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Abstract
Piezoelectric transduction has received great attention for vibration-to-electric energy
conversion over the last five years. A typical piezoelectric energy harvester is a unimorph or a
bimorph cantilever located on a vibrating host structure, to generate electrical energy from base
excitations. Several authors have investigated modeling of cantilevered piezoelectric energy
harvesters under base excitation. The existing mathematical modeling approaches range from
elementary single-degree-of-freedom models to approximate distributed parameter solutions in
the sense of Rayleigh–Ritz discretization as well as analytical solution attempts with certain
simplifications. Recently, the authors have presented the closed-form analytical solution for a
unimorph cantilever under base excitation based on the Euler–Bernoulli beam assumptions. In
this paper, the analytical solution is applied to bimorph cantilever configurations with series and
parallel connections of piezoceramic layers. The base excitation is assumed to be translation in
the transverse direction with a superimposed small rotation. The closed-form steady state
response expressions are obtained for harmonic excitations at arbitrary frequencies, which are
then reduced to simple but accurate single-mode expressions for modal excitations. The
electromechanical frequency response functions (FRFs) that relate the voltage output and
vibration response to translational and rotational base accelerations are identified from the
multi-mode and single-mode solutions. Experimental validation of the single-mode coupled
voltage output and vibration response expressions is presented for a bimorph cantilever with a
tip mass. It is observed that the closed-form single-mode FRFs obtained from the analytical
solution can successfully predict the coupled system dynamics for a wide range of electrical
load resistance. The performance of the bimorph device is analyzed extensively for the short
circuit and open circuit resonance frequency excitations and the accuracy of the model is shown
in all cases.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The drastic reduction in power requirements of small electronic
components has motivated the research for powering such
components by using the vibration energy available in their

3 Author to whom any correspondence should be addressed.

environment, especially in remote/wireless sensing applica-
tions. As proposed by Williams and Yates [1], the three
basic vibration-to-electric energy conversion mechanisms are
electromagnetic [1–3], electrostatic [4] and piezoelectric [5–7]
transductions. In the past decade, these transduction mech-
anisms have been investigated by numerous researchers for
vibration-based energy harvesting and extensive discussions
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can be found in the existing review articles (e.g., Beeby
et al [8]). The literature of the last five years shows
that the piezoelectric transduction has received the greatest
attention for vibration-to-electric energy conversion and three
review articles specifically dealing with piezoelectric energy
harvesting have been published in the past two years [5–7].

Typically, a piezoelectric energy harvester is a cantilevered
beam with one or two piezoceramic layers (a unimorph or
a bimorph). Basically, the harvester beam is located on
a vibrating host structure and the dynamic strain induced
in the piezoceramic layer(s) generates an alternating voltage
output across the electrodes covering the piezoceramic
layer(s). In addition to the experimental research on
possible applications of such harvesters, researchers have
proposed various mathematical models. Although the
implementation of piezoelectric energy harvesting for charging
a real battery in an efficient way is more sophisticated
due to the AC-to-DC (alternating current-to-direct current)
conversion process [9–13], researchers have considered a
resistive electrical load in the circuit to come up with a simple
model for predicting the electrical outputs for a given base
motion input. The coupled problem of predicting the voltage
across the resistive load connected to the electrodes of a
vibrating harvester under base excitation has been investigated
by many authors. The early modeling attempts of piezoelectric
energy harvesters employed single-degree-of-freedom (SDOF)
solutions [14, 15]. SDOF modeling (i.e., lumped parameter
modeling) is a convenient modeling approach since the
electrical domain already consists of lumped parameters: a
capacitor (due to the internal capacitance of piezoceramic)
and a resistor (due to an external load resistance). Hence,
the only thing required is to obtain the lumped parameters
representing the mechanical domain so that the mechanical
equilibrium and electrical loop equations can be coupled
through the piezoelectric constitutive relations [16]. This
was the main procedure followed by Roundy et al [14] and
duToit et al [15] in their SDOF model derivations. Although
SDOF modeling gives initial insight into the problem by
allowing simple expressions, it is an approximation limited to
a single vibration mode and it lacks important aspects of the
physical system, such as the dynamic mode shape and accurate
strain distribution as well as their effects on the electrical
response. Since cantilevered harvesters are excited due to the
motion of their base, the well-known SDOF harmonic base
excitation relation taken from the elementary vibration texts
has been used in the energy harvesting literature both for
modeling [15] and studying the optimization [17] of energy
harvesters. It was recently shown [18] that the traditional
form of the SDOF harmonic base excitation relation may
yield highly inaccurate results both for the transverse and
longitudinal vibrations of cantilevered harvesters depending
on the tip (proof) mass to beam/bar mass ratio. Correction
factors were derived [18] to improve the predictions of SDOF
electromechanical relations [15] of cantilevered harvesters
under base excitation.

As an improved modeling approach, the Rayleigh–Ritz
type discrete formulation derived by Hagood et al [19] (based
on the generalized Hamilton’s principle for electromechanical

systems due to Crandall et al [20]) was employed by Sodano
et al [21] and duToit et al [15] for modeling of cantilevered
piezoelectric energy harvesters (based on the Euler–Bernoulli
beam theory). The Rayleigh–Ritz solution gives a discrete
model of the distributed parameter system and it is a more
accurate approximation compared to SDOF modeling. In
order to represent the electrical outputs analytically, Lu et al
[22] used the vibration mode shapes obtained from the
Euler–Bernoulli beam theory and the piezoelectric constitutive
relation [16] that gives the electric displacement to relate the
electrical outputs to the mechanical mode shape. Similar
models were given by Chen et al [23] and Lin et al [24]
where the electrical response is expressed in terms of the beam
vibration response. The issues in these analytical modeling
attempts include not considering the resonance phenomenon
and modal expansion as well as oversimplified modeling
of piezoelectric coupling in the beam equation as viscous
damping [22–24]. As shown in this work, representing the
effect of piezoelectric coupling in the beam equation as viscous
damping fails in predicting the coupled system dynamics of a
piezoelectric energy harvester, although this approach works
for certain electromagnetic energy harvesters [1]. In terms
of analytical modeling, more recently, Ajitsaria et al [25]
presented a bimorph cantilever model, where they attempted to
combine the static sensing/actuation equations (with constant
radius of curvature and a static tip force) with the dynamic
Euler–Bernoulli beam equation (where the radius of curvature
varies) under base excitation (where there is no tip force).
Thus, highly different modeling approaches have appeared in
the literature during the past five years and some of them
might be misleading due to weak mathematical assumptions
involved [26].

Recently, Erturk and Inman [27] have presented the
analytical solution to the coupled problem of a unimorph
piezoelectric energy harvester configuration based on the
Euler–Bernoulli assumptions. They obtained the coupled
voltage response across the resistive load and the coupled
vibration response of the harvester explicitly for harmonic
base excitations in the form of translation with small rotation.
The short circuit and open circuit trends and the effect
of piezoelectric coupling were investigated extensively [27].
Later, Elvin and Elvin [28] have observed the convergence
of the Rayleigh–Ritz type of solution formerly introduced by
Hagood et al [19] to the analytical solution given by Erturk and
Inman [27] when sufficient number of vibration modes is used
with appropriate admissible functions.

This paper presents the application of the coupled
distributed parameter solution [27] to bimorph cantilever
configurations with series and parallel connections of
piezoceramic layers. The steady state voltage response
and vibration response expressions are derived for harmonic
excitation of the base at an arbitrary excitation frequency (in
the form of translation in the transverse direction with small
rotation). Then, by using the complete (multi-mode) solutions,
the response expressions are reduced to simple but accurate
single-mode relations. The single-mode relations can be used
instead of the multi-mode relations for modal excitations (i.e.,
for excitations around resonance) of cantilevered bimorphs
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Figure 1. Bimorph cantilever configurations with (a) series connection of piezoceramic layers, (b) parallel connection of piezoceramic layers
and the (c) cross-sectional view of a bimorph cantilever.

since the resonance excitation is the main concern in vibration-
based energy harvesting. The electromechanical FRFs that
give the voltage output and vibration response-to-translational
and rotational base acceleration relations are extracted from
the multi-mode and single-mode solutions. Experimental
validation of the analytical formulation is given for a bimorph
cantilever with a tip mass. It is shown that the single-
mode analytical relations proposed here are very accurate in
predicting the voltage output and vibration response FRFs. The
bimorph device is analyzed extensively for the short circuit and
open circuit resonance frequency excitations by using different
resistive loads and it is observed that the analytical model can
successfully predict the coupled system dynamics.

2. Fundamentals of the coupled distributed
parameter model

This section reviews the assumptions in distributed parameter
electromechanical modeling and introduces the two possible
bimorph configurations based on the connection of the
piezoceramic layers. Derivation of the coupled beam equation
in physical coordinates is given along with the relevant
expressions for the modal analysis. Derivation of the
electrical circuit equation for an instantaneous deflection of a
vibrating cantilever is explained based on the fundamentals of
piezoelectricity and analytical structural dynamics.

2.1. Bimorph configurations and modeling assumptions

It is known from the literature of static sensing/actuation
that, depending on the voltage or current requirements, the
piezoceramic layers of a symmetric bimorph can be combined
in series or in parallel (see, for instance, Wang and Cross [29]).
This common practice of static sensing/actuation problems is
valid for the dynamic piezoelectric energy harvesting problem
as well. Each of the two bimorph configurations displayed
in figures 1(a) and (b) undergoes bending vibrations due to
the motion of its base. The piezoceramic layers are assumed
to be identical and conductive electrodes are assumed to be
fully covering the respective surfaces of these layers (top and
bottom). The instantaneous bending strain in the top and
bottom layers at an arbitrary position x over the beam length
have the opposite sign (i.e., one is in tension whereas the other

is in compression). As a consequence, since the piezoceramic
layers of the bimorph shown in figure 1(a) are poled oppositely
in the thickness direction (i.e., y-direction), this configuration
represents the series connection of the piezoceramic layers.
Likewise, figure 1(b) represents the parallel connection of the
piezoceramic layers because the layers are poled in the same
direction.

The bimorph cantilever configurations are modeled here
as uniform composite beams based on the Euler–Bernoulli
beam assumptions. Therefore, plane sections are assumed
to remain plane during the vibratory motion and the effects
of shear deformation and rotary inertia are neglected. This
is a reasonable assumption since typical cantilevered energy
harvesters are designed and manufactured as fairly thin beams.
The mechanical losses are represented by internal and external
damping mechanisms. The internal damping mechanism is
assumed to be in the form of strain rate (or Kelvin–Voigt)
damping and the effect of external (air) damping is considered
with a separate damping coefficient. The piezoceramic and
substructure layers are assumed to be perfectly bonded to
each other. The electrodes covering the opposite faces
of piezoceramic layers are assumed to be very thin when
compared to the overall thicknesses of the harvester so that
their contribution to the thickness dimension is negligible.

The continuous electrode pairs covering the top and
the bottom faces of the piezoceramic layers are assumed
to be perfectly conductive so that a single electric potential
difference can be defined across them. Therefore, the
instantaneous electric fields induced in the piezoceramic layers
are assumed to be uniform throughout the length of the beam.
A resistive electrical load (Rl) is considered in the circuit
along with the internal capacitances of the piezoceramic layers.
Note that, considering a resistive load in the electrical domain
is a common practice in modeling of vibration-based energy
harvesters [14, 15, 21–28]. As a consequence, it is assumed
that the base motion input is persistent so that continuous
electrical outputs can be extracted from the electromechanical
system.

2.2. Coupled mechanical equation and modal analysis of a
bimorph cantilever

As far as the mechanical aspect of the problem is concerned,
the bimorph configurations shown in figures 1(a) and (b) are
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identical. That is, they have the same geometric and material
properties. However, the backward piezoelectric coupling
effect in the beam equation due to piezoelectric constitutive
relations is different for series and parallel connections of the
piezoceramic layers, and expectedly, this affects the vibration
response of the cantilever. In the following, the beam equations
are derived for these two configurations and the analytical
modal analysis relations are presented.

The motion of the base for each of the cantilevers shown
in figures 1(a) and (b) is represented by translation g(t) in
the transverse direction with superimposed small rotation h(t).
Therefore, the effective base displacement wb(x, t) in the
transverse direction can be written as [27]

wb(x, t) = g(t)+ xh(t). (1)

The partial differential equation governing the forced
vibrations of a uniform cantilevered bimorph (with a tip mass)
under base excitation is

∂2M(x, t)

∂x2
+ cs I

∂5wrel(x, t)

∂x4 ∂ t
+ ca

∂wrel(x, t)

∂ t

+ m
∂2wrel(x, t)

∂ t2
= −[m + Mtδ(x − L)]∂

2wb(x, t)

∂ t2
(2)

wherewrel(x, t) is the transverse deflection of the beam relative
to its base at position x and time t , M(x, t) is the internal
bending moment (excluding the strain rate damping effect), cs I
is the equivalent damping term of the composite cross-section
due to strain rate damping (cs is the equivalent coefficient
of strain rate damping and I is the equivalent area moment
of inertia of the composite cross-section), ca is the viscous
air damping coefficient, m is the mass per unit length of the
beam, Mt it is tip mass and δ(x) is the Dirac delta function.
Both of the damping mechanisms are assumed to satisfy the
proportional damping criterion, hence, they are mathematically
convenient for the modal analysis solution procedure4. Note
that the effect of strain rate damping is an internal bending
moment and it is directly written outside the term M(x, t) in
equation (2).

Instead of defining the damping coefficients in the
physical equation of motion, one could consider the
corresponding undamped equation (by setting cs I = ca = 0
in equation (2)) and introduce modal damping to the equation
of motion in modal coordinates as is common practice. It
is worthwhile to mention that the foregoing consideration of
the mechanical damping components results in an additional
excitation term due to external damping as shown in Erturk
and Inman [18]. Typically, for harvesters operating in air, the
external damping excitation is negligible when compared to the
inertial excitation term. It was shown in a dimensionless basis
that, in the absence of a tip mass, the amount of modal forcing
due to external damping term is less than 5% of the total modal
base excitation force if the component of the modal damping
ratio due to external damping is less than 2.5% (see figure 3

4 Strain rate damping is assumed to be stiffness proportional whereas air
damping is assumed to be mass proportional and this type of damping is also
known as the Rayleigh damping [30]. Modeling and identification of more
sophisticated damping mechanisms in beams were investigated by Banks and
Inman [31].

in [18]). Therefore the damping excitation term is directly
omitted in equation (2) for simplicity. However, excitation due
to external damping can be important for harvesters operating
in fluids with larger damping effect and the general form of the
forcing function must be used in that case [18, 27].

The internal bending moment term in equation (2) is the
first moment of axial strain over the cross-section:

M(x, t) = −b

(∫ −h s̃/2

−hp̃−h s̃/2
T p̃

1 y dy +
∫ h s̃/2

−h s̃/2
T s̃

1 y dy

+
∫ hp̃+h s̃/2

h s̃/2
T p̃

1 y dy

)
(3)

where b is the width, h p̃ is the thickness of each piezoceramic
layer and h s̃ is the thickness of the substructure layer
(figure 1(c)). Furthermore, T p̃

1 and T s̃
1 are the axial stress

components in the piezoceramic and substructure layers,
respectively (1-direction is the longitudinal direction, i.e., x-
direction), and they are given by the following constitutive
relations:

T s̃
1 = Ys̃S s̃

1, T p̃
1 = c̄E

11Sp̃
1 − ē31 E3 (4)

where Ys̃ is Young’s modulus of the substructure layer, c̄E
11 is

the elastic stiffness (i.e., Young’s modulus) of the piezoceramic
layer at constant electric field, ē31 is the piezoelectric constant
and E3 is the electric field component in 3-direction (i.e., y-
direction). Here and hereafter, the subscripts and superscripts
p̃ and s̃ stand for the piezoceramic and the substructure layers,
respectively. Based on the plane-stress assumption for a beam,
the elastic stiffness component can be expressed as c̄E

11 =
1/sE

11, where sE
11 is the elastic compliance at constant electric

field. Furthermore, based on the same assumption, ē31 can
be given in terms of the more commonly used piezoelectric
constant d31 as ē31 = d31/sE

11. The axial strain components in

the piezoelectric and substructure layers are given by Sp̃
1 and

S s̃
1, respectively, and they are due to bending only. Hence the

axial strain at a certain level (y) from the neutral axis of the
composite beam is simply proportional to the curvature of the
beam at that position (x):

S1(x, y, t) = −y
∂2wrel(x, t)

∂x2
. (5)

The electric field component E3 should be expressed
in terms of the respective voltage term in each bimorph
configuration (figures 1(a) and (b)). This is the point where
the resulting mechanical equations for series and parallel
connections of the piezoceramic layers differ from each other.
Since the piezoceramic layers are assumed to be identical,
voltage across the electrodes of each piezoceramic layer is
vs(t)/2 in the series connection case (figure 1(a)). Expectedly,
for the parallel connection case (figure 1(b)), voltage across the
electrodes of each piezoceramic layer is vp(t). It is worthwhile
to add that ē31 has the opposite sign for the top and the
bottom piezoceramic layers for the series connection case (due
to opposite poling) so that the instantaneous electric fields
are in the same direction (i.e., E3(t) = −vs(t)/2h p̃ in both
layers). For the configuration with parallel connection, since
ē31 has the same sign in top and bottom piezoceramic layers,
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the instantaneous electric fields are in the opposite directions
(i.e., E3(t) = −vp(t)/h p̃ in the top layer and E3(t) =
vp(t)/h p̃ in the bottom layer). Another important point is
that, for both configurations, the piezoelectric coupling term
coming from equation (3) is a function of time only. Hence,
before substituting equation (3) into (2), the electrical term
must be multiplied by [H (x)− H (x − L)], where H (x) is
the Heaviside function. Since the voltage outputs of the series
and parallel connection cases are different, the piezoelectric
coupling effect in the mechanical equation (equation (2))
is expected to be different. Thus, in the rest of the
paper, the mechanical response expressions of the series and
parallel connection configurations are denoted by ws

rel(x, t)
and wp

rel(x, t), respectively. Note that, here and hereafter, the
subscripts and superscripts s and p stand for series and parallel
connections of the piezoceramic layers.

Based on the foregoing discussion, the coupled beam
equation can be obtained for the series connection case
(figure 1(a)) as follows:

Y I
∂4ws

rel(x, t)

∂x4
+ cs I

∂5ws
rel(x, t)

∂x4∂ t
+ ca

∂ws
rel(x, t)

∂ t

+ m
∂2ws

rel(x, t)

∂ t2
+ ϑsvs(t)

[
dδ(x)

dx
− dδ(x − L)

dx

]

= −[m + Mtδ(x − L)]∂
2wb(x, t)

∂ t2
(6)

where the piezoelectric coupling term ϑs for the series
connection case is

ϑs = ē31b

2h p̃

[
h2

s̃

4
−

(
h p̃ + h s̃

2

)2]
. (7)

Similarly, one can obtain the equation of motion for the
case with the parallel connection of the piezoceramic layers as
(figure 1(b))

Y I
∂4w

p
rel(x, t)

∂x4
+ cs I

∂5w
p
rel(x, t)

∂x4∂ t
+ ca

∂w
p
rel(x, t)

∂ t

+ m
∂2w

p
rel(x, t)

∂ t2
+ ϑpvp(t)

[
dδ(x)

dx
− dδ(x − L)

dx

]

= −[m + Mtδ(x − L)]∂
2wb(x, t)

∂ t2
(8)

where the backward coupling term ϑp for the parallel
connection case can be expressed as

ϑp = 2ϑs = ē31b

h p̃

[
h2

s̃

4
−

(
h p̃ + h s̃

2

)2
]
. (9)

In equations (6) and (8), the bending stiffness term Y I and
the mass per unit length term m are simply

Y I = 2b

3

[
Ys̃

h3
s̃

8
+ c̄E

11

((
h p̃ + h s̃

2

)3

− h3
s̃

8

)]
,

m = b(ρs̃h s̃ + 2ρp̃h p̃)

(10)

where ρs̃ and ρp̃ are the mass densities of the substructure and
the piezoceramic materials, respectively.

Based on the proportional damping assumption, the
vibration response relative to the base of the bimorph
(figures 1(a) and (b)) can be represented as an absolutely and
uniformly convergent series of the eigenfunctions as

ws
rel(x, t) =

∞∑
r=1

φr (x)η
s
r (t), (11a)

w
p
rel(x, t) =

∞∑
r=1

φr (x)η
p
r (t) (11b)

where φr (x) is the mass normalized eigenfunction of the r th
vibration mode, ηs

r (t) and η
p
r (t) are the modal mechanical

response expressions of the series and parallel connection
cases, respectively. The eigenfunctions denoted by φr (x)
are the mass normalized eigenfunctions of the corresponding
undamped free vibration problem:

φr (x) = Cr

[
cos

λr

L
x − cosh

λr

L
x +ςr

(
sin

λr

L
x − sinh

λr

L
x

)]

(12)
where ςr is obtained from

ςr = sin λr − sinhλr + λr
Mt
mL (cos λr − cosh λr )

cos λr + cosh λr − λr
Mt
mL (sinλr − sinhλr )

(13)

and Cr is a modal amplitude constant which should be
evaluated by normalizing the eigenfunctions according to the
following orthogonality conditions:∫ L

0
φs(x)mφr(x) dx + φs(L)Mtφr (L)

+
[

dφs(x)

dx
It

dφr (x)

dx

]
x=L

= δrs

∫ L

0
φs(x)Y I

d4φr (x)

dx4
dx −

[
φs(x)Y I

d3φr (x)

dx3

]
x=L

+
[

dφs(x)

dx
Y I

d2φr (x)

dx2

]
x=L

= ω2
r δrs .

(14)

Here, It is the rotary inertia of the tip mass Mt and δrs is
Kronecker delta, defined as being equal to unity for s = r and
equal to zero for s �= r . Furthermore, ωr is the undamped
natural frequency of the r th vibration mode in short circuit
conditions (i.e., as Rl → 0) given by

ωr = λ2
r

√
Y I

mL4
(15)

where the eigenvalues of the system (λr for mode r ) are
obtained from

1 + cos λ cosh λ+ λ
Mt

mL
(cosλ sinh λ− sinλ cosh λ)

− λ3 It

mL3
(cosh λ sinλ+ sinh λ cos λ)

+ λ4 Mt It

m2 L4
(1 − cos λ cosh λ) = 0. (16)

It should be mentioned that the foregoing modal analysis
is given for the short circuit conditions (i.e., for Rl → 0) so
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(a) (b)

Figure 2. (a) Cantilever beam with a single piezoceramic layer under transverse vibrations (exaggerated view) and the (b) corresponding
electrical circuit for a resistive electrical load connected to the electrodes.

that the conventional form of the eigenfunctions is obtained
in equation (12) (since, for short circuit conditions, vs(t) →
0 and vp(t) → 0 in equations (6) and (8), respectively).
Thus, for a given bimorph, the form of the eigenfunctions
given by φr (x) and their mass normalization conditions are
the same regardless of the series or parallel connections of the
piezoceramic layers. For non-zero values of load resistance,
the voltage terms in the mechanical equations take finite values,
generating point moment excitations at the boundaries of the
piezoceramic layer according to equations (6) and (8), and
yielding two different modal mechanical response functions for
these equations as ηs

r (t) and ηp
r (t), respectively (as obtained in

sections 3.3 and 4.3). Therefore, the feedback from the voltage
response for a given load resistance alters the mechanical
response as well as the resonance frequency of the harvester,
which are observed experimentally and predicted theoretically
in section 7. At this stage, it should be underlined that
the harvester beam has the resonance characteristics of the
corresponding uncoupled (or passive) beam for Rl → 0 only.

2.3. Coupled electrical circuit equation of a piezoceramic
layer under dynamic bending

In order to derive the governing circuit equations of the
bimorph configurations for series and parallel connections
of the piezoceramic layers, one should first examine the
electrical dynamics of a single layer under bending vibrations.
Figure 2(a) displays a cantilevered beam with a single
piezoceramic layer, i.e., a unimorph cantilever. Note that the
deflections are exaggerated to highlight the space- and time-
dependent radius of curvature of the neutral axis at an arbitrary
point. The electrodes bracketing the piezoceramic layers fully
cover the top and the bottom surfaces and they are connected
to a resistive electrical load.

Since the only source of mechanical strain is assumed to
be the axial strain due to bending, the tensorial representation
of the relevant piezoelectric constitutive relation [16] that gives
the vector of electric displacements can be reduced to the
following scalar equation:

D3 = ē31Sp̃
1 + ε̄S

33 E3 (17)

where D3 is the electric displacement component and ε̄S
33 is the

permittivity component at constant strain with the plane-stress
assumption (ε̄S

33 = εT
33 − d2

31/s
E
11 where εT

33 is the permittivity
component at constant stress). Since the circuit admittance

across the electrodes is 1/Rl, the electric current output can
be obtained from the Gauss law as [16]

d

dt

(∫
A

D · n dA

)
= v(t)

Rl
(18)

where D is the vector of electric displacement components
in the piezoceramic layer, n is the unit outward normal
and the integration is performed over the electrode area
A [16, 27]. As can be anticipated, the only contribution to
the inner product of the integrand in equation (18) is from D3,
since the electrodes are perpendicular to 3-direction (i.e., y-
direction). After expressing the average bending strain in the
piezoceramic layer in terms of the curvature (see equation (5))
and the uniform electric field in terms of the electric potential
difference (E3(t) = −v(t)/h p̃), equation (17) can be used in
equation (18) to obtain

ε̄S
33bL

h p̃

dv(t)

dt
+ v(t)

Rl
= −ē31h p̃cb

∫ L

0

∂3wrel(x, t)

∂x2∂ t
dx (19)

where b, h p̃ and L are the width, thickness and the length of
the piezoceramic layer, respectively, and h p̃c is the distance
between the neutral axis and the center of the piezoceramic
layer [27]. One can then substitute the modal expansion form
given by

wrel(x, t) =
∞∑

r=1

φr (x)ηr (t) (20)

in equation (19) to obtain

ε̄S
33bL

h p̃

dv (t)

dt
+ v(t)

Rl
=

∞∑
r=1

κr
dηr (t)

dt
(21)

where κr is the modal coupling term in the electrical circuit
equation:

κr = −ē31h p̃cb
∫ L

0

d2φr (x)

dx2
dx = −ē31h p̃cb

dφr (x)

dx

∣∣∣∣
x=L

.

(22)
The forward coupling term κr has important consequences

as discussed by Erturk et al [27, 32] extensively. According
to equation (19), which originates from the Gauss law
given by equation (18), the excitation of the simple RC
circuit considered here as well as that of more sophisticated
harvesting circuit topologies [9–13] is proportional to the
integral of the dynamic strain distribution over the electrode
area. For vibration modes of a cantilevered beam other than
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the fundamental (first) mode, the dynamic strain distribution
over the beam length changes sign at the strain nodes. It is
known from equation (5) that the curvature at a point is a direct
measure of the bending strain. Hence, for modal excitations,
strain nodes are the inflection points of the eigenfunctions and
the integrand in equation (22) is the curvature eigenfunction.
If the electric charge developed at the opposite sides of
a strain node is collected by continuous electrodes for
vibrations with a certain mode shape, cancelation occurs due
to the phase difference in the mechanical strain distribution.
Mathematically, the partial areas under the integrand function
of the integral in equation (22) cancel each other over
the domain of integration. As an undesired consequence,
the excitation of the electrical circuit, and therefore the
electrical outputs may diminish drastically. In order to avoid
cancellations, segmented electrodes can be used in harvesting
energy from the modes higher than the fundamental mode.
The leads of the segmented electrodes can be combined in
the circuit in an appropriate manner [32]. Note that the r th
vibration mode of a clamped-free beam has r − 1 strain nodes,
and consequently, the first mode of a cantilevered beam has
no cancelation problem. Some boundary conditions are more
prone to strong cancellations. For instance, a beam with
clamped–clamped boundary conditions has r + 1 strain nodes
for the r th vibration mode.

Based on equation (21), it is very useful to represent
the electrical domain of the coupled system by the simple
circuit shown in figure 2(b). It is known in the circuitry-based
energy harvesting literature that a piezoelectric element can
be represented as a current source in parallel with its internal
capacitance [9, 10]. Therefore, the simple circuit shown in
figure 2(b) is the complete circuit of the electrical domain
for a single resistive load case. Note that, this representation
considers the electrical domain only and the electromechanical
representation of the coupled system is actually a transformer
because of the voltage feedback sent to the mechanical domain
due to piezoelectric coupling (which will be incorporated in
the formulation here). The components of the circuit are the
internal capacitance Cp̃ of the piezoceramic layer, the resistive
load Rl and the current source ip̃(t). In agreement with
figure 2(a), the voltage across the resistive load is denoted by
v(t). Then, the Kirchhoff laws can be applied to the electrical
circuit shown in figure 2(b) to obtain

Cp̃
dv(t)

dt
+ v(t)

Rl
= ip̃(t) (23)

where the internal capacitance and the current source terms can
be extracted by matching equations (21) and (23) as

Cp̃ = ε̄S
33bL

h p̃
, ip̃(t) =

∞∑
r=1

κr
dηr (t)

dt
. (24)

Identification of the above terms (especially the current
source term) has a very practical use for modeling of
multi-morph harvesters. This way, for a given number of
piezoceramic layers, there is no need to derive the electrical
circuit equation by using the constitutive relation and the Gauss
law given by equations (17) and (18), respectively. Each

piezoceramic layer will have a similar capacitance and current
source term and the layers can be combined to the resistive
electrical load(s) in a desired way. Here, however, we limit
our discussion to bimorphs (two piezoceramic layers only) as
presented in the following.

3. Bimorph cantilever model for series connection of
the piezoceramic layers

Based on the fundamentals given in section 2, this section
presents the derivation of the closed-form expressions for
the coupled voltage response vs(t) and vibration response
ws

rel(x, t) of the bimorph configuration shown in figure 1(a).
First the coupled mechanical equation is given in modal
coordinates and then the coupled circuit equation is derived.
The resulting coupled equations are then solved for the steady
state voltage response and vibration response for harmonic
base motion inputs.

3.1. Coupled beam equation in modal coordinates

After substituting equation (11a) into (6) and applying
the orthogonality conditions given by equation (14), the
mechanical equation of motion in modal coordinates can be
obtained as

d2ηs
r (t)

dt2
+ 2ζrωr

dηs
r (t)

dt
+ ω2

r η
s
r (t)+ χ s

r vs(t) = fr (t) (25)

where the modal electromechanical coupling term is

χ s
r = ϑs

dφr (x)

dx

∣∣∣∣
x=L

(26)

and the modal mechanical forcing function can be expressed as

fr (t) = −m

(
d2g(t)

dt2

∫ L

0
φr (x) dx + d2h (t)

dt2

∫ L

0
xφr(x) dx

)

− Mtφr (L)

(
d2g(t)

dt2
+ L

d2h(t)

dt2

)
. (27)

In equation (25), ζr is the modal mechanical damping
ratio that includes the combined effects of strain rate and air
damping. In the absence of a tip mass, how to relate the modal
damping ratio to the strain rate and air damping terms cs I
and ca mathematically based on the assumption of proportional
damping can be found in the literature [18]. However, as
a common experimental modal analysis practice, one can
identify the modal damping ratio ζr of a desired mode directly
from the frequency response or time domain measurements. In
this way, the requirement of defining and obtaining the physical
damping terms cs I and ca is avoided [27].

3.2. Coupled electrical circuit equation

As described in section 2.1, the piezoceramic layers of the
bimorph configuration shown in figure 1(a) are connected in
series. We know from the practice given in section 2.3 that
each piezoceramic layer can be represented as a current source
in parallel with its internal capacitance. Therefore, figure 3

7
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Figure 3. Electrical circuit representing the series connection of the
piezoceramic layers.

displays the series connection of the identical piezoceramic
layers of the bimorph configuration shown in figure 1(a).

Kirchhoff laws can be applied to the circuit depicted in
figure 3 to obtain

Cp̃

2

dvs(t)

dt
+ vs(t)

Rl
= i s

p̃(t) (28)

where the internal capacitance and the current source terms of
the bimorph (for each layer) are

Cp̃ = ε̄S
33bL

h p̃
, i s

p̃(t) =
∞∑

r=1

κr
dηs

r (t)

dt
. (29)

The modal coupling term is then

κr = −ē31h p̃cb
∫ L

0

d2φr (x)

dx2
dx

= − ē31(h p̃ + h s̃)b

2

dφr (x)

dx

∣∣∣∣
x=L

(30)

where h p̃c (the distance between the neutral axis and the
center of the piezoceramic layer) is expressed in terms of the
piezoceramic and the substructure layer thicknesses h p̃ and
h s̃ (figure 1(c)). Hence, equation (28) is the electrical circuit
equation of the bimorph cantilever for series connection of the
piezoceramic layers.

3.3. Closed-form voltage response and vibration response
expressions

Equations (25) and (28) constitute the coupled equations for
the modal mechanical response ηs

r (t) of the bimorph and the
voltage response vs(t) across the resistive load. In this section,
we derive the steady state solution of these terms for harmonic
motion inputs. If the translational and rotational components
of the base displacement given by equation (1) are harmonic of
the forms g(t) = Y0ejωt and h(t) = θ0ejωt , where Y0 and θ0 are
the translational and small rotational displacement amplitudes
of the base, ω is the frequency and j is the unit imaginary
number, then the modal forcing function given by equation (27)
can be expressed as fr (t) = Fr ejωt where the amplitude Fr is

Fr = ω2

[
m

(
Y0

∫ L

0
φr (x)dx + θ0

∫ L

0
xφr (x)dx

)

+ Mtφr (L)(Y0 + Lθ0)

]
. (31)

For the harmonic base motions at frequency ω, the steady
state modal mechanical response of the beam and the steady

state voltage response across the resistive load are assumed
to be harmonic at the same frequency as ηs

r (t) = H s
r ejωt and

vs(t) = Vsejωt (linear system assumption), respectively, where
the amplitudes H s

r and Vs are complex valued. Therefore,
equations (25) and (28) yield the following two equations for
H s

r and Vs:

(ω2
r − ω2 + j2ζrωrω)H

s
r + χ s

r Vs = Fr (32)
(

1

Rl
+ jω

Cp̃

2

)
Vs − jω

∞∑
r=1

κr H s
r = 0. (33)

The complex modal mechanical response amplitude H s
r

can be extracted from equation (32) and it can be substituted
in equation (33) to obtain the complex voltage amplitude Vs

explicitly. The resulting complex voltage amplitude can then
be used in vs(t) = Vsejωt to express the steady state voltage
response as

vs(t) =
∑∞

r=1
jωκr Fr

ω2
r −ω2+j2ζrωrω

1
Rl

+ jωCp̃

2 + ∑∞
r=1

jωκrχ
s
r

ω2
r −ω2+j2ζrωrω

ejωt . (34)

The complex voltage amplitude Vs can be substituted into
equation (32) to obtain the steady state modal mechanical
response of the bimorph as

ηs
r (t) =

(
Fr − χ s

r

∑∞
r=1

jωκr Fr

ω2
r −ω2+j2ζrωrω

1
Rl

+ jωCp̃

2 + ∑∞
r=1

jωκrχ
s
r

ω2
r −ω2+j2ζrωrω

)

× ejωt

ω2
r − ω2 + j2ζrωrω

. (35)

The transverse displacement response (relative to the
base) at point x on the bimorph can be obtained in physical
coordinates by substituting equation (35) in equation (11a):

ws
rel(x, t)

=
∞∑

r=1

[(
Fr − χ s

r

∑∞
r=1

jωκr Fr

ω2
r −ω2+j2ζrωrω

1
Rl

+ jωCp̃

2 + ∑∞
r=1

jωκrχ
s
r

ω2
r −ω2+j2ζrωrω

)

× φr (x)ejωt

ω2
r − ω2 + j2ζrωrω

]
. (36)

Note that the vibration response given by equation (36)
is the response of the beam relative to its moving base. If
one is interested in the coupled beam displacement in the
absolute physical coordinates (relative to the fixed frame), it
is the superposition of the base displacement and the vibratory
displacement relative to base:

ws(x, t) = wb(x, t)+ws
rel(x, t) (37)

where wb(x, t) is the base displacement given by equation (1).

4. Bimorph cantilever model for parallel connection
of the piezoceramic layers

This section aims to derive the steady state expressions for
voltage response vp(t) and the vibration response wp

rel(x, t) of
the bimorph configuration shown in figure 1(b) to harmonic
base motions. The coupled beam equation in modal
coordinates and the electrical circuit equations are derived and
the closed-form solutions are obtained in the following.

8
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Figure 4. Electrical circuit representing the parallel connection of
the piezoceramic layers.

4.1. Coupled beam equation in modal coordinates

After substituting equation (11b) in equation (8), the partial
differential equation given by equation (8) can be reduced
to an infinite set of ordinary differential equations in modal
coordinates as follows:

d2η
p
r (t)

dt2
+ 2ζrωr

dηp
r (t)

dt
+ ω2

r η
p
r (t)+ χ p

r vp(t) = fr (t) (38)

where the modal electromechanical coupling term is

χ p
r = ϑp

dφr (x)

dx

∣∣∣∣
x=L

(39)

and the modal mechanical forcing function is given by
equation (27). The discussion regarding the mechanical
damping ratio ζr is the same as given in section 3.1.
Thus, equation (38) is the coupled beam equation in modal
coordinates for the bimorph configuration with parallel
connection of the piezoceramic layers.

4.2. Coupled electrical circuit equation

It was mentioned in section 2.1 that the piezoceramic layers of
the bimorph configuration shown in figure 1(b) are connected
in parallel. Since each of the piezoceramic layers can be
represented as a current source in parallel with its internal
capacitance (section 2.3), figure 4 represents the parallel
connection of the identical top and bottom piezoceramic layers
of the bimorph configuration shown in figure 1(b).

One can then derive the governing circuit equation based
on the Kirchhoff laws as follows:

Cp̃
dvp(t)

dt
+ vp(t)

2Rl
= i p

p̃ (t) (40)

where the internal capacitance and the current source terms for
each layer are

Cp̃ = ε̄S
33bL

h p̃
, i p

p̃(t) =
∞∑

r=1

κr
dηp

r (t)

dt
(41)

and the modal coupling term κr is given by equation (30).
Equation (40) is the electrical circuit equation of the bimorph
cantilever for parallel connection of the piezoceramic layers.

4.3. Closed-form voltage response and vibration response
expressions

In order to solve for ηp
r (t) and vp(t) in equations (38) and (40),

we follow the same procedure given in section 3.3 by assuming
the base excitation components in figure 1(b) to be harmonic
as g(t) = Y0ejωt and h(t) = θ0ejωt . For these harmonic

base motion inputs of the same frequency, the modal forcing
is harmonic as fr (t) = Fr ejωt where the amplitude Fr is given
by equation (31).

Based on the linear system assumption, the modal
mechanical response ηp

r (t) and the voltage response vp(t) are
assumed to be harmonic at the frequency of excitation such that
η

p
r (t) = H p

r ejωt and vp(t) = Vpejωt , where the amplitudes H p
r

and Vp are complex valued. Hence, equations (38) and (40)
yield the following equations for H p

r and Vp:

(ω2
r − ω2 + j2ζrωrω)H

p
r + χ p

r Vp = Fr (42)

(
1

2Rl
+ jωCp̃

)
Vp − jω

∞∑
r=1

κr H p
r = 0 (43)

where H p
r and Vp can be obtained explicitly. Using the

resulting complex voltage amplitude in vp(t) = Vpejωt gives
the steady state voltage response as

vp(t) =
∑∞

r=1
jωκr Fr

ω2
r −ω2+j2ζrωrω

1
2Rl

+ jωCp̃ + ∑∞
r=1

jωκrχ
p

r

ω2
r −ω2+j2ζrωrω

ejωt . (44)

Then the steady state modal mechanical response of the
bimorph can be obtained by using Vp in equation (42) as

ηp
r (t) =

(
Fr − χ p

r

∑∞
r=1

jωκr Fr

ω2
r −ω2+j2ζrωrω

1
2Rl

+ jωCp̃ + ∑∞
r=1

jωκrχ
p

r

ω2
r −ω2+j2ζrωrω

)

× ejωt

ω2
r − ω2 + j2ζrωrω

. (45)

The modal mechanical response expression can then be
used in equation (11b) to obtain the transverse displacement
response (relative to the base) at point x on the bimorph:

w
p
rel(x, t)

=
∞∑

r=1

[(
Fr − χ p

r

∑∞
r=1

jωκr Fr

ω2
r −ω2+j2ζrωrω

1
2Rl

+ jωCp̃ + ∑∞
r=1

jωκrχ
p

r

ω2
r −ω2+j2ζrωrω

)

× φr (x)ejωt

ω2
r − ω2 + j2ζrωrω

]
. (46)

Having obtained the vibration response relative to the
moving base, one can easily use superpose the base motion
to the relative response to obtain the transverse displacement
response at point x relative to the fixed frame as follows:

wp(x, t) = wb(x, t)+ w
p
rel(x, t) (47)

where the base displacement wb(x, t) is given by equation (1).

5. Single-mode electromechanical expressions for
modal excitations

The steady state voltage response and vibration response
expressions obtained in sections 2 and 3 are valid for harmonic
excitations at any arbitrary frequency ω. That is, equations (34)
and (36) for series connection of the piezoceramic layers
(figure 1(a)) and equations (44) and (46) for parallel connection
of the piezoceramic layers (figure 1(b)) are the multi-mode
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solutions as they include all vibration modes of the bimorph
harvester. Hence, these equations can predict the coupled
system dynamics not only for resonance excitations but also for
excitations at the off-resonance frequencies of the harvester.

In order to obtain the maximum electrical response, it
is preferable to excite a given harvester at its fundamental
resonance frequency (or at one of the higher resonance
frequencies). Most of the studies in the literature have focused
on the resonance excitation at the fundamental resonance
frequency in order to investigate the maximum performance
of the harvester for electrical power generation. Consequently,
excitation of a bimorph at or very close to one of its natural
frequencies is a very useful problem to investigate through the
resulting equations derived in sections 3 and 4. This is the
modal excitation condition and mathematically it corresponds
to ω ∼= ωr . With this assumption on the excitation
frequency, the major contribution in the summation terms of
equations (34), (36), (44) and (46) are from the r th vibration
mode, which allows drastic simplifications in the coupled
voltage and vibration response expressions. In the following,
the reduced single-mode expressions are given for excitations
at or very close to the r th natural frequency, however, it should
be noted that the fundamental mode is the main concern in the
energy harvesting problem (which corresponds to r = 1).

5.1. Series connection of the piezoceramic layers

If the bimorph configuration shown in figure 1(a) is excited at
ω ∼= ωr , the contribution of all the vibration modes other than
the r th mode can be ignored in the summation terms. Then,
the steady state voltage response given by equation (34) can be
reduced to

v̂s(t) = j2ωRlκr Fr ejωt

(2 + jωRlCp̃)(ω2
r − ω2 + j2ζrωrω)+ j2ωRlκrχ s

r
(48)

and the transverse displacement relative to the moving base is
simply obtained from equation (36) as

ŵs
rel(x, t)

= (2 + jωRlCp̃)Frφr (x)ejωt

(2 + jωRlCp̃)(ω2
r − ω2 + j2ζrωrω)+ j2ωRlκrχ s

r

(49)

where the relevant terms can be found in section 3. Here and
below, a hat (ˆ) denotes that the respective term is reduced
from the full solution for excitations very close to a natural
frequency.

5.2. Parallel connection of the piezoceramic layers

Similarly, if the bimorph configuration displayed in figure 1(b)
is excited at ω ∼= ωr , the steady state voltage response given
by equation (44) can be reduced to

v̂p(t)

= j2ωRlκr Fr ejωt

(1 + j2ωRlCp̃)(ω2
r − ω2 + j2ζrωrω)+ j2ωRlκrχ

p
r

(50)

and the transverse displacement relative to the base is obtained
from equation (46) as

ŵ
p
rel(x, t)

= (1 + j2ωRlCp̃)Frφr (x)ejωt

(1 + j2ωRlCp̃)(ω2
r − ω2 + j2ζrωrω)+ j2ωRlκrχ

p
r

(51)

where the relevant terms can be found in section 4.

6. Multi-mode and single-mode electromechanical
FRFs

In the electromechanical model proposed, the two excitation
inputs to the system are the translation of the base in
the transverse direction and its small rotation (figures 1(a)
and (b)). For these two inputs, the resulting electrical
outputs are the voltage response and the vibration response.
Therefore, for harmonic base excitations, one can define
four electromechanical FRFs between these two outputs and
two inputs: voltage output-to-translational base acceleration,
voltage output-to-rotational base acceleration, vibration
response-to-translational base acceleration and vibration
response-to-rotational base acceleration. This section extracts
these FRFs from the multi-mode (for arbitrary frequency
excitations) and single-mode (for modal excitations) solutions
derived in the previous sections.

6.1. Multi-mode electromechanical FRFs

Since the translation and small rotation of the base are given
by g(t) = Y0ejωt and h(t) = θ0ejωt , the modal forcing
function is in the form of fr (t) = Fr ejωt where Fr is given
by equation (31). Before identifying the aforementioned
FRFs, one should first rearrange the complex modal forcing
amplitude given by equation (31) as follows:

Fr = −σrω
2Y0 − τrω

2θ0 (52)

where

σr = −m
∫ L

0
φr (x) dx − Mtφr (L) (53)

τr = −m
∫ L

0
xφr (x) dx − Mt Lφr (L). (54)

6.1.1. Series connection of the piezoceramic layers. The
steady state voltage response given by equation (34) can
be written in terms of the translational and rotational base
accelerations as

vs(t) = αs(ω)(−ω2Y0ejωt )+ μs(ω)(−ω2θ0ejωt ) (55)

where the FRF that relates the voltage output to translational
base acceleration is

αs(ω) =
∑∞

r=1
jωκrσr

ω2
r −ω2+j2ζrωrω

1
Rl

+ jωCp̃

2 + ∑∞
r=1

jωκrχ s
r

ω2
r −ω2+j2ζrωrω

(56)

10



Smart Mater. Struct. 18 (2009) 025009 A Erturk and D J Inman

and the voltage output per rotational base acceleration input
can be given by

μs(ω) =
∑∞

r=1
jωκr τr

ω2
r −ω2+j2ζrωrω

1
Rl

+ jωCp̃

2 + ∑∞
r=1

jωκrχ
s
r

ω2
r −ω2+j2ζrωrω

. (57)

Similarly, the steady state vibration response relative to the
base of the bimorph given by equation (36) can be expressed
as

ws
rel(x, t) = βs(ω, x)(−ω2Y0ejωt )+ ψs(ω, x)(−ω2θ0ejωt )

(58)
where the transverse displacement response-to-translational
base acceleration FRF is

βs(ω, x)

=
∞∑

r=1

[(
σr − χ s

r

∑∞
r=1

jωκrσr

ω2
r −ω2+j2ζrωrω

1
Rl

+ jωCp̃

2 + ∑∞
r=1

jωκrχ
s
r

ω2
r −ω2+j2ζrωrω

)

× φr (x)

ω2
r − ω2 + j2ζrωrω

]
(59)

and the transverse displacement response and rotational base
acceleration are related by

ψs(ω, x)

=
∞∑

r=1

[(
τr − χ s

r

∑∞
r=1

jωκr τr

ω2
r −ω2+j2ζrωrω

1
Rl

+ jωCp̃

2 + ∑∞
r=1

jωκrχ
s
r

ω2
r −ω2+j2ζrωrω

)

× φr (x)

ω2
r − ω2 + j2ζrωrω

]
. (60)

6.1.2. Parallel connection of the piezoceramic layers. It is
possible to derive similar FRFs for the parallel connection of
the piezoceramic layers. The steady state voltage response
given by equation (44) can be rearranged to give

vp(t) = αp(ω)
(−ω2Y0ejωt

) + μp(ω)(−ω2θ0ejωt ) (61)

where the voltage output-to-translational base acceleration
FRF is

αp(ω) =
∑∞

r=1
jωκrσr

ω2
r −ω2+j2ζrωrω

1
2Rl

+ jωCp̃ + ∑∞
r=1

jωκrχ
p

r

ω2
r −ω2+j2ζrωrω

(62)

and the voltage output-to-rotational base acceleration FRF can
be given by

μp(ω) =
∑∞

r=1
jωκr τr

ω2
r −ω2+j2ζrωrω

1
2Rl

+ jωCp̃ + ∑∞
r=1

jωκrχ
p

r

ω2
r −ω2+j2ζrωrω

. (63)

From equation (46), the steady state vibration response
relative to the base of the bimorph can be expressed as

w
p
rel(x, t) = βp(ω, x)(−ω2Y0ejωt )+ ψp(ω, x)(−ω2θ0ejωt )

(64)

where the transverse displacement response-to-translational
base acceleration FRF is

βp(ω, x)

=
∞∑

r=1

[(
σr − χ p

r

∑∞
r=1

jωκrσr

ω2
r −ω2+j2ζrωrω

1
2Rl

+ jωCp̃ + ∑∞
r=1

jωκrχ
p

r

ω2
r −ω2+j2ζrωrω

)

× φr (x)

ω2
r − ω2 + j2ζrωrω

]
(65)

and the transverse displacement response-to-rotational base
acceleration FRF is

ψp(ω, x)

=
∞∑

r=1

[(
τr − χ p

r

∑∞
r=1

jωκr τr

ω2
r −ω2+j2ζrωrω

1
2Rl

+ jωCp̃ + ∑∞
r=1

jωκrχ
p

r

ω2
r −ω2+j2ζrωrω

)

× φr (x)

ω2
r − ω2 + j2ζrωrω

]
. (66)

6.2. Single-mode electromechanical FRFs

In order to extract the respective FRFs of the single-mode
expressions, one should use equations (48)–(51) along with
equation (52). In the following, equation (52) is substituted in
each of equations (48)–(51) and the relevant FRFs are extracted
as done for the multi-mode solution case. Note that, the single-
mode electromechanical FRFs given here are strictly valid for
modal excitations (ω ∼= ωr ) only.

6.2.1. Series connection of the piezoceramic layers.
Equation (48) can be rearranged to give the single-mode steady
state voltage response as

v̂s(t) = α̂s(ω)(−ω2Y0ejωt )+ μ̂s(ω)(−ω2θ0ejωt ) (67)

where the single-mode FRF that relates the voltage output to
translational base acceleration is

α̂s(ω) = j2ωRlκrσr

(2 + jωRlCp̃)(ω2
r − ω2 + j2ζrωrω)+ j2ωRlκrχ s

r
(68)

and the single-mode voltage output-to-rotational base acceler-
ation FRF is

μ̂s(ω) = j2ωRlκrτr

(2 + jωRlCp̃)(ω2
r − ω2 + j2ζrωrω)+ j2ωRlκrχ s

r

.

(69)
The single-mode steady state vibration response relative

to the base of the bimorph given by equation (49) can be
rearranged to give

ŵs
rel(x, t) = β̂s(ω, x)(−ω2Y0ejωt )+ ψ̂s(ω, x)(−ω2θ0ejωt )

(70)
where the single-mode transverse displacement response-to-
translational base acceleration FRF is

β̂s(ω, x)

= (2 + jωRlCp̃)σrφr (x)

(2 + jωRlCp̃)(ω2
r − ω2 + j2ζrωrω)+ j2ωRlκrχ s

r

(71)

11



Smart Mater. Struct. 18 (2009) 025009 A Erturk and D J Inman

and the single-mode transverse displacement response-to-
rotational base acceleration FRF can be given by

ψ̂s(ω, x)

= (2 + jωRlCp̃)τrφr (x)

(2 + jωRlCp̃)(ω2
r − ω2 + j2ζrωrω)+ j2ωRlκrχ s

r

. (72)

6.2.2. Parallel connection of the piezoceramic layers.
The single-mode steady state voltage response given by
equation (50) can be expressed in terms of the translational and
rotational base accelerations as

v̂p(t) = α̂p(ω)(−ω2Y0ejωt )+ μ̂p(ω)(−ω2θ0ejωt ) (73)

where the single-mode FRF that relates the voltage output to
translational base acceleration is

α̂p(ω)

= j2ωRlκrσr

(1 + j2ωRlCp̃)(ω2
r − ω2 + j2ζrωrω)+ j2ωRlκrχ

p
r

(74)

and the single-mode FRF that relates the voltage output to
rotational base acceleration is

μ̂p(ω)

= j2ωRlκrτr

(1 + j2ωRlCp̃)(ω2
r − ω2 + j2ζrωrω)+ j2ωRlκrχ

p
r
.

(75)

Similarly, the single-mode steady state vibration response
relative to the base of the bimorph given by equation (51) can
be rewritten as

ŵ
p
rel(x, t) = β̂p(ω, x)(−ω2Y0ejωt )+ ψ̂p(ω, x)(−ω2θ0ejωt )

(76)
where the single-mode transverse displacement response-to-
translational base acceleration FRF can be given by

β̂p(ω, x)

= (1 + j2ωRlCp̃)σrφr (x)

(1 + j2ωRlCp̃)(ω2
r − ω2 + j2ζrωrω)+ j2ωRlκrχ

p
r

(77)

and the single-mode transverse displacement response-to-
rotational base acceleration FRF is

ψ̂p(ω, x)

= (1 + j2ωRlCp̃)τrφr (x)

(1 + j2ωRlCp̃)(ω2
r − ω2 + j2ζrωrω)+ j2ωRlκrχ

p
r
.

(78)

7. Experimental validation

This section provides experimental validation of the single-
mode analytical relationships. The experimentally measured
voltage response-to-base acceleration FRFs and the vibration
response-to-base acceleration FRFs are compared with the
closed-form FRFs derived in this paper. Variations of
the voltage output and the tip velocity response of the
bimorph with changing load resistance are also investigated

(a)   (b)

Figure 5. (a) Experimental setup used for validation of the analytical
model and the (b) bimorph with a tip mass attachment analyzed in
the experiment.

and predicted by using the analytical relations. Since the
fundamental vibration mode of the harvester has the highest
practical importance for energy harvesting, attention is given
to this mode. Variation of the voltage, current and power
outputs with load resistance are investigated for excitations at
the short circuit and open circuit resonance frequencies of the
fundamental mode. Optimum resistive loads of the harvester
are identified for excitations at these frequencies.

7.1. Experimental setup for a bimorph cantilever with a tip
mass

The experimental setup used for measuring the voltage-to-
base acceleration and tip velocity-to-base acceleration FRFs
of the harvester is shown in figure 5(a). The bimorph
analyzed in this experiment is displayed in figure 5(b) and
it is manufactured by Piezo Systems, Inc. (T226-A4-503X).
The same type of bimorph was recently used by duToit et al
[33] for the verification of their Rayleigh–Ritz model. Here,
we attach a tip mass to the cantilever to make the problem
relatively sophisticated in terms of modeling (figure 5(b)). The
bimorph consists of two oppositely poled PZT-5A piezoelectric
elements bracketing a brass substructure layer. Therefore, the
piezoelectric elements are connected in series as schematically
given in figure 1(a). The geometric and material properties of
the piezoceramic and substructure layers are given in table 1.
Note that, in agreement with the formulation given in this
paper, the length described by L is the overhang length of
the harvester, i.e., it is not the total free length (63.5 mm) of
the bimorph as acquired from the manufacturer. In addition,
permittivity at constant strain is given in table 1 in terms of the
permittivity of free space, ε0 = 8.854 pF m−1 [16].

The bimorph cantilever is excited from its base with a
sine sweep generated by an electromagnetic LDS shaker. The
base acceleration of the harvester is measured by a low mass
accelerometer (PCB U352C22) and the velocity response of
the harvester at the free end is measured by a laser vibrometer
(Polytec OFV303 laser head, OFV3001 vibrometer). The
experimental voltage FRF (in V/g) and tip velocity FRF (in
(m/s)/g) obtained for a resistive load of 1 k� are shown in
figure 6(a). The coherence functions of these measurements
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Figure 6. (a) Experimental voltage and tip velocity FRFs of the cantilever and (b) their coherence functions (for a resistive load of 1 k�).

Table 1. Geometric and material parameters of the bimorph cantilever used for the experimental validation.

Geometric
parameters Piezo. Substructure Material parameters

Piezo
(PZT-5A)

Substructure
(brass)

Length, L (mm) 50.8 50.8 Mass density, ρ (kg m−3) 7800 9000
Width, b (mm) 31.8 31.8 Young’s modulus, Y (GPa) 66 105
Thickness, h (mm) 0.26 (each) 0.14 Piezo. constant, d31 (pm V−1) −190 —
Tip mass, Mt (kg) 0.012 Permittivity, ε̄S

33 (F m−1) 1500ε0 —

are given by figure 6(b). The coherence is considerably low
for frequencies less than 30 Hz but it is good around the first
resonance frequency (which is approximately 45.6 Hz for a
1 k� resistive load).

The single-mode analytical FRFs given by equations (68)
and (71) are used in order to validate their accuracy in
predicting the experimental observations. Note that the base
is not rotating and therefore θ0 = 0 in equations (67) and (70).
The fundamental vibration mode (seen around 45.6 Hz in
figure 6(a)) is of practical interest and consequently r = 1 is
used in equations (68) and (71). It is important to note that the
laser vibrometer measures the absolute velocity at the tip of the
bimorph in the experiment. However, the tip displacement FRF
given by equation (71) for x = L is the displacement of the tip
relative to the vibrating base, i.e., it is not relative to the fixed
frame. Hence, by considering the absolute displacement given
by equation (37), equation (71) must be modified as follows to
compare it with the experimental tip velocity measurement:

β̂modified
s (ω, L) =

dŵs(L ,t)
dt

−ω2Y0ejωt
=

d
dt [Y0ejωt + ŵs

rel(L, t)]
−ω2Y0ejωt

= 1

jω
+ jωβ̂s(ω, L). (79)

Thus, the absolute tip velocity FRF given by equation (79)
is used in comparisons with the laser vibrometer measure-
ments. Note that, instead of modifying the analytical FRF
expression given by equation (71), one could as well process
the experimental FRF. However, this option is not preferable
because of the possibility of generating noise while post-
processing the experimental data. It should also be added that,
in the following, the FRFs given by equations (68) and (79) are
multiplied by the gravitational acceleration (g = 9.81 m s−2)
to be in agreement with the experimental measurements (hence
the FRFs are given per base acceleration in g). Comparison
of the experimental measurements and model predictions are
given next.

7.2. Validation of the single-mode expressions and coupled
analysis of the harvester

Since the performance of the harvester at resonance is the
main concern, accurate identification of mechanical damping
ratio is very important. It is a common practice to extract the
modal mechanical damping ratio from the first experimental
measurement. The uncoupled (but mechanically damped)
natural frequency of the harvester can be observed in the
experimental FRF by setting Rl → 0 (short circuit conditions),
i.e., by using a very low resistive load (since, practically, no
wire with zero electrical resistance exists). The measurement
provided for 1 k� resistive load is close to short circuit
conditions for the given harvester and the fundamental natural
frequency in short circuit conditions can be extracted from
the experimental voltage or tip velocity FRF (figure 6(a)) as
45.6 Hz. By using the numerical data of the bimorph harvester
given in table 1, equation (15) predicts the first uncoupled (and
mechanically undamped) natural frequency of the harvester
analytically as 45.7 Hz. One can then identify the mechanical
damping ratio of the first mode by employing the coupled
single-mode relations as 2.7%. Hence, this approach allows
extracting modal mechanical damping in the presence of a
finite resistive load (without forcing the system exactly to be
in short circuit conditions). Indeed, if the electromechanical
model is self-consistent, one must be able to identify the
mechanical damping ratio for any value of load resistance.
Furthermore, either the voltage FRF or the tip velocity FRF
can be used for identifying modal mechanical damping ratio,
since the bimorph harvester itself is a transducer. In other
words, theoretically, the coupled tip velocity information is
included in the voltage output information of the harvester, and
the voltage and tip motion predictions for the same mechanical
damping ratio must be in agreement based on the linear
electromechanical system assumption.

The mechanical damping ratio of the first vibration mode
is identified (as ζ1 = 0.027) by using the voltage FRF
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Figure 7. Comparison of the model predictions and experimental measurements; (a) voltage FRF and (b) tip velocity FRF for 1 k�,
(c) voltage FRF and (d) tip velocity FRF for 33 k�, (e) voltage FRF and (f) tip velocity FRF for 470 k�.

as shown in figure 7(a) (for 1 k� load resistance). For
this identified damping ratio, the voltage FRF of the model
(obtained from equation (68)) is in perfect agreement with the
experimental FRF as shown in figure 7(a). As discussed in
the previous paragraph, for the same damping ratio (2.7%), the
tip velocity FRF obtained from the model should predict the
experimental tip velocity FRF accurately. The tip velocity FRF
obtained from equation (79) is plotted with the laser vibrometer
measurement in figure 7(b). As can be seen from this
figure, the agreement between the theoretical and experimental
tip velocity FRFs is very good, which clearly shows the
consistency of the electromechanical model proposed here. If
the resistive load is replaced by a resistive load of 33 k�,
the experimental and analytical voltage and tip velocity FRFs
given by figures 7(c) and (d) are obtained, respectively. Note
that the mechanical damping ratio is kept at 2.7% in the
model and the model predicts the coupled structural response
successfully for this different resistive load (which is one
order of magnitude larger than the previous one). The shift

in the resonance frequency for a 33 k� resistive load is not
very large. However, if the resistive load is increased to
470 k� (figures 7(e) and (f)), the resonance frequency moves
to 48.4 Hz, which is approximately 2.8 Hz higher than the
resonance frequency for 1 k�. Note that the system is close
to open circuit conditions for the large resistive load of the
last case (470 k�). The variations in the fundamental mode
resonance frequency with changing load resistance as well
as the amplitude-wise results in the FRFs are successfully
predicted by the analytical model (modal mechanical damping
ratio is kept constant at 2.7% in all cases).

From the quantitative point of view, the maximum voltage
output increases from 1.57 V/g (at 45.6 Hz) to 84 V/g (at
48.4 Hz) as the resistive load increases from 1 to 470 k�. Note
that the former case (1 k�) is close to short circuit conditions
(corresponding to the highest current output) whereas the latter
case (470 k�) is close to open circuit conditions (yielding
the highest voltage output). Therefore, the short circuit and
open circuit resonance frequencies for the first mode of this
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Figure 8. Enlarged views of the (a) voltage FRF and the (b) tip velocity FRF for 8 different values of load resistance (model predictions and
the experimental measurements).

Figure 9. Enlarged views of the (a) current FRF for 8 different values of load resistance and the (b) power FRF 3 different values of load
resistance (model predictions and experimental measurements).

harvester are approximately 45.6 Hz and 48.4 Hz, respectively.
The analytical model predicts these two frequencies as 45.7 Hz
and 48.2 Hz, respectively.

The experimental measurements are repeated for 8
different values of load resistance: 1, 6.7, 11.8, 22, 33, 47,
100 and 470 k�. Each of the resistive loads results in a
different voltage FRF and a tip velocity FRF. Figures 8(a)
and (b), respectively, display enlarged views of the voltage
output and tip velocity FRFs around the first vibration mode
for these 8 different values of load resistance. The direction
of increasing load resistance is depicted with an arrow and it
is clear from figure 8(a) that the voltage across the resistive
load increases monotonically with increasing load resistance at
every excitation frequency. For the extreme values of the load
resistance, the frequency of maximum voltage output moves
from the short circuit resonance frequency to the open circuit
resonance frequency. For a moderate value of load resistance,
the frequency of maximum voltage has a value in between
these two extreme frequencies (i.e., between 45.6 and 48.4 Hz
in this case). The shift in the frequencies of maximum response
amplitude is also the case in the tip velocity FRF (figure 8(b)).
However, the variation of tip velocity with load resistance is
not necessarily monotonic at every frequency. For excitation
at 45.6 Hz, the tip motion is suppressed as the resistive load is
increased up to a certain value. It is very important to note that
this suppression in the motion amplitude is more sophisticated
than viscous damping. With increasing load resistance, the
motion is attenuated at 45.6 Hz whereas it is amplified at
48.4 Hz. Hence, if one focuses on the open circuit resonance

frequency (48.4 Hz), both the voltage output and vibration
amplitude at the tip increases with increasing load resistance.
Therefore, modeling the effect of piezoelectric coupling in the
beam equation as viscous damping clearly fails in predicting
this phenomenon (in addition to the fact that it cannot predict
the frequency shift due to changing load resistance). Note
that, for 8 different resistive loads, the model predicts the
frequency response of the voltage output and tip velocity very
successfully.

The electric current FRF exhibits the opposite behavior
of the voltage FRF with changing load resistance as shown
in figure 9(a) (obtained from I = V/Rl). Hence, the
electric current decreases monotonically with increasing load
resistance at every excitation frequency. Figure 9(b) displays
the electrical power FRF for 3 different resistive loads5. The
trend in the electrical power FRF with changing load resistance
is more interesting as it is the multiplication of two FRFs
(voltage and current) with the opposite trends. As can be
seen in figure 9(b), the electrical power FRFs of different
resistive loads intersect each other just like the tip velocity
FRF (figure 8(b)). For a given excitation frequency, there
exists a certain value of load resistance that gives the maximum
electrical power. This value is called the optimum load
resistance and it can be observed more easily if the frequency

5 In order to avoid confusion with 8 intersecting curves, the electrical power
FRF is given for 3 resistive loads only. Note that the electrical power amplitude
is due to P = |V |2/Rl; i.e., it is the peak power. The average power can
be obtained from Pave = |Vrms|2/Rl, where Vrms = V/

√
2 (thus, Pave =

|V |2/2Rl = P/2).
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Figure 10. Variations of the (a) peak voltage, (b) peak current and the (b) peak electrical power amplitudes with load resistance for excitations
at the short circuit and open circuit resonance frequencies of the first vibration mode.

of interest is kept constant and the power amplitude is plotted
against load resistance (which is addressed next).

The short circuit and open circuit resonance frequencies
of the first mode are defined for the extreme cases of load
resistance (45.6 Hz as Rl → 0 and 48.4 Hz as Rl → ∞) and
these frequencies are of practical interest. The variations of
the voltage output with changing load resistance for excitations
at these two frequencies are shown in figure 10(a). In both
cases, voltage increases monotonically with load resistance.
The voltage output for excitation at the short circuit resonance
frequency is higher when the system is close to short circuit
conditions and vice versa. There exists a certain resistive
load (83.4 k�), for which the voltage response has the same
amplitude (40.6 V/g) for excitations at both frequencies. The
maximum voltage amplitude in the limit Rl → ∞ is about
54.5 V/g for excitation at 45.6 Hz and it is about 108.8 V/g for
excitation at 48.4 Hz. Figure 10(b) shows the variations of the
electric current with changing load resistance for excitations
at these two frequencies. The trend of the current amplitude
with changing load resistance is the opposite of that of the
voltage amplitude. That is, the current amplitude decreases
monotonically with increasing load resistance. The current
output for excitation at the short circuit resonance frequency
is higher when the system is close to short circuit conditions
and vice versa. Again, for an 83.4 k� load resistance,
both excitation frequencies yield the same current amplitude
(0.49 mA/g). In the limit Rl → 0, the maximum current
amplitude is about 1.57 mA/g for excitation at 45.6 Hz and
it is about 0.68 mA/g for excitation at 48.4 Hz.

The variation of the electrical power with changing load
resistance is given in figure 10(c) for the short circuit and
open circuit resonance frequency excitations. As mentioned

before, the variation of the electrical power with changing
load resistance is not monotonic. These two cases (the short
circuit and open circuit resonance frequency excitations) have
different optimum resistive loads which yield the maximum
electrical power. The optimum load resistance for excitation at
45.6 Hz is about 35 k�, yielding a maximum electrical power
of about 23.9 mW/g2 whereas the optimum resistive load for
excitation at 48.4 Hz is 186 k�, yielding approximately the
same power output. As in the case of voltage and current
outputs, the electrical power output for excitation at the short
circuit resonance frequency is higher when the system is
close to short circuit conditions and vice versa. Moreover,
for an 83.4 k� resistive load, the same electrical power
(19.8 mW/g2) is obtained for excitations at both of these
frequencies. The respective trends in the electrical outputs
at the short circuit and open circuit resonance frequencies of
the first mode are successfully predicted by the single-mode
analytical relations derived in this paper.

A useful practice to obtain some additional information
regarding the performance of the harvester device implies
dividing the electrical power by the volume and by the mass of
the harvester. The overhang volume of the bimorph cantilever
is 1.07 cm3 whereas the volume occupied by the tip mass
attachment is 2.45 cm3, yielding a total device volume of about
3.52 cm3. The overhang mass of the bimorph is 8.6 g and the
tip mass is 12 g. Thus, the total mass of the cantilever is about
20.6 g. The electrical power versus load resistance graph given
by figure 10(c) can therefore be plotted in the form of power
density (power per device volume) and specific power (power
per device mass) graphs. The vertical axis of figure 10(c) must
be divided by the device volume to obtain the power density
graph and it must be divided by the device mass to obtain
the specific power graph. The variations of power density and

16



Smart Mater. Struct. 18 (2009) 025009 A Erturk and D J Inman

Figure 11. Variations of the (a) power density (power per device volume) and the (b) specific power (power per device mass) amplitudes with
load resistance for excitations at the short circuit and open circuit resonance frequencies of the first vibration mode.

specific power with load resistance are given by figures 11(a)
and (b), respectively (for the short circuit and open circuit
resonance excitations). For instance, for excitation at 45.6 Hz,
the maximum power density is about 6.8 (mW/g2) cm−3

and the maximum specific power is about 1.15 (W/g2) kg−1

(for a 35 k� resistive load). It is very important to note
that the power density and the specific power concepts are
not complete dimensionless representations. For instance, the
same device volume can be occupied by the same amount
of material (piezoceramic, substructure and tip mass) for a
different aspect ratio of the beam, yielding a larger or smaller
electrical power with totally different natural frequencies. Yet,
these representations have been found useful for comparison of
the harvester devices in the literature.

8. Summary and conclusions

Piezoelectric energy harvesting has been investigated by
several researchers for the last five years. Typically, a
cantilevered harvester beam with one or two piezoceramic
layers is located on a vibrating host structure and the harvester
beam generates electrical power due to base excitation.
Electromechanical modeling of cantilevered piezoelectric
energy harvesters under base excitation has been studied
my many authors and the existing models include SDOF
approaches, approximate solutions in the sense of Rayleigh–
Ritz discretization and analytical solution attempts with certain
simplifications. Recently, the authors have presented the
closed-form analytical solution for a unimorph cantilever based
on the Euler–Bernoulli beam assumptions. In this work, the
analytical solution is extended to bimorph configurations with
series and parallel connections of piezoceramic layers and
experimentally validated.

The base excitation acting on the bimorph cantilever
is assumed to be translation in the transverse direction
with superimposed small rotation. For series and parallel
connections of the piezoceramic layers, the closed-form
electromechanical expressions are first obtained for the steady
state response to harmonic excitation at arbitrary frequencies.
The resulting expressions are then reduced to single-mode
expressions by assuming modal excitation (i.e., excitation at or
very close to a particular natural frequency), which is the main

concern in vibration-based energy harvesting. The single-
mode relations given here are easier to use compared to the
multi-mode solutions and they are as accurate as the multi-
mode solutions for excitations around a natural frequency of
interest (which, in general, is the first natural frequency of
the harvester). The electromechanical FRFs which relate the
voltage output and vibration response of the bimorph to the
translational and rotational base acceleration components are
extracted both for the multi-mode and single-mode solutions.

In order to validate the model proposed in this paper, an
experimental study is presented for a bimorph cantilever with
a tip mass attachment. It is shown that the single-mode FRFs
obtained from the analytical solution given here can predict
the voltage output and the vibration response FRFs of the
bimorph very accurately. The base excitation experiments are
run for 8 different resistive loads and it is shown that the
analytical model can successfully predict the variation in the
coupled electrical and mechanical response of the cantilevered
bimorph. The outputs of the harvester device (current, voltage
and power) are analyzed extensively for the short circuit and
open circuit frequency excitations and the accuracy of the
single-mode relations is observed in all cases. Since they
are based on the distributed parameter solution, the single-
mode electromechanical FRFs proposed in this paper here can
take the place of the elementary SDOF solutions for modal
excitations. Moreover, the single-mode expressions given here
are not limited to the fundamental mode and they can be used
for any vibration mode as they originate from the distributed
parameter solution. The multi-mode closed-form expressions
given here can be used if the same harvester is to be excited
at different vibration modes or at its off-resonance frequencies
due to multi-frequency or varying-frequency inputs.
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