitative understanding of nonlinear VEHs.
Section 3 provides a qualitative understanding of the response of
mono- and bistable Duffing oscillators to harmonic excitations.
This section contains the essential background necessary to under-
stand the response of mono- and bistable VEHs to different types
of excitations, which is going to be addressed in Secs. 4 and 5,
respectively. Recent research efforts on incorporating a piecewise
linear restoring force for enhanced transduction are presented in
Sec. 6. The influence of material and coupling nonlinearities
on energy harvesting, as well as the role of dissipative effects, is
discussed in Sec. 7. Subsequently, Sec. 8 explores utilizing nonli-
nearity for energy harvesting under low-frequency excitations.
Finally, a summary of the critical gaps in the current knowledge is
provided in Sec. 9 with the goal of opening new avenues for
research.

2 A Basic Electromechanical Model

The literature contains several lumped- and distributed-
parameter models of VEHs [32,34,35]; however, these models are
generally device specific and, hence, not very appropriate to build
a qualitative understanding of the response behavior. To gain
the insights necessary for a more general understanding, we con-
sider a physics-based model, which can capture the qualitative
behavior of energy harvesters [36]. The model consists of a
lumped-parameter mechanical oscillator coupled to an electric
circuit through an electromechanical coupling mechanism that is
either capacitive (e.g., piezoelectric and electrostatic), Fig. 3(a),
or inductive (e.g., electromagnetic and magnetostrictive),
Fig. 3(b). The equations of motion can then be written in the fol-
lowing general form:

d_ -
U()L) + 0y = —miy,

mﬁ?—i—cfc—l— —
dx %)

Cpy + % = 0x, (piezoelectric), Ly + Ry = 0x, (inductive)
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Fig. 3 A simplified representation of a generic vibratory
energy harvester

where the overdot represents a derivative with respect to time, 7.
The variable ¥ represents the relative displacement of the mass, m;
¢ is a linear viscous damping coefficient; 0 is a linear electrome-
chanical coupling coefficient; X, is the base acceleration; C, is the
capacitance of the piezoelectric element; L is the inductance of
the harvesting coil, and y is the electric quantity representing the
induced voltage in capacitive harvesters and the induced current
in inductive ones. These are measured across an equivalent resis-
tive load, R. The function U(¥) represents the potential energy of
the mechanical subsystem. The shape of this potential function
depends on the specific nonlinearity present in the harvester but in
general can be represented as

U(x) :%kl(l — )& +%5x“ 2

which is also known as the Duffing potential, leading to cubic
nonlinearities in the mechanical oscillator. Here, k; and k, are,
respectively, linear and nonlinear stiffness coefficients, while r is
introduced to permit variations in the linear stiffness around its
nominal value. For physical realizations of most nonlinear VEHs,
the introduction of this constant is necessary to reflect the fact that
the linear and nonlinear stiffness coefficients cannot be changed
independently. For example, when the distance between the mag-
nets in Fig. 2 is changed, both the linear and nonlinear stiffnesses
change simultaneously.

The equations of motion can be further nondimensionalized by
introducing the following dimensionless quantities:

| =i

C
— P
) = T(Dlh

X = . y:01

L
v (piezoelectric), y= W}’z (inductive)
j

3

~

where /. is a length scale and w, = \/k;/m is the short-circuit
nominal frequency when r = 0. With these transformations, the
nondimensional equations of motion can be expressed as

jc'+26z+d—U+x2 =5
8 dx y=—X

“)
ytoay=x
where
dU
oo (1 —r)x + 6 5)
piezoelectric  inductive
. ¢ , 0 ,
C=T7F, =T A =T
2\/k1m klcp le (6)
. oP 1 R
0=, o = , = —
ky RC,w, Lw,
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Fig. 4 Restoring force and energy potentials of different nonlinear vibratory energy

harvesters

Here, ( is the mechanical damping ratio, x is a linear dimension-
less electromechanical coupling coefficient that measures the cou-
pling strength between the mechanical and electrical subsystems,
and o is the ratio between the mechanical and electrical time con-
stants of the harvester. This time ratio is important to characterize
performance of nonlinear VEHs under random excitations. Note
that xk and o have different definitions in terms of the dimensional
parameters for capacitive versus inductive electromechanical cou-
pling mechanisms. Finally, J is the coefficient of the cubic nonli-
nearity. The form of the equations in Eq. (4) permits classifying
energy harvesters, regardless of their coupling mechanism, into
three major categories based on the shape of their potential energy
function, as shown in Fig. 4.

* Linear (0 = 0 and r < 1): In such a case, the restoring force
is a linear function of the displacement, as shown in Fig. 4.
Most of what are considered as linear VEHs are only linear
within a certain range of operation. Large deformations and
the electromechanical coupling mechanisms introduce small
nonlinearities that can be usually neglected to avoid complex-
ities in the analysis [28,37-39].

Nonlinear monostable (r < 1): When 6 > 0, the restoring
force increases with the displacement and is said to be of the
hardening type. On the other hand, when ¢ < 0, the restoring
force decreases with the displacement and is said to be of the
softening nature, as depicted in Fig. 4(a).

Nonlinear bistable (6 > 0 and r > 1): In such a scenario, the
potential function of the harvester has two potential wells
separated by a potential barrier, as depicted in Fig. 4(b).
When ¢ is increased, the separation distance between the
wells, which is defined by the location of the system’s stable
equilibria, =/(r — 1)/9, decreases. The height of the poten-
tial barrier, h, = [(r — 1)?]/49, also decreases. This creates
shallower potential wells, which in turn facilitates the transi-
tion of dynamic trajectories from one potential well to the
other, a phenomenon commonly known as the interwell
oscillations.

3 Duffing Oscillators

The basic electromechanical model developed in Eq. (4) reveals
that, when the backward coupling, k2, is small, the influence
of the circuit dynamics on the mechanical subsystem becomes
negligible. In such a scenario, the dynamics of the oscillator are
decoupled from the circuit dynamics with only a forward coupling
effect, in other words, the mechanical oscillator influencing the
harvested circuit, but not vice versa. Qualitatively, this implies
that the dynamics of the harvester can be fairly well understood
by studying the dynamics of the mechanical oscillator. As will be
seen later in this manuscript, for a resistive load, even when K2 is
nonnegligible, its effect on the dynamics of the oscillator can be
captured by a shift in the oscillation frequency and additional lin-
ear damping [32,40]. Based on this argument, an overview of
the qualitative influence of the nonlinearity on the dynamics of

040801-4 / Vol. 66, JULY 2014

harmonic oscillators can go a long way towards understanding the
influence of nonlinearity on vibratory energy harvesting. Readers
who are not very familiar with the behavior of nonlinear systems
are advised to consult an introductory book on nonlinear dynamics
to better understand the concepts introduced throughout this
review [41-43].

Let us consider the dynamics of a particle of mass, m,
constrained to move along the path, U(x), as shown in Fig. 5. For
better visualization, the path can be regarded as a cart subjected
to some base acceleration in the horizontal direction, a(r)
= Acos(Qr). As long as the particle does not bounce throughout
its motion, the restoring force is approximately proportional to the
quantity mgdU /dx, where g is the gravitational acceleration.
Thus, the shape of the path U(x) determines the nature of the non-
linearity. When the path, U(x), is a quartic function of x, the
restoring force, dU/dx, is cubic and the motion of the particle
along the path presents a Duffing oscillator. If U(x) has a single
well where the particle can settle at steady state in the absence of
external excitation, then the Duffing oscillator is monostable. If it
has two wells separated by a barrier, where the particle can settle
at steady state, then it is bistable.

3.1 Frequency-Response of the Particle in the Monostable
Potential. When the path is monostable of the form,
U(x) = 1/2x* 4 1/46x*, and the cart is subjected to base excita-
tions with frequency, €, the motion of the particle along the path
can be investigated by studying variation of its steady-state ampli-
tude |x| with the frequency of excitation, also known as the
frequency-response curve, as depicted in Fig. 6. When Q is close
to the local frequency of the system, w,, the base excitation is
called a primary resonant excitation.” For a linear restoring force,
ie., 0 =0, the frequency-response curve exhibits the typical
Lorentzian-shaped behavior with large-amplitude motions occur-
ring near the resonance frequency, i.e., Q ~ ®,. The associated
particle responses are always unique; thus, for each frequency, the
particle has a single physically realizable motion. On the other
hand, when ¢ # 0, the frequency-response curves bend to the left
or to the right, indicating either a hardening nonlinearity, J > 0,
or a softening nonlinearity, 6 < 0. It is this bend in the frequency
response curves that initially led researchers to exploit the nonli-
nearity to widen the response bandwidth of energy harvesters.
The bend in the frequency-response curves yields nonunique solu-
tions for a certain range of frequencies and is characterized by the
presence of three branches of coexisting motions, also known as
attractors, namely, the large resonant branch, B,; the nonresonant
branch, B,; and the unstable branch (dashed lines). The stable
branches of solution collide with the unstable branch at two points
(denoted with s.n. in the figure for 6 = —1). These bifurcations
are of the saddle-node type, where a branch of unstable saddles
coalesce with a branch of stable nodes.

2In addition to the primary resonant excitations, nonlinear systems can exhibit
secondary resonances at fraction or multiple integers of the natural frequency.
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Fig. 5 The dynamics of a nonlinear energy harvester can be fairly well understood via a simple
analogy with a particle moving along a cart. (a) Monostable potential and (b) bistable potential.
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Fig. 6 Frequency response of the particle in the monostable
potential

To better understand the response behavior of the particle as
the frequency of excitation is varied, consider the case when ¢ is
negative and an experiment where the excitation frequency of the
cart is quasistatically increased towards resonance. The particle
motion follows the nonresonant branch, B,,, of solutions up to the
saddle-node bifurcation, where it jumps to the upper branch, B,.
The particle stays on the large orbit branch as the frequency is
increased further. When the process is reversed, the response fol-
lows the nonresonant branch up until the higher saddle node,
where it jumps down to the branch B, and continues on that
branch as the frequency is decreased further.

It is evident that the system exhibits a hysteretic behavior due
to the nonlinearity. Generally, in the region of multiple solutions,
the amplitude of steady-state motion depends on the direction of
the frequency sweep and the initial conditions. For some set of ini-
tial conditions, the response will converge to the upper branch of
solutions, while for another set, the response will approach the
lower branch of solutions. The set of initial conditions leading to
one solution versus the other is defined as the basin of attraction
for the solution. For the system under study, the basin of attraction
for the two solutions at different values of Q/w, are shown in
Fig. 7. Figure 7(a) depicts the basins of attraction very close to the
higher saddle node, showing that the upper resonant branch has a

much smaller basin of attraction. For the set of parameter values
illustrated in Fig. 7(b), the basins of attraction for the two equilib-
rium states are of similar size. Finally, Fig. 7(c) depicts the basins
near the lower saddle-node bifurcation, illustrating that the reso-
nant branch has a larger basin of attraction in that region.

The influence of the system parameters on the steady-state fre-
quency response is shown in Fig. 8. Increasing the forcing or
decreasing the damping has a similar influence—the peak ampli-
tude of the response increases while the bend in the frequency
response remains the same. With decreases in the damping, the
bandwidth of the response increases. Changing the nonlinearity,
on the other hand, changes the direction and the degree by which
the frequency-response curves bend but never influences the peak
value, as shown earlier in Fig. 6.

3.2 Frequency-Response of the Particle in the Bistable
Potential. When the path has the shape U(x) = —1/2x% +1/46x*,
0 > 0, which has two minima, as shown in Fig. 5(b), depending
on the initial conditions and the magnitude and frequency of exci-
tation, the particle can be either confined to one potential well
(intrawell dynamics) or can move between the two potential wells
(interwell dynamics). For the particle to escape from one potential
well, the energy supplied through the initial conditions or the
external excitation should be large enough to overcome the local
maximum located at the middle of the path, also known as the
potential barrier.

In general, intrawell motions of the particle, which occur for
small excitations, are less complex than their interwell counter-
parts. Since a single potential well is asymmetric, Fig. 9(a), the
dynamics of the ball becomes asymmetric, as depicted in the
phase portrait shown in Fig. 9(b). The schematic of the frequency-
response curve, Fig. 10, near the local frequency of oscillation
reveals that the intrawell dynamics is very similar to a monostable
Duffing oscillator with softening nonlinearity. As long as the
forcing amplitude A is below a critical threshold, A;, the oscilla-
tion remains periodic with a frequency equal to that of the
excitation.

1.0
0.5 Brl
8 0
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Fig. 7 Basins of attraction of the multiple solutions of a monostable system
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Fig. 8 Frequency response of the particle in a monostable potential for a path with softening
nonlinearity. (a) Changing the forcing amplitude, A, and (b) changing the damping ratio, ¢.
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Fig. 10 Frequency response of the particle in a single potential
well of the bistable potential system when A< A;. Dashed lines
represent unstable periodic responses.
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Fig. 11 Frequency response of the particle in a single potential
well of the bistable potential system when A; <A< A,. Dashed
lines represent unstable periodic responses.
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When the amplitude of excitation is increased beyond this
threshold value, A} < A < A, more complex dynamic responses
are observed, even when the forcing is not large enough to pro-
duce steady-state interwell motions. Specifically, it can be seen in
Fig. 11 that the resonant branch of solutions undergoes a series of
period-doubling bifurcations, pd, leading to a narrow bandwidth
where chaotic responses, CH, occur. The chaotic attractor quickly
disappears in a boundary crisis, cr. The saddle-node bifurcation at
the coalescence of the resonant branch, B,, and the unstable
branch disappears, and the response jumps either to the nonreso-
nant branch of solutions in the same potential well or overcomes
the potential barrier and settles at the nonresonant branch of solu-
tions associated with the opposite potential. The basins of attrac-
tion of the different solutions just above the period-doubling
bifurcation and in the chaotic region are shown in Fig. 12, clearly
indicating that the boundaries between the different basins
become unsmooth (fractal) in nature when the response is chaotic.
Therefore, any set of initial conditions in the fractal region will
result in intrawell chaos and the final steady-state behavior of the
ball becomes unpredictable.

When the amplitude of excitation is large enough to allow the
particle to escape from the single potential well A > A,, the
dynamics becomes much more complex, as shown in Fig. 13.
Many possible responses can exist, depending on the initial condi-
tions and frequency of excitation. For the lower end of the fre-
quency range considered, the small-amplitude nonresonant branch
of solutions, B,, is accompanied with the large-amplitude branch,
B;. Depending on the initial conditions, the ball can either exhibit
small-amplitude intrawell motion or large-amplitude interwell
oscillations. As the excitation frequency is increased towards 0.65
wy, the large-orbit periodic solution becomes unique, allowing the
ball to undergo large-amplitude motions for any set of initial con-
ditions. It is this motion within the frequency response that led
researchers to exploit bistability for energy harvesting. Generally,
this frequency bandwidth becomes larger as the excitation

Transactions of the ASME

Downloaded From: http://appliedmechanicsr eviews.asmedigitalcollection.asme.or g/ on 05/08/2014 Terms of Use: http://asme.org/terms



Fig. 12 Basins of attraction of the multiple solutions of a bistable system for an intermediate
value of the input excitation A <A< A,. (a) Basins of attraction for a frequency ratio slightly
higher than the period doubling pd bifurcation. (b) Basins of attraction for a frequency ratio
within the chaotic region, CH. Here, B, and B, are the attractors of the opposite well.

amplitude increases. As the frequency is increased further, a cha-
otic attractor, CH, and windows of n period periodic solutions,
namely 37 solutions, appear to accompany the large-orbit solu-
tion. The response of the ball in this region becomes unpredictable
and very sensitive to the initial conditions.

It is evident that the response of the particle in the bistable
potential is much more complex than the monostable one. Like-
wise, the response of VEHs with bistable potential is much more
complex than their monostable counterparts. With the hope that
the previous discussion is sufficient to provide the reader with a
basic qualitative understanding of the response of mono- and
bistable Duffing oscillators to harmonic excitations, next we pres-
ent some of the major findings in the current literature with
respect to the influence of nonlinearities on energy harvesting.

4 Monostable Energy Harvesters

4.1 Brief History and Examples. Early research on mono-
stable VEHs considered the influence of inherent nonlinearities on
the performance of VEHs. A correspondence by Hu et al. [37] dis-
cussed the influence of inherent geometric and material nonlinear-
ities due to large deformations on the response behavior of
piezoelectric VEHs. Their initial work provided a glimpse of how

Q/w,

Fig. 13 Bifurcation diagram for the bistable potential system
when A> A. Here, B, represents the large-orbit branch of inter-
well oscillations; B, and B, represent nonresonant intrawell
oscillations within the two opposing wells; B, and B, represent
resonant intrawell oscillations within the two opposing wells;
cr; represents boundary crises; pd is a period-doubling bifurca-
tion; nT represents periodic solutions having nx the period of
excitation, and CH represents chaotic solutions.

Applied Mechanics Reviews

nonlinearities can alter the behavior of VEHs and possibly provide
some solutions to broaden the frequency bandwidth. Meanwhile,
Beeby et al. [44] proposed a microelectromagnetic energy har-
vester, which, when tested experimentally, clearly exhibited a
nonlinear response behavior with nonunique solutions existing for
a certain frequency bandwidth. In 2007, Quinn et al. [45] also
investigated the response of a generic energy harvester with essen-
tial nonlinearities to impulsive loadings, showing that the nonli-
nearity can be beneficial for energy harvesting.

Burrow and Clare [46] and Barton et al. [47] were among the
first to intentionally introduce nonlinearities into an energy har-
vester and test its performance in an experimental setting. They
proposed an electromagnetic VEH in the form of a tip magnet
attached to a cantilever beam, as shown in Fig. 14(a). The mag-
netic potential between the magnets and the steel stator creates a
nonlinear hardening restoring force. When the beam oscillates due
to external excitations, the magnets move in the vicinity of a sta-
tionary steel stator and relative to a coil wound around an iron
core, generating a current in the coil as per Faraday’s law.

Following the work of Burrow and Clare [46] and Barton et al.
[47], several other researchers have proposed other mechanisms
to introduce the nonlinear compliance into monostable VEHs. In
one demonstration, a magnetically levitated inductive harvester
was proposed by Mann and Sims [29] and shown in Fig. 14(b).
This harvester comprises of two outer magnets to levitate a fluctu-
ating central magnet. The nonlinearity, which is of the hardening
type, is introduced in the form of the magnetic restoring force,
which also enables the system to be tuned to a specific resonant
frequency. Energy is generated as a result of the relative motion
between the coil and the center magnet. Stanton et al. [48] and
Sebald et al. [49] also proposed a piezoelectric cantilever beam-
type harvester with a tip magnet oscillating between two other sta-
tionary magnets, Fig. 14(c). Using this configuration, the authors
showed that the effective nonlinearity of the system can be
changed by altering the distance between the stationary magnets.
For some distances, the harvester exhibits a softening nonlinear-
ity, and for some others, it exhibits a hardening-type behavior,
resulting in a desirable bidirectional tunability. Masana and Daqaq
[32] proposed a clamped-clamped axially loaded piezoelectric
beam harvester, as shown in Fig. 14(d). The device harvests
energy as a result of the excitation-induced deformation of a pie-
zoelectric patch attached to the surface of the beam. When the
axial load is kept below the critical buckling load, the harvester
exhibited a monostable Duffing-type behavior with a cubic nonli-
nearity in which the magnitude and nature depends on the magni-
tude of the axial load.
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Fig. 14 Cartoon schematics of monostable energy harvester. (a) Inductive energy harvester
proposed by Burrow and Clare [46], (b) inductive energy harvester proposed by Mann and Sims
[29], (c) piezoelectric energy harvester proposed by Stanton et al. [48] and Sebald et al. [49], and
(d) piezoelectric energy harvester proposed by Masana and Daqgaq [32].
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Fig. 15 Examples of capacitive monostable VEHs fabricated for MEMS applica-
tions. Part (a) is adapted from “Large-amplitude MEMS Electret Generator with
Nonlinear Springs,” by Miki et al., 2010, published in 2010 IEEE 23rd International
Conference on Micro Electro Mechanical Systems (MEMS). Reproduced by permis-
sion of IEEE Publishing. All rights reserved. Part (b) is adapted from “Fabrication
and Characterization of a Wideband MEMS Energy Harvester Utilizing Nonlinear
Springs,” by Nguyen et al., 2010, Journal of Micromechanics and Microengineer-
ing, 20. Reproduced by permission of IOP Publishing. All rights reserved.

In addition to the macroscale examples, several monostable
energy harvesters were fabricated for microscale applications. In
one demonstration, Marinkovic and Koser [50] proposed a piezo-
electric device consisting of a large center clamped at its corner to
four tethers, which act like clamped-clamped beams undergoing
bending and stretching. The stretching effect introduces a geomet-
ric hardening nonlinearity of the monostable type, which is shown
to extend the steady-state bandwidth of the harvester. Along simi-
lar lines, Tvedt et al. [51] proposed and tested an electrostatic
microelectromechanical systems (MEMS) harvester consisting of
a center mass clamped at its four ends using hardening suspension
beams. The device also exhibited a hardening-type response simi-
lar to the behavior demonstrated in Ref. [50]. The very similar

040801-8 / Vol. 66, JULY 2014

device shown in Fig. 15(a) was proposed by Miki et al. [52]. The
proposed device exhibits a monostable Duffing-type behavior by
employing nonlinear hardening springs to restore the motion of a
silicon mass. Additionally, the harvester has elastic hardening
stoppers that serve to constrain the motion of the device when
subjected to large-amplitude excitations. These stoppers produce
a piecewise nonlinear restoring force that was shown to broaden
the steady-state bandwidth of the harvester. Nguyen et al. [53]
fabricated and tested the electrostatic micropower generator
shown in Fig. 15(b) with especially designed nonlinear springs
that produce a softening influence. The device exhibited a
softening-type response and was shown to have a wide steady-
state response bandwidth.
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Fig. 16 (a) Influence of the backward coupling x on the steady-state frequency
response of the mechanical subsystem near a primary resonant excitation. (b)
Power response of a capacitive-type monostable VEH with 6 = — 200, ¢{ = 0.005,
A=0.001, Cp=1x10"7 F, ky =1000 N/m, « = 1, and different values of x. Dashed
lines represent unstable periodic responses.

4.2 Response to Direct Harmonic Excitations. Next, we
investigate the response of nonlinear monostable VEHs to har-
monic excitations. While Sec. 3.1 provided a basic picture of how
nonlinearities influence nonlinear monostable oscillators, a more
in-depth understanding of the influence of nonlinearity on mono-
stable VEHs can be attained by studying the primary resonant
behavior of Eq. (4) under sinusoidal base excitation of the form
Xp = Asin(Qr), where Q is very close to the natural frequency of
the harvester w, chosen to be unity for simplicity. Using the
method of multiple scales [41], an approximate analytical solution
of Eq. (4) (r = 0) can be expressed in the form [32,54]

x(t) = a(r) cos(Qt — f(1))

y(1) \/%

_ )

cos(Qr — () + arctan o)

where the amplitude of the response, a(f), and its phase, f(¢), are
governed by the following modulation equations:

d A

—a:f(C+Ce)a+fsinl//

dt 2 8)
ap 3., A

aE—(Q (1+ wy))a 85a +2c031//

Here, = (Q — 1)t — B. The quantity {, = (x%a)/(2(1 + &?))
represents the effective electrical damping introduced by the
electric load, and w; = x?/(2(1 + o?)) represents a shift in the
oscillation frequency due to the electromechanical coupling, .
These two terms vanish when the backward coupling x is
neglected, and the dynamics of the harvester can be well under-
stood by studying the dynamics of the equivalent monostable
Duffing oscillator, as described earlier in Sec. 3.1.

The response behavior can be further simplified by investigat-
ing the steady-state amplitude and phase of the response, which
can be obtained by setting the time derivatives in Eq. (8) equal to
zero. These equilibrium states of the modulation equations corre-
spond to the steady-state response of the VEH. This yields the fol-
lowing algebraic equations:

(C+L0@+ (@~ (1 + o)) — 3 6a]
(+¢4
Q— (14 wy) fgéa%

(C))

tan ff, =

The first of these represent the nonlinear frequency response equa-
tion, which can be used to study variation of the steady-state
amplitude, ao, with the excitation frequency, Q. Upon solving this
equation, the steady-state amplitude of the electric output can be
written as

Applied Mechanics Reviews

M=% = Iy = | (piezoctectric
y| = ——= = |y| = = |y| (piezoelectric),
1+a2 Cp (10)
S0 .
[¥| = —1y| (inductive)
L
and the dimensional average power dissipated in the load is
-2
P= % (piezoelectric), P = |y’R (inductive)  (11)

The previous equations can now be used to investigate the influ-
ence of several system’s parameters on the steady-state displace-
ment and output power of the harvester. The influence of the
backward coupling, x, on the steady-state dynamics of the oscilla-
tor is depicted in Fig. 16(a). It is evident that increases in the
backward coupling reduce the maximum amplitude of the
response due to the additional energy harvested, as captured by (.,
and shift the frequency-response curves towards higher values of
Q due to w;. Thus, the influence of the backward coupling on the
oscillator can be interpreted as additional linear damping together
with an increase in the resonant frequency. The effect of the
electromechanical coupling on the output power is shown in
Fig. 16(b), clearly demonstrating that increases in the coupling do
not necessarily increase the output power. There exists an optimal
value of x, beyond which the electrically induced damping can
become too large, reducing the velocity of the oscillator and,
thereby, reducing the output power. Also, since increasing the
coupling increases the electric damping, the effective bandwidth
of the harvester, over which the resonant branch of solutions
exists, shrinks as x increases.

The influence of the time-constant ratio, o (proportional to the
load resistance R) is studied next. As shown in Fig. 17, it can be
noted that the electric damping varies with o, exhibiting a maxi-
mum value near o = 1. Near short and open circuit (large and
small values of «), the electric damping is very small because little
energy can be extracted from the mechanical subsystem in these
conditions. When the damping is reduced, the resonant branch of
solutions extends to a wider bandwidth of frequencies, as dis-
cussed earlier in Fig. 8(b). As such, near short and open circuit,
the frequency-response curves of the oscillator extend to a wider
bandwidth of frequencies, as shown in Fig. 18(a). The steady-
state output power, which is proportional to the square of the am-
plitude of motion, i.e., |x|°, extends exactly to the same bandwidth
of frequencies as |x| but gets scaled by «, with its maximum am-
plitude occurring near the maximum electric damping at o = 1, as
depicted in Fig. 18(b). Such results reveal an intricate balance
between the available bandwidth of the harvester and the maxi-
mum attainable output power for a given load resistance. In partic-
ular, it is evident that, while the steady-state bandwidth is
enhanced when the electric damping is reduced, the harvested
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Fig. 17 Variation of the electric damping ¢, with the time con-
stant ratio, «

power is much smaller over the enhanced bandwidth. On the other
hand, when the electric damping is increased, the bandwidth
shrinks significantly, but the amplitude of the power is much
larger at each frequency within the shrunk bandwidth.

Even though the nonlinearity increases the harvester’s band-
width when compared to a linear device, as shown in Fig. 18, the
harvester is not always guaranteed to operate on the desired large-
amplitude resonant branch of solutions. As described earlier in
Sec. 3.1, the operating branch is determined by the basins of
attraction of the coexisting solutions. Quinn et al. [55] highlighted
this issue by using a probabilistic approach to estimate the steady-
state response in the region where multiple solutions coexist. A
weighted average value is used for the steady-state responses,
with the weights calculated using the basins of attraction of the
multiple coexisting solutions for physically realizable initial con-
ditions. They illustrated that, in those regions, the probabilistic
response gets closer to the smaller amplitude nonresonant branch
of solutions as the frequency is shifted away from the linear reso-
nance frequency. Several researchers have also suggested using
different mechanisms to supply appropriate initial conditions that
coincide with the basin of attraction of the large-orbit solution, so
that the response remains on the resonant branch. However, a
detailed evaluation of such mechanisms in terms of efficiency and
power requirements has yet to be performed.

Sebald et al. [56] carried a detailed investigation to evaluate the
performance of a monostable Duffing-type harvester. They high-
lighted another major issue of monostable VEHs by demonstrat-
ing that, when the nonlinearity and/or the excitation amplitude is
sufficiently small, the nonlinear monostable harvester behaves,
more or less, like a linear harvester, with its optimal power
extracted at two frequencies, namely, the resonance frequency,
Q = w,, and the antiresonance frequency, Q = w,v/1 + k2. They
observed that the optimal time-constant ratio calculated at the
optimal frequencies is dependent on the mechanical damping and
electromechanical coupling and is very close to o = 1 when the
damping and coupling are small. When either the nonlinearity or
the excitation amplitude are sufficiently increased, two optimal
values of o appear for every excitation frequency. These optimal
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Fig. 19 Power response of a capacitive-type monostable
harvester with x>=0.25, {=0.01, A=0.001, Cp=1x10"7 F,
ki =1000 N/m, and & =1

values correspond to maximizing the coexisting resonant and
nonresonant branches of solution typically seen in the nonlinear
frequency response. When the harvester is forced to operate on
the resonant branch while actively changing the time constant
ratio to coincide with its optimal value at each excitation fre-
quency, the bandwidth of the output power can be extended sig-
nificantly when compared to an equivalent linear harvester.
However, this can be easier said than done, since the resonant
branch of solutions has a very small basin of attraction as the exci-
tation frequency shifts away from the linear resonance value.
Additional difficulties are encountered, as the load resistance must
be continuously optimized as the excitation frequency varies.

Finally, it is also worth noting that, for this representation of a
VEH, the nonlinearity by itself can only be used to bend the
response curves but has no influence on the amplitude of the
power, as shown in Fig. 19.

4.3 Response to Random Excitations. While most environ-
mental excitations under which VEHs are designed to operate
have random or time-dependent characteristics, their design and
optimization is currently, for the most part, based on steady-state
analyses under harmonic excitations, as discussed in Sec. 4.2.
While this constitutes an important first step, it does not provide
the tools or insights necessary for improving their performance in
an actual environment. Recently, various researchers realized the
importance of understanding the influence of the nonlinearity on
the transduction characteristics of VEHs under white and colored
random excitations. Among these studies, the response of mono-
stable Duffing-type harvesters to random excitations has been ana-
lyzed by few researchers [30,57,58].

4.3.1 White Noise. The influence of the nonlinearity on
the performance of monostable Duffing VEHs under white Gaus-
sian excitations has been investigated by various researchers
[30,53,58-60]. It was determined that the time-constant ratio, o,
plays an important role in characterizing the influence of the non-
linearity. Gammaitoni et al. [30] numerically and experimentally
studied the response of a monostable piezoelectric energy har-
vester to random excitations. They showed that, when the time

Fig. 18 Frequency and power response of a capacitive-type monostable harvester
with 6 =200, { =0.005, A=0.001, Cp=1x10"7 F, ky =1000 N/m, 6 = 0.002 N/Volt
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constant of the harvesting circuit 1/(RC,) is very small, i.e., o is
very large, the root mean square (rms) output voltage always
decreases with the nonlinearity for a fixed linear stiffness. In
2010, Dagaq [58] considered an inductive monostable energy har-
vester and formulated the Fokker-Plank-Kolmagorov (FPK) equa-
tion governing the evolution of the probability density function of
the harvester’s response under white Gaussian noise. He showed
that, when the inductance of the coil can be neglected (equivalent
to having a very large time constant ratio, ), the PDF of the
response can be separated into a function of the displacement and
a function of the velocity. He proved that, under such conditions,
the output power of the harvester is not a function of the nonli-
nearity. Therefore, linear and nonlinear monostable harvesters
produce exactly similar power levels under white noise excitations
provided that the time-constant ratio between the mechanical
oscillator and the harvesting circuit is very large. Sebald et al.
[56] confirmed these results experimentally by showing that the
output power levels of a linear and a nonlinear monostable
Duffing-type harvester are very close when both are excited with
equivalent broadband noise.

In an extension to his earlier work, Daqaq [36] also showed
that, even when the time-constant ratio is not very large for both
capacitive and inductive harvesters, the output voltage decreases
with the nonlinearity as long as it is of the hardening nature. He
concluded that, for two energy harvesters with equal linear stiff-
nesses, the one with zero nonlinear stiffness component always
outperforms the one exhibiting a hardening nonlinear behavior.
Recent research results by Green et al. [61] corroborated these
findings but also showed that, although both the linear and nonlin-
ear harvester’s produce exactly similar power levels under white
noise, the harvester with the nonlinear restoring force has a
smaller rms displacement when compared to the linear one,
making it better suited for applications with constrained space.
However, such conclusions should be treated carefully, since the
reduction of the rms value of the displacement does not necessar-
ily prevent the instantaneous displacement from being large. In a
recent study, Halvorsen [60] also demonstrated that the rms volt-
age of the harvester is not a function of the nonlinearity when the
time constant of the harvesting circuit is very small. He showed
that, for intermediate values of the time constant, the rms voltage
of a monostable harvester with a hardening nonlinearity can never
be larger than that of a linear harvester with equal linear stiffness.
On the other hand, a monostable harvester with a softening
nonlinearity can produce more power than a linear harvester with
equal linear stiffness [53]. The results of Halvorsen [60] have
been further confirmed by He and Daqaq [62], who showed that
asymmetries in the restoring force due to softening quadratic non-
linearities can provide performance enhancement under white
noise over an equivalent linear harvester.

The optimization of the electric load for monostable Duffing
harvester’s under white noise was discussed by several researchers
[61,62]. Green et al. [61] considered an electromagnetic energy
harvester with cubic-hardening nonlinearities and used statistical
linearization to show that, when neglecting the inductance of the
coil (« approaches infinity), the optimal load is not a function of
the nonlinearity and is equal to that corresponding to the optimiza-
tion of the linear problem. He and Daqaq [62] generalized the
optimization problem to any generic nonlinear monostable VEH
with quadratic and cubic nonlinearities and any time-constant
ratio. They illustrated that, when the time-constant ratio is not
very large, the optimal load is in fact a function of the
nonlinearity.

4.3.2 Colored Noise. Barton et al. [47] experimentally
analyzed the response of the nonlinear electromagnetic energy
harvester shown in Fig. 14(a) to narrow-band random excitations.
The narrow-band excitation was created by passing white Gaus-
sian noise through a bandpass filter with a predefined bandwidth
and center frequency. They studied variation of the rms tip
velocity of the harvester with the center frequency of the random
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excitation for different bandwidths. They observed that, in the
region where multiple solutions coexist in the nonlinear steady-
state response curves, the harvester cannot maintain motions on
the higher orbit resonant branch under the band-limited forcing.
The response jumps between the two branches of solution, causing
the output voltage to drop significantly when compared to the
steady-state response attained under harmonic excitations. The
authors concluded that the bend in the steady-state frequency
response curves does not enhance the performance of the har-
vester under band-limited random excitation. Sebald et al. [49,56]
arrived at a similar conclusion for a hardening-type monostable
harvester. Nguyen and Halvorsen [63] demonstrated that a har-
vester with a softening nonlinearity outperforms an equivalent lin-
ear harvester if the center frequency of the excitation is tuned
below the linear oscillation frequency. The enhanced performance
can be attained regardless of the harvester’s bandwidth.

Daqaq [58] investigated the response of monostable Duffing-
type inductive harvesters to band-limited random excitations. He
used the Van Kampen expansion to obtain approximate analytical
solutions for the FPK equation governing the response statistics
and found that, when the noise is centered at the natural frequency
of the harvester, the power always decreases with the nonlinearity
and that reduction in the power is most pronounced for excitations
with smaller bandwidths. He also showed that, enhancing the per-
formance of Duffing-type harvesters under band-limited noise
requires tuning the center frequency of the excitation to be above
the natural frequency of the harvester for hardening-type nonli-
nearities and vice versa for softening ones. Lee et al. [64] verified
this result experimentally and showed that enhanced performance
is mostly pronounced for excitations with smaller bandwidths and
when the nonlinear device is subjected to constant perturbations
that push the harvester to operate near the resonant branch of
solutions.

4.4 Response to Other Types of Excitations. The response
of monostable VEHs to other common ambient excitations has
also been considered. In one demonstration, Daqaq et al. [65]
investigated the performance of a piezoelectric cantilever-beam-
type VEH to parametric excitations. As shown in Fig. 20(a), when
a cantilever beam is excited parallel to its length, a parametric
instability can be activated when the magnitude of the forcing
exceeds a certain threshold and the excitation frequency is close
to twice the fundamental frequency of the harvester [41]. Using a
single-mode reduced-order model, Daqaq et al. [65] showed that
the region of parametric instability wherein energy can be har-
vested shrinks as the coupling coefficient, x, of the harvester
increases and that there exists an optimal coupling coefficient
beyond which the peak power decreases. They also demonstrated
that there is a critical excitation level below which no energy can
be harvested. The amplitude of this critical excitation increases
with the coupling coefficient and exhibits a maximum value at a
given load resistance. Abdelkefi et al. [66] extended the work of
Daqaq et al. [65] by considering the multimodal behavior of the
same harvester and showed that a single-mode approximation
underestimates the actual output power of the device. In
another demonstration, Ma et al. [67] considered a parametrically
excited pendulum-inductive generator, as shown in Fig. 20(b),
and showed that such device is ideal for harvesting energy from
low-frequency excitations.

Due to inherent system nonlinearities, many vibratory excita-
tion sources possess a frequency spectrum that contains energy
components at multiple integers of the fundamental frequency of
the source. To capture energy from these frequency components,
Dagaq and Bode [68] exploited the parametric amplification phe-
nomenon to channel energy from the excitation’s superharmonics,
namely the one at twice the fundamental frequency, to a purely
resistive load. To achieve this goal, they considered a piezoelec-
tric cantilevered-type bimorph harvester and showed that, by tilt-
ing the axis of the beam through a proper angle with respect to the
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Fig. 20 A schematic of parametrically exited energy harvesters considered by (a)

Daqaq et al. [65] and (b) Ma et al. [67]

direction of excitation, it is possible to utilize a parametric pump
to enhance the output power at the fundamental frequency. Per-
centage improvement in the output power was shown to depend
on the excitation’s parameters and the mechanical damping ratio.
When the mechanical damping ratio is small, significant enhance-
ment in the output power is attainable, even when the magnitude
of the superharmonic is small when compared to the fundamental
frequency.

Quinn et al. [45,54] investigated the response of a monostable
VEH to impulsive loads and showed that, although a linear device
has better performance at its fundamental frequency, the nonlinear
device outperforms the corresponding linear system in terms of
both magnitude of power harvested and the frequency interval
over which significant power can be drawn when the excitation is
of the impulsive type.

4.5 Apparent Issues. Based on the previous discussions, it is
apparent that the intentional inclusion of nonlinearities in mono-
stable energy harvesters makes the device more tolerant to varia-
tions in the excitation frequency around its nominal value when
compared to a linear device. This idea has been highlighted by
Quinn et al. [55], who showed that, for certain potential shapes
obtained by carefully optimizing the linear and nonlinear stiffness
components, it is possible to design a VEH with enhanced band-
width that can account for small drifts in the excitation frequency.
Mann et al. [33] have also demonstrated using uncertainty propa-
gation analysis that, under harmonic excitations, a linear device is
much more sensitive to uncertainties arising from imprecise char-
acterization of the host environment and/or from manufacturing
tolerances. For certain types of excitations, especially those that
have an impulsive nature or slowly time-varying frequencies,
there seems to be potential benefits in utilizing a monostable
Duffing-type VEH to improve performance. However, beyond
accounting for small drifts in the excitation frequency, perform-
ance improvements via the intentional inclusion of nonlinearities
in a monostable Duffing harvester is questionable. Following are
the major issues:

* Nonuniqueness of solutions: As discussed earlier, the reso-
nant large-amplitude branch favorable for energy harvesting
is always accompanied by a smaller-amplitude branch. The
ability of the harvester to operate on the upper branch of solu-
tions is determined by the initial conditions and its basin of
attraction. Due to its larger basin of attraction away from res-
onance, probabilistic studies seem to suggest that, on average,
the output voltage will be closer to the lower branch of solu-
tions as the frequency shifts away from the linear resonance
value, which diminishes the importance of the resonant
branch of solutions. Additionally, techniques proposed to
guarantee operation on the resonant branch seem to consume
additional power and still need further evaluation.

Excitation levels: When the excitation level is small, the
influence of the nonlinearity diminishes and a monostable
Duffing harvester loses its broadband properties, behaving
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similar to a linear resonant device. Thus, no performance
gains are expected by incorporating nonlinearities when the
level of excitation is small.

Balance between electric damping and bandwidth: It has
been made clear in Sec. 4.2 that optimizing the electric load
to maximize the electric damping improves the output power
but reduces the bandwidth, making the harvester less tolerant
to frequency variations. Even when the load resistance is
optimized as a function of the frequency, which yields
improved bandwidth over a linear harvester, this still requires
changing the load in real time as a function of the excitation
frequency, which is very hard to implement in a real setting.
Nonlinearity and maximum attainable power: It has been im-
plicitly suggested by some researchers that nonlinearity can
be used to increase the maximum attainable power of the har-
vester under steady-state harmonic excitations. It is essential
to make it clear that, for the systems commonly considered,
the nonlinearity by itself can only bend the frequency-
response curves but not increase their amplitude (Fig. 19).
The increased power observed by some researchers in
experimental settings could be due to variations in other
design parameters, e.g., linear stiffness and electromechani-
cal coupling, as the nonlinearity is changed.

Response to random excitations: The bandwidth tolerance
properties of monostable VEHs under steady-state harmonic
excitations is by no means an indication of enhanced per-
formance under other common types of nonstationary and
random environmental excitations. Research results suggest
that hardening-type nonlinearities cannot be used to improve
performance under random excitations that can be approxi-
mated by a white noise process. However, softening-type
nonlinearities that result in an asymmetric potential function
may help enhance performance under such excitations.

5 Bistable Energy Harvesters

5.1 Brief History and Examples. The first investigation of
bistability in the energy-harvesting literature appears to be a theo-
retical paper by Mclnnes et al. [69] who reported the benefits of
the stochastic resonance (SR) phenomenon for performance
enhancement in vibratory energy harvesting. The concept of SR
was introduced in the early 1980s by Benzi et al. [70] to explain
the dramatic oscillations in the Earth’s long-term climate change
and thereafter found many applications in weak signal amplifica-
tion by noise addition in the presence of a periodic excitation
component [71-74]. Building on this background, in 2008,
Mclnnes et al. [69] proposed the use of SR to boost the harvested
power by adding periodic forcing to noise excitations. One year
later, the first two bistable energy harvesters and describing quali-
tative models were published independently by Cottone et al. [75]
and Erturk et al. [76]. Both groups created the bistable restoring
force by using different magnet arrangements to induce a magne-
toelastic buckling in a piezoelectrically laminated beam. For
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instance, as depicted in Fig. 21(a), the device proposed by Erturk
et al. [76] simply added piezoelectric laminates to the bistable
magnetoelastic cantilever arrangement suggested by Moon and
Holmes [77] in their early work on chaotic vibrations in structural
mechanics. Similarly, as shown in Fig. 21(a), Cottone et al. [75]
and Gammaitoni et al. [30] used magnets to create a bistable
restoring force in the same vein as their previous work on bistable
systems [72,73].

Following the early efforts on the use of magnetoelastic poten-
tials for creating bistability [75,76], researchers have proposed
other methods, including purely elastic buckling due to axial loads
in beams [78-80] as well as laminate asymmetry in the case of
composite plates [81]. For instance, Arietta et al. [81] demon-
strated that certain laminations of carbon-fiber-epoxy plates can
result in buckling due to the different thermal expansion coeffi-
cients at room temperature [82]. Therefore, in such cases, it is not
even required to impose an external force or a magnetic field to
create a bistable restoring force. Mann and Owens [83] also used
a smart arrangement of magnets to illustrate that bistability can be
created without even utilizing the buckling of elastic structures.

In addition to these efforts at the macro/meso scale, researchers
have also started using bistable architectures at the MEMS scale.
Ando et al. [84] were able to successfully implement bistability
for broadband energy harvesting by magnetoelastic buckling
using a MEMS version of the configuration proposed by Cottone
et al. [75] in Fig. 21(a) for piezoelectric energy harvesting. Most
recently, Nguyen et al. [85] fabricated and tested MEMS electro-
static energy harvesters with curved springs to demonstrate bist-
ability and substantially enhanced frequency bandwidth. They
reported broadband power output for different bias voltage levels
across the capacitor fingers.

Since 2009, bistable vibratory energy harvesting formed the
core of many theoretical and experimental investigations by sev-
eral other researchers [48,59,78,79,81,83-92]. Both deterministic
[48,78,79,81,83-86,90,91] and stochastic [58,85,87-89,92] excita-
tions have been studied using different transduction mechanisms
that include piezoelectric [48,78,79,81,86-92], electromagnetic
[58,83,91], and electrostatic for MEMS implementations [84,85].
For the most part, these efforts suggested that bistable VEHs can
potentially outperform their linear counterparts. However, the
performance metrics used to quantify these improvements were
not clearly specified. As a result, conclusions on performance
enhancement lacked solid evidence and were often generalized. In
some instances, broadband steady-state bandwidth under har-
monic excitations was used to erroneously predict improved per-
formance under random and nonstationary excitations. For
instance, a bistable harvester that performs well under certain
types or levels of harmonic excitations might not perform as
well under random or nonstationary input. One reason for such
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confusion stems from the complex response behavior of bistable
energy harvesters as compared to their linear or even nonlinear
monostable counterparts. Additionally, lack of analytical tools
that permit characterizing their performance under harmonic and
random excitations has limited most of the literature to numerical
and experimental studies. In the following sections, we hope to
draw a clearer picture of how bistability influences performance
of VEHs under harmonic and random excitations.

5.2 Response to Harmonic Excitations. Erturk et al.
[76,93,94] were among the first to investigate the response of
bistable VEHs to harmonic excitations. They pointed out that the
main advantage of a bistable VEH is in the presence of the large-
orbit solution resulting from the interwell oscillations that can be
excited for some excitation levels. They clearly illustrated that the
large-orbit response associated with interwell oscillations can
yield substantially larger power output over a wider bandwidth
of frequencies when compared to an equivalent linear VEH,
Fig. 22(c). However, as shown in Figs. 22(a) and 22(b), it was
also observed numerically and experimentally that this large-orbit
branch is not always unique and can be accompanied by a chaotic
attractor and small branches of undesired intrawell oscillations.

Stanton et al. [48] arrived at similar conclusions while rigor-
ously investigating amplitude and frequency bifurcations of an
alternative bistable piezoelectric VEH similar to the one shown in
Fig. 14(c). Unlike the qualitative numerical model of Erturk et al.
[76] and Erturk and Inman [93], Stanton et al. [48] represented the
dynamics of the coupled system quantitatively using a nonlinear
analytical model. Again, coexisting large- and small-orbit periodic
and chaotic responses were reported for different levels of the
input harmonic excitation. Similar results were also reported for
different systems and configurations [83,90,91], indicating the
ability of a bistable VEH to produce high power levels for a range
of frequencies and input excitations, but also clearly highlighting
the complexity and nonuniqueness of the resulting voltage
responses.

While these initial results highlighted the ability of bistable
VEHs to produce large-amplitude responses under harmonic exci-
tations for some excitation levels and frequency ranges, they also
pointed out many issues resulting from the complexity and non-
uniqueness of the resulting solutions. It also became apparent that
the performance of a bistable VEH is very much dependent on the
level of the excitation and the shape of the potential energy func-
tion of the harvester. As discussed earlier in Sec. 3.2, the response
of the harvester can be confined to one potential well, if the exci-
tation level is too small to permit interwell oscillations. In such a
scenario, the harvester behaves most or less similarly to a mono-
stable VEH with softening nonlinearity with no potential
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advantages over a nonlinear monostable Duffing VEH. Further-
more, as pointed out in Sec. 3.2, for excitation levels that are large
enough to allow transient interwell oscillations but not sufficiently
large to permit steady-state periodic interwell oscillations, the
response remains for most of the time confined to one potential
well and might exhibit intrawell chaos. For such excitations, there
is no clear indication that the bistable VEH provides measurable
advantages. Only when the excitation is sufficiently large to main-
tain periodic interwell oscillations, a bistable VEH can maintain
motion on the desired large-orbit branch of solutions, which could
potentially provide advantages over a linear device.

During their work on the bistable buckled beam VEH shown in
Fig. 21(c), Masana and Daqaq [78] further highlighted the influ-
ence of the potential shape in conjunction with the excitation level
on the performance of bistable VEHs. Their VEH was first
designed such that the buckling load is large enough to produce
deep potential wells. The VEH was subjected to harmonic excita-
tions of different levels and frequencies, as shown in Fig. 23(a).
For the smallest level of excitation, the dynamics remained con-
fined to one potential well, with a very narrow band of intrawell
chaos appearing similar to what is observed for a bistable system
in Fig. 11. Obviously, this bistable design is not suitable for har-
vesting energy from low-level harmonic excitations. As the exci-
tation level is increased to a medium level, e.g., 10 m/secz, the
cross well chaotic band extended to a wider range of frequencies,
but the complexity of the output voltage response made it gener-
ally inappropriate for energy generation. Only when the excitation
level was further increased to higher values, the desired large-
orbit branch of periodic solutions became visible and extended
over a wide band of frequencies, producing the desired large-
amplitude periodic voltages at every frequency of excitation. For
this high level of excitation, the bistability can indeed provide a
more bandwidth-tolerant VEH with enhanced performance under
harmonic excitations.

The same VEH was then redesigned such that the buckling load
produces shallow potential wells. Again, the VEH was subjected
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to the same harmonic excitations as in the previous case. It was
observed that the large-orbit branch of periodic solutions can now
be activated, even when the excitation level is very small, making
it more suitable for lower levels of excitation, as shown in
Fig. 23(b). As the excitation level was increased, the large-
amplitude branch of solutions extended to a large band of frequen-
cies. While it is tempting to generalize, these results do not neces-
sarily imply that further reduction in the depth of the potential
wells is always desirable. Further reduction can make the system
lose its bistable properties, making it less effective, especially for
higher excitation levels. A similar bistable energy harvester con-
figuration made of a buckled thin beam with clamped end condi-
tions was also investigated by Sneller et al. [79]. They added a
lumped central mass to the buckled beam and showed that the
inclusion of the mass reduces the excitation threshold necessary to
activate the interwell motions and broadens the frequency range
over which these motions exist.

Even when the excitation is large enough to excite the interwell
oscillations, a common challenge lies in the nonuniqueness of
these stationary solutions [48,76,83,93]. For an excitation level
that might yield high-energy responses, it is still possible to have
coexisting lower energy branches of solutions with the final
steady-state behavior determined by the solutions’ basin of attrac-
tion. For instance, for the buckled beam harvester proposed by
Masana and Daqaq [78], the large-orbit branch of solutions, By,
shown in Fig. 24, is accompanied by a lower periodic orbit, B,,
for the lower range of the frequency spectrum, followed by a
region where the solution is unique and by either a chaotic attrac-
tor, CH, or other windows of lower-amplitude n periodic voltage
responses as the frequency is increased further. To overcome
this challenge, it was suggested by Erturk et al. [76] that the piezo-
electric layers can be used for impulse actuation to create a dis-
turbance, which changes the response state (from low energy to
high energy) potentially by discharging a capacitor (which would
be compensated for by harvesting energy for long enough time).
As of today, however, no physical system has been built in the
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literature to ensure operation on the high-energy orbit of coexist-
ing solutions in a nonlinear VEH. For instance, the chaotic
response in Fig. 22(a) and the intrawell response in Fig. 22(b)
were switched to large-amplitude periodic response by manually
applying the disturbance after 10 seconds.

Another way to overcome this nonuniqueness problem is to
extend the bandwidth of frequencies where the unique large-orbit
periodic solutions exist. This, however, cannot be done without

Q/w,

Fig. 24 Voltage frequency response of a bistable axially loaded
VEH near its primary resonance. B, represents large-orbit
branch interwell oscillations, B, represents nonresonant intra-
well oscillations, B, represents resonant interwell oscillations,
cr; represents a boundary crisis, pd is a period-doubling bifur-
cation, nT represents solutions having nx the period of excita-
tion, and CH represents chaotic solutions. Results are obtained
for Eq. (4) with {=0.05, r=15,5=05, ¥2=0.01,x=0.1, and a
base excitation A=0.175.
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understanding the influence of the system parameters on the
response behavior. Depending only on numerical simulations
might not be sufficient to resolve this dependence, as numerical
results rarely provide a clear insight into how system parameters
influence the behavior of complex systems. This has motivated
researchers to exploit some analytical or semianalytical tools to
understand this complex problem [95-97]. Among those research-
ers, Stanton et al. [95] and Harne et al. [97] used the method of
harmonic balance to construct analytical solutions that approxi-
mate the amplitude and stability of the periodic voltage responses
resulting from a bistable harvester. In Fig. 25, we show variation
of the steady-state output voltage with the frequency of excitation
as obtained using the method of harmonic balance for three differ-
ent excitation levels. To obtain these solutions, we retained only
the fundamental harmonic and a constant shift in the assumed
solution. Thus, only stable and unstable solutions of period one
are depicted in the figure. The figure illustrates that there are three
different critical frequencies on the output voltage response. The
first represents a period-doubling bifurcation, pd, occurring on the
resonant branch of intrawell motions. This point triggers a cascade
of period-doubling bifurcations that leads to a chaotic attractor,
which quickly disappears in a boundary crisis, causing the har-
vester to operate on the desired large-orbit interwell branch, By.
Thus, the period-doubling bifurcation provides a rough overesti-
mate for the highest frequency value at which the harvester might
be able to operate on the desired large-orbit branch of solutions.
The second point represents the frequency value at which the
large-orbit branch of solutions disappears in a saddle-node bifur-
cation, sn2. When this frequency is larger than snl, it can be used
to estimate the lowest value for which the large-orbit branch of
interwell oscillations is unique.
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Essentially, the loci of these three points on the frequency
response curve can be used as an approximate measure for
the bandwidth of frequencies, wherein the harvester can
produce large-amplitude voltages. When comparing Fig. 25(a) to
Figs. 25(b) and 25(c), which are obtained for increasing values of
the input excitation, it becomes evident that the period-doubling
bifurcation pd and the saddle-node bifurcation sn2 occur at higher
values of the frequency as the excitation magnitude is increased.
On the other hand, the saddle-node bifurcation sn1 occurs at lower
values of the frequency. This implies that the bandwidth of fre-
quencies for which the bistable VEH can operate on the interwell
branch increases with the excitation level. Such critical findings,
which can only be obtained using approximate analytical solu-
tions, should also be extended to understand the influence of the
other design parameters, including the potential shape, the electro-
mechanical coupling, and the load resistance on this bandwidth of
frequencies. With this understanding, the performance of bistable
VEHs can be optimized for enhanced performance.

Although bistable VEHs seemingly have certain rich and broad-
band dynamic response characteristics, it is not possible to fully
understand their advantages without investigating their perform-
ance relative to a monostable Duffing VEH using fair comparison
basis under different excitation levels. To this end, Masana and
Daqgaq [78] investigated the performance of their axially loaded
piezoelectric VEH in both of the mono- and bistable configura-
tions (which depends on the level of the axial load). In the bistable
configuration, they considered both deep and shallow potential
wells and showed that the shape of the potential function and the
level of excitation play an important role in determining the rela-
tive performance of mono- and bistable VEHs in a given fre-
quency range. In particular, they showed that the monostable
VEH generally outperforms the bistable one when the level of ex-
citation is small. Even when the excitation level is sufficiently
increased to activate the interwell dynamics, a bistable VEH with
deep potential wells did not provide significant enhancement in
the output power as compared to the monostable device. When
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the bistable VEH is designed with shallow potential wells, the
potential function becomes very similar to a monostable potential.
Thus, in such a scenario, striking similarities were observed
between both configurations in terms of their voltage and power
response. Generally, their theoretical and experimental results did
not clearly point towards significant improvement in the output
power when the bistable VEH is utilized.

5.3 Response to Random Excitations. Conclusions based on
the response of bistable VEHs to harmonic excitations cannot be
extended to those exhibiting random characteristics. For random
excitations, separate tools and analysis techniques borrowed
from nonlinear stochastic vibrations are necessary to draw defini-
tive conclusions about their performance in random environments.
Such studies started with the work of Gammaitoni et al. [30]
and Cottone et al. [75] followed by various researchers
[59,88,89,98,99], including the work of Ferrari et al. [87,88],
Litak et al. [89,100], and Daqaq [36,59]. Similar to monostable
VEHs, research efforts can be grouped into the white and colored
noise categories:

5.3.1 White Noise. Cottone et al. [75] analyzed the response
of the bistable piezoelectric VEH shown in Fig. 21 to white noise
excitations. They illustrated that a bistable device can provide per-
formance improvement in the output power under white Gaussian
noise only when the time constant of the harvesting circuit is very
large; i.e., o is very small in Eq. (4). They explained that, since
the nonlinearity is only a function of the displacement in most
bistable VEHSs, its maximum influence on the output power
appears when the voltage is proportional to the displacement and
not the velocity. This happens when o is very small in Eq. (4). By
solving the FPK equation, Daqaq [36] corroborated these findings
and showed that, when « is large, the mean power becomes inde-
pendent of the nonlinearity and equals that obtained using an
equivalent linear device. Both researchers also showed that this
condition is necessary but not sufficient to guarantee enhanced
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performance. They demonstrated that, for a given known noise
intensity, the potential well of the harvester should be intricately
designed to balance the rate of interwell transitions (Kramer’s
rate) with wells’ separation and the height of the potential barrier.
Thus, it is concluded that the knowledge of the excitation intensity
is essential to design a bistable VEH that can outperform an
equivalent linear one under white noise. This conclusion has also
been confirmed by Litak et al. [89], Halvorsen [60], and Zho and
Erturk [101]. Experimentally, Masana and Daqaq [102] illustrated
that a properly designed bistable harvester outperforms the mono-
stable one unless the input excitation variance is very small, in
which case both configurations yield similar levels of output
voltage.

5.3.2 Colored Noise. The response of bistable VEHs to col-
ored noise has not yet been comprehensively analyzed in the liter-
ature, mainly due to the complexities that can arise when
analyzing the response of bistable systems to band-limited noise.
Nevertheless, there are a few studies aiming at understanding their
response behavior under such excitations. In one demonstration,
Daqgaq [59] studied the response of a bistable inductive generator
to an exponentially correlated noise process. He obtained an
approximate expression for the mean power under such excita-
tions and showed that, for a given excitation intensity, there exists
an optimal potential shape for which the power can be maximized.
In another demonstration, Masana and Daqaq [102] experimen-
tally investigated the response of a bistable VEH to band-limited
excitations and studied the influence of the bandwidth and the
center frequency of the excitation on the mean power as compared
to a monostable VEH. They observed that, for small input acceler-
ations, and regardless of the bandwidth of the excitation, mono-
and bistable VEHs produce maximum voltage variance when the
center frequency of the excitation matches the tuned oscillation
frequency of the harvester, leading to the conclusion that the
effect of the nonlinearity can be neglected in such conditions. As
the excitation level is increased, larger voltages occurred at larger
frequencies in the monostable case and at smaller frequencies in
the bistable case due to the different nature of the nonlinearity
in both configurations: hardening for the monostable VEH and
softening within a single potential for the bistable harvester. Gen-
erally, for all acceleration levels, the bistable VEH exhibited a
wider response bandwidth; that is, it is less susceptible to varia-
tions in the center frequency of the colored noise.

5.4 Apparent Issues. The potential benefits of a bistable
VEH are very much contingent to its ability to operate on the
large-orbit interwell periodic branch of solutions. When unique,
this branch of solutions offers a wide bandwidth of frequencies
for which the output power is large, making the harvester
insensitive to design tolerances and excitation’s frequency drifts.
The main problem resides in the dependence of that bandwidth of
frequencies on the excitation level and the harvester’s design
parameters. What follows summarizes the apparent issues with
bistable VEHs.

¢ Excitation level: Performance of a bistable VEH is very
much dependent on the excitation’s level, a major issue
which hinders performance of most nonlinear vibratory
energy harvesters. If the excitation level is too small to acti-
vate the interwell oscillations, the dynamics remain confined
to one potential well, and a bistable harvester performs simi-
lar to a monostable one. Reducing the depth of the potential
wells to activate the interwell resonances renders the har-
vester “weakly” bistable again, approaching the behavior of a
monostable VEH. Even if the excitation is large enough to
allow the desired interwell oscillations, prior knowledge of
the excitation amplitude is necessary to optimize the potential
shape such that the VEH can yield enhanced performance.

* Nonuniqueness of solutions: As shown in Fig. 24, the large-
amplitude branch favorable for energy harvesting can be
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accompanied by smaller-amplitude branches of solution,
including aperiodic and chaotic responses. The bandwidth of
frequencies where the large orbit branch of periodic solutions
is unique has a complex dependence on the design parame-
ters, including the potential shape, the electromechanical cou-
pling, the effective damping, and, most importantly, the level
of excitation. This complex dependence is not very easily
resolved using numerical simulations or sets of experimental
data. More analytical studies, similar to those recently pro-
posed by Refs. [95-97], are becoming more critical to delin-
eate this dependence and to propose techniques to possibly
expand this bandwidth. Moreover, with the presence of non-
unique solutions, performance metrics become quite vague,
because there is no guarantee that the harvester will operate
on a certain branch versus another. The probabilistic weight-
ing approach proposed by Ref. [55], which involves using the
basins of attractions as weights, showed promising results
and can be extended to the bistable VEHs.

* Aperiodicity of solutions: Unlike linear and nonlinear mono-
stable harvesters, a bistable harvester can exhibit aperiodic
and chaotic responses. Generally, such signals cannot be used
directly without further circuit conditioning and filtering. As
such, it is still not very well-understood whether such
responses are favorable or even useful for power generation.
Future research efforts should focus on including more com-
plex circuit dynamics models to evaluate the actual power
output of bistable VEHs when the mechanical subsystem
responds aperiodically.

* Response to random excitations: Bistability in VEHs does
not seem to provide much power enhancement under white
Gaussian excitations unless the time constant ratio, i.e., the
ratio between the time constant of the mechanical oscillator
and harvesting circuit, is very small. Indeed, it has been
shown by various researchers that, when the time constant ra-
tio is large, the nonlinearity has no measurable influence on
the output power. However, such conclusions should not be
arbitrarily generalized to more realistic environmental excita-
tions, which do not possess the strict white noise characteris-
tics [103]. In fact, it was shown experimentally that, under
band-limited noise, a bistable VEH has a wider response
bandwidth and is less susceptible to variations in the center
frequency of the colored noise as compared to a monostable
VEH [102].

6 Harvesters With Piecewise-Linear
Restoring Force

In addition to the mono- and bistable VEHs with continuous
nonlinear restoring forces considered earlier, the literature also
contains several investigations where the restoring force is
piecewise linear. The behavior of such systems is globally non-
linear, as they exhibit nonsmooth bifurcations similar to what is
typically seen in the analysis of nonlinear systems. Such
piecewise-defined linear restoring force can be physically real-
ized by means of adding obstacles (stoppers) to conventional
linear energy harvesters and usually result in a bilinear stiffness
in its simplest case [104—-109]. The resulting restoring effect
might as well be piecewise-nonlinear [110], depending on the
inherent stiffness characteristics of the harvester, the level of
excitation, and/or the presence of nonlinear restoring force com-
ponents, such as a magnetic field, as discussed in the previous
sections.

In 2008, Soliman et al. [104] presented the first paper on
modeling and experimental validations of an electromagnetic
VEH exploiting a discontinuous linear stiffness. Along with a
schematic of their cantilever-stopper arrangement, Fig. 26 shows
the piecewise-linear restoring force resulting from the relative
spacing of the stopper from the cantilever, which is governed by
the following equation:
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Fig. 26 (a) Restoring force magnitude of the piecewise linear
electromagnetic harvester with one-sided stopper studied by
Soliman et al. [104], and (b) its voltage-frequency response
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sweep. Adapted from “A Wideband Vibration-based Energy
Harvester,” by Soliman et al., 2008, Journal of Micromechanics
and Microengineering, 18. Reproduced by permission of IOP
Publishing. All rights reserved.
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where the slope jumps from k; to k, as the contact between the
cantilever and stopper takes place. It is clear from Fig. 26(a) that
the slope of the restoring force, i.e., the linear stiffness, is
increased when the cantilever is in contact with the stopper during
the vibratory motion (i.e., k» > kj). Therefore, it is necessary
for the excitation level to be large enough, as in all previously dis-
cussed nonlinear energy harvesting concepts, such that the bilin-
ear stiffness behavior is pronounced.

Soliman et al. [104] studied experimentally, numerically, and
analytically (based on the method of averaging) the voltage-
frequency response behavior of the proposed harvester. As shown
in Fig. 26(b), the presence of stoppers extends the resonant branch
of solutions to a wider range of frequencies (hardening influence)
during a frequency up sweep, i.e., going from low towards high
frequencies. This can be attributed to the sudden increase in the
stiffness as impact occurs, which can essentially be captured via a
nonlinear hardening influence. Similar to mono- and bistable
Duffing VEHs, a harvester with a piecewise linear restoring force
suffers from the presence of a bandwidth of frequencies where
multiple stable solutions of different basins coexist, leading to
hysteresis during a bidirectional frequency sweep.

It should be noted that having one-sided stopper creates lack of
symmetry in the restoring force. Symmetry with respect to static
equilibrium can be achieved by adding two-sided stoppers sym-
metrically as an alternative configuration. A downside of adding
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more stoppers is suggested to be the increased energy losses due
to increased impacts per cycle [104]. Further procedures for
design and optimization of piecewise-linear electromagnetic
energy harvesters are detailed in another paper by the same
research group [105].

MEMS energy harvesters exploiting impacts in electrostatic
energy conversion through alternative configurations were
reported by Hoffmann et al. [106] and Le et al. [107]. The former
employed standard two-sided stoppers in MEMS electrostatic
energy harvesting, while the MEMS architecture in the latter fur-
ther exploited vibrations of the two-sided stoppers as “slave”
transducers to enhance the power output. Sample frequency-
response curves from these works exhibit bandwidth enhancement
in up-frequency sweep, as shown in Fig. 27, which follow similar
trends to the one-sided stopper case employed in macroscale elec-
tromagnetic energy harvesting [104].

Other than these efforts on electromagnetic and electrostatic
transductions, Blystad and Halvorsen [108] investigated a one-
sided stopper arrangement that is similar to the configuration of
Fig. 26(a) for bandwidth enhancement in mesoscale piezoelectric
energy harvesting. More recently, MEMS piezoelectric energy
harvesters employing both one-sided and two-sided stoppers were
also reported by Liu et al. [109].

7 Coupling Nonlinearities

As mentioned earlier, in addition to nonlinearities that are
intentionally introduced to the VEH design, nonlinearities can
also be inherently present in the dynamics of a VEH, due to
its geometric or transduction properties. Among such nonlinear-
ities are those arising from coupling as well as dissipative
effects that can be found in the constitutive behavior of piezo-
electric and magnetostrictive materials and the electromechanical
transduction of the magnetic and electrostatic potentials
[28,35,39,51,111-113].

The nonlinear nature of the electromechanical coupling for a
piezoelectric material has been identified in moderate-to-high
voltage actuation problems for a number of years. Specifically,
the nonlinear relationship between the mechanical strain and the
electric field was considered by Crawley and Anderson [114],
where they experimentally identified the piezoelectric coupling
constant and showed that it was significantly nonlinear as a func-
tion of the material strain. duToit and Wardle [111] were among
the first to suggest its influence on the performance of a VEH
while considering a bimorph piezoelectric cantilever. They
showed that the experimentally observed harvested power was
underpredicted at resonance, as compared to a linear model in
which the system parameters were identified from knowledge of
the device’s geometry [111]. This discrepancy was attributed to
the piezoelectric coupling nonlinearity, which appeared to be of
the softening type in the large-strain region.

Triplett and Quinn [28] included these piezoelectric coupling
nonlinearities in a lumped-parameter model for an energy-
harvesting device, together with hardening stiffness nonlinearities
in the restoring force. The system was presented in an appropriate
nondimensional form and subject to a single-frequency excitation
to characterize the harvested power in terms of the harvester’s and
excitation parameters. The nondimensionalization used was able
to scale the nonlinearities in the stiffness and coupling with the
excitation amplitude. Based on a perturbation analysis in the
absence of the coupling nonlinearity, the maximum harvested
power was shown to be independent of the stiffness nonlinearity,
a result confirmed earlier in Fig. 6. However, the maximum har-
vested power was shown to have a strong dependence on the cou-
pling nonlinearity. Specifically, as the coupling nonlinearity was
increased, the maximum harvested power increased initially up to
an optimal value, beyond which it started to decrease again. A
similar behavior was observed by Renno et al. [115] for the linear
coupling where the drop in power was attributed to the increase in
the effective damping.
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Stanton et al. [39,112] likewise considered a single-mode
model for a piezoelectric cantilevered harvester and noted similar
trends, in particular, with respect to the softening behavior associ-
ated with the nonlinear piezoelectric coupling. In addition, having
observed mismatch in the peak amplitude of the response incorpo-
rating nonlinear constitutive behavior as compared to experimen-
tal measurements and discovering quadratic components in the
electromechanical response, they included the dissipative effects
in the form of quadratic damping [39,112]. Most recently, after a
series of rigorous experiments and alternative mathematical
frameworks of the constitutive behavior, Erturk et al. [35] consid-
ered a general constitutive equation form along with nonconserva-
tive terms and attributed the softening behavior to purely elastic
terms (rather than coupling) due to low voltage levels in the
energy-harvesting problem. It is worth mentioning that bending
strength testing of electroded piezoelectric beams [116] of same
type (and manufacturer) indicate softening in the purely mechani-
cal stress-strain relationship in agreement with this framework
[35]. Experimental results in Ref. [35] still necessitated the need
for nonconservative terms as a result of mechanical and dielectric
losses, which deserves further investigation and characterization.

Abdelkefi et al. [117] considered a similar system but extended
the problem to a multimode model of the harvester and general-
ized the piezoelectric constitutive law to include a general quad-
ratic relationship between the strain and electric field. As in
Triplett and Quinn [28], the peak power and its location in the fre-
quency spectrum was observed to be most sensitive to the nonli-
nearity coupling, the electric field, and the elastic strain.

In addition to the material nonlinearities in piezoelectric materi-
als, Tvedt et al. [51] and Owens and Mann [113] considered elec-
tromechanical coupling nonlinearities in electrostatic and
electromagnetic VEHSs, respectively. Tvedt [51] observed that the
geometric nonlinearities present in the restoring force of the sus-
pension springs of their proposed device were more dominant
than the coupling nonlinearities. Owens and Mann [113] com-
pared the response of an electromagnetic VEH with a nonlinear
electromagnetic coupling mechanism to that of a linear coupling
law. It was shown that the form of the coupling that leads to the
maximum harvested power depends on the system design parame-
ters as well as the form of the excitation. Thus, they conclude that
coupling nonlinearities can benefit the harvesting performance if
properly incorporated into the system.

Applied Mechanics Reviews

8 Nonlinearities for Low-Frequency Excitations

A major paradox currently lies in designing miniaturized linear
VEHs that are capable of harnessing energy efficiently from the
low-frequency excitations commonly found in nature. Specifi-
cally, since linear VEHs operate based on the basic principle of
resonance, the harvester’s fundamental frequency has to be equal
or close to the excitation frequency for efficient energy transduc-
tion. Thus, when the size of a VEH decreases, its fundamental fre-
quency increases, and it becomes incapable of harnessing energy
efficiently from low-frequency inputs.

Since nonlinear systems exhibit superharmonic resonances that
can activate large-amplitude motions at fraction integers of the
fundamental frequency of the system, such resonances offer a
unique and untapped opportunity for harnessing vibratory energy
from excitation sources with low-frequency components. A few
research efforts have investigated the prospect of utilizing
superharmonic resonances of order two (half the fundamental
frequency) and three (one-third the fundamental frequency) for
energy harvesting. In one demonstration, Barton et al. [47]
showed that the superharmonic resonances of an inductive mono-
stable Duffing-type harvester can be used to harvest energy from
low-frequency inputs. They noted that large-amplitude motions
can be activated if the harvester is excited at superharmonics of
order two, three, four, and five. The even harmonics, however,
produced much lower amplitude motions, because the restoring
force of the proposed harvester is symmetric in nature. They indi-
cated that upconversion of the frequency results in an overall low
displacement while providing a relatively higher velocity/voltage,
possibly making the VEH more suitable for applications of con-
strained space.

In another demonstration, Masana and Daqaq [86] noticed theo-
retically and experimentally that the superharmonic frequency
bands can activate large-amplitude motions at much lower excita-
tion amplitudes if the VEH has a bistable potential well. Using
power-frequency bifurcation maps obtained near the superhar-
monic resonance of order two, they showed that, for certain base
acceleration levels, a bistable VEH can exhibit responses that
are favorable for energy harvesting near half its fundamental fre-
quency, 1/2w,. As shown in Fig. 28(a), they observed theoreti-
cally that, near half its fundamental frequency, a bistable VEH
exhibits responses similar to what is seen near its fundamental fre-
quency. These include a large branch of interwell motion, B;, and
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Fig. 28 Voltage-frequency response curves of a bistable VEH
operating near half its fundamental frequency as reported by
Masana and Daqaq [86]. (a) Theoretical and (b) experimental
results.

the resonant and nonresonant branches of intrawell motion, B,
and B, respectively. A similar sequence of bifurcations leading to
a region of chaos was also observed. In these frequency regions,
the harvester was capable of producing power levels at half its
fundamental frequency that are comparable to those obtained near
the fundamental frequency. Quite interestingly, in the experimen-
tally setting, the harvester was only capable of operating on the
large-orbit branch of solutions, as shown in Fig. 28(b), further
enhancing its potential.

9 Future Research Directions

We hope that this manuscript was able to draw a clear picture
of current research efforts, highlighting the role and potential ben-
efits/drawbacks of nonlinearities in energy harvesting. From the
literature, it is evident that the presence of nonlinearity, inten-
tional or inherent, has a substantial influence on the performance
of energy harvesters. Whether the nonlinearity appears in the
restoring force or in the coupling or it yields a mono- or bistable
potential function, it obviously complicates the response behavior
and, with that, the tools necessary to assess the performance of the
harvester. Nonuniqueness of solutions and their aperiodicity and
bifurcations that occur as parameters vary are among the impor-
tant phenomena that makes developing direct performance metrics
to assess the performance of nonlinear energy harvesters under
different types of excitations a challenging task. Therefore, devel-
oping such metrics represents an essential first step towards under-
standing the role of nonlinearity in the transduction of energy
harvesters.

One of the main goals of this review is to point out that the sim-
ple performance metrics currently adopted in the literature to
assess performance of linear VEHs can rarely be directly extended
to nonlinear harvesters. Unlike linear VEHs, the steady-state fre-
quency response of nonlinear VEHs under a harmonic excitation
may not be an accurate performance metric and, most importantly,
not always a direct indication of its transduction capabilities under
different types of environmental excitations. For instance, a bista-
ble harvester that seems to have a broad steady-state bandwidth
under harmonic excitations might not perform well under random
or nonstationary inputs. Indeed, due to the presence of coexisting
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branches of stable small- and large-orbit solutions with different
basins of attraction, erroneous conclusions can be drawn, if based
only on a cursory inspection of the steady-state response. For
nonlinear VEHs, an essential first step in the design is a careful
characterization of the excitation source. Based on this analysis,
separate tools and analysis techniques are necessary to draw defin-
itive conclusions about its performance.

Perhaps contrary to one’s intuition, the performance metrics of
nonlinear VEHs are much easier to define when the excitation is
random in nature. In such case, statistical averages of the input
and output can be easily defined. Additionally, nonuniqueness and
bifurcations of solutions become less of an issue because the prob-
ability density function of the harvester is always unique and inde-
pendent of the response nature, even when the system is
nonlinear. Indeed, the Fokker-Plank-Kolmogorov (FPK) equation
governing the evolution of the probability density function of a
stochastic differential equation is a linear partial differential equa-
tion, even for nonlinear systems. Thus, it has a unique solution
leading to unique statistical averages. With this knowledge, the
variance of the voltage and the mean power become readily avail-
able as simple performance measures. On the other hand, when
the excitation is harmonic, the harvester’s performance becomes a
function of the excitation frequency. For linear VEHs, the output
power can be easily estimated at any frequency using the linear
power-frequency response curves. For nonlinear VEHs, however,
the presence of coexisting branches of solution at a given fre-
quency makes obtaining a direct measure of the output power a
difficult task. Obviously, a direct averaging of the magnitude of
the coexisting voltages provides an inaccurate measure of the
actual performance, since each of these solutions has a different
basin of attraction. The approach proposed by Quinn et al. [55],
which uses the basins of attractions of the coexisting solutions as
weights for averaging the output voltage, represents an important
step in the right direction, because it provides a statistical measure
of performance for all the physically realizable initial conditions.
However, this approach can be computationally demanding, as it
requires calculating the basins of attraction at each frequency
within the bandwidth of interest. Furthermore, this approach com-
pletely neglects the fact that the initial conditions are not necessar-
ily random and maybe fixed during operation. Thus, the harvester
may operate on one branch of solutions at all times. Another
approach could be based on providing a maximum and a mini-
mum value for the output power at each frequency. This provides
an estimate for the upper and lower performance limits of the har-
vester. We believe that formalizing more accurate metrics to
assess the performance of nonlinear VEHs under harmonic excita-
tions is an issue that requires immediate attention.

Another critical issue that complicates defining performance
metrics for nonlinear VEHs is that the measured electric output
(current or voltage) across a given load is not necessarily periodic
(alternating) in nature. As such, using an rms value of the output
signal can provide a false indication of actual performance. For
instance, what are the implications of having a chaotic output
voltage across a given load as is observed in bistable harvesters?!
We believe that the answer to such a question cannot be realized
unless the dynamics of more complex circuits that involve signal
conditioning, filtering, and electric device modeling is included.
This should constitute one of the major avenues of future research
efforts.

In addition to defining effective performance metrics for non-
linear VEHS, techniques to broaden the bandwidth of frequencies
where the large-orbit branches of solution are unique constitute an
interesting area that requires further research. Likewise, are there
nonlinear designs that extend the bandwidth for which the large-
amplitude solution branches are unique? In the authors’ opinion,
such questions cannot be answered nor can solution techniques be
developed based on numerical simulations or experiments only.
Rather, such questions require the implementation of analytical
approaches based on, for example, perturbation methods or global
methods to better delineate the influence of the design parameters
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on the harvester’s bandwidth. Recent approaches based on utiliz-
ing dynamic magnification by incorporating additional degrees of
freedom to broaden the bandwidth of bistable energy harvesters
also deserve further research attention [118].

Exploiting nonlinear interactions and internal resonances to
channel energy from the lower to the higher vibration modes by
designing multi—degree of freedom nonlinear VEHs with com-
mensurate modal frequencies represents an interesting topic,
which might permit harvesting energy effectively from low-
frequency excitations. In particular, the concept of incorporating
nonlinear mechanical attachments with low fundamental frequen-
cies that internally resonate with a smaller nonlinear VEH of a
higher fundamental frequency might permit designing scalable
energy harvesters that are capable of harnessing energy from low-
frequency inputs. In addition, borrowing concepts from nonlinear
broadband vibration isolation might provide additional solutions
for broadband and improved transduction. For example, designing
nonlinear energy harvesting circuits that resonate internally with
the mechanical subsystem can provide effective mechanisms to
transfer energy from a mechanical oscillator to an electric device.
Such concepts have been used effectively for vibration absorption
and might be adapted to vibratory energy harvesting [119]. In gen-
eral, previous research efforts have mainly focused on incorporat-
ing nonlinearities in the mechanical subsystem while using simple
linear circuit models. However, the inclusion of more complex
conditioning circuits that involve nonlinear circuit elements and
battery models will open new directions that permit reaping the
full benefits of the nonlinearity.
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