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For the past five years, cantilevered beams with piezoceramic layer(s) have been fre-
quently used as piezoelectric energy harvesters for vibration-to-electric energy conver-
sion. Typically, the energy harvester beam is located on a vibrating host structure and the
dynamic strain induced in the piezoceramic layer(s) results in an alternating voltage
output across the electrodes. Vibration modes of a cantilevered piezoelectric energy har-
vester other than the fundamental mode have certain strain nodes where the dynamic
strain distribution changes sign in the direction of beam length. It is theoretically ex-
plained and experimentally demonstrated in this paper that covering the strain nodes of
vibration modes with continuous electrodes results in strong cancellations of the electri-
cal outputs. A detailed dimensionless analysis is given for predicting the locations of the
strain nodes of a cantilevered beam in the absence and presence of a tip mass. Since the
cancellation issue is not peculiar to clamped-free boundary conditions, dimensionless
data of modal strain nodes are tabulated for some other practical boundary condition
pairs and these data can be useful in modal actuation problems as well. How to avoid the
cancellation problem in energy harvesting by using segmented electrode pairs is de-
scribed for single-mode and multimode vibrations of a cantilevered piezoelectric energy
harvester. An electrode configuration-based side effect of using a large tip mass on the
electrical response at higher vibration modes is discussed theoretically and demonstrated
experimentally. �DOI: 10.1115/1.2981094�

Keywords: piezoelectricity, energy harvesting, strain nodes, electrode configuration
Introduction

The direct and converse piezoelectric effects of certain active
aterials have been employed in numerous applications of struc-

ural sensing and actuation for decades. Recently, the direct piezo-
lectric effect has been used for harvesting electrical energy from
mbient vibrations. The goal of the research in vibration-based
nergy harvesting is to power small electronic components espe-
ially at remote locations to minimize or completely remove the
equirement of battery replacement. Starting with the early work
f Williams and Yates �1�, numerous papers on vibration-to-
lectric energy conversion have appeared in literature �2�. Among
he different transductions for vibration-to-electricity conversion
such as electromagnetic, electrostatic, and piezoelectric imple-
entations�, piezoelectric transduction has received the most at-

ention in the past five years and comprehensive review articles
re available �2–4�. Researchers from different disciplines have
ocused on experimental applications �2–4� as well as on model-
ng and optimization of the mechanics �5–9� and electronics
10,11� of piezoelectric energy harvesters. Typically, a piezoelec-
ric energy harvester is a cantilevered beam with one or more
iezoceramic �PZT�2 layers and it is mounted on a vibrating host
tructure for voltage generation. The dynamic strain field induced

1Corresponding author.
2The abbreviation PZT is used here for a generic piezoelectric ceramic, rather

han a specific material.
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throughout the PZT layer�s� results in an alternating voltage out-
put across the electrodes covering the PZT layer�s�, which are
usually connected to a storage circuit.

Mathematically, the vibration-to-electric energy conversion
mechanism of a cantilevered piezoelectric energy harvester can be
investigated based on the piezoelectric constitutive laws �12� and
the fundamental mechanics of materials relations �13�. The elec-
tric charge collected by the electrodes is the integral of the normal
component of electric displacement over the electrode area and
the electric displacement field induced in the PZT during the vi-
bratory motion is a function of the strain distribution over its
length. If the strain distribution �and therefore the respective elec-
tric displacement component� changes sign under a continuous
�full� electrode pair, cancellations occur and the electric charge
collected by the electrodes diminishes dramatically. Vibration
modes of a cantilevered beam other than the fundamental mode
�i.e., the first mode� have certain strain nodes where the dynamic
strain distribution changes sign. Consequently, covering these
strain nodes with continuous electrodes results in cancellation of
the electrical outputs and a reduction in the energy harvested from
the respective vibration modes.

In this paper, the effect of strain nodes on the electrical outputs
of cantilevered harvesters is studied and how to prevent their un-
desired cancellation effects is addressed. First, the theory of can-
cellation is explained based on the electrical circuit equation of a
recent distributed parameter electromechanical model �9� for can-
tilevered piezoelectric energy harvesters. Then, a dimensionless
study is given for predicting the strain node positions of cantile-
vered energy harvesters. In most energy harvesting applications, a
tip mass �proof mass� is used in order to tune the fundamental
natural frequency of the harvester beam to a dominant excitation

frequency or just to reduce its natural frequencies and increase its
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ynamic flexibility especially in microscale applications �14�.
herefore, the effect of a tip mass on the positions of the strain
odes is also investigated in a dimensionless basis. The cancella-
ion issue caused by the presence of strain nodes is not peculiar to
lamped-free boundary conditions. Since piezoelectric beams with
ther geometric boundary conditions �such as clamped-clamped
11� and pinned-pinned �15�� have also been investigated in the
iterature of energy harvesting, the strain node positions of beams
ith pinned-pinned, clamped-clamped, and clamped-pinned
oundary conditions are tabulated for the first five vibration
odes.
After the theoretical derivations and tabulations, an experimen-

al study is provided to demonstrate the cancellation of voltage
utput in harvesting energy from the second vibration mode. The
elationship between the discussion given here and a recent study
16,17� on piezoelectric energy harvesting from the static deflec-
ion of a clamped circular plate is also explained. How to avoid
he cancellation problem in energy harvesting by using segmented
lectrode pairs is described for single-mode and multimode vibra-
ions of a cantilevered piezoelectric energy harvester.

Even though simple energy harvester models assume single-
armonic excitation at the fundamental mode, in most practical
ases, ambient vibration energy does not consist of a single har-
onic �see, for instance, the sample frequency spectra given by
oundy et al. �5� or the random acceleration history of an auto-
obile compressor measured by Sodano et al. �18��. Therefore, in

ractice, higher modes of the harvester can be excited due to the
andom, varying frequency, or impulse-type excitations generated
y ambient vibration sources. The attachment of a tip mass makes
he first mode of the cantilever more flexible by increasing its tip
eflection; however, it makes the tip relatively stationary at higher
ibration modes. If the tip mass is large �as in typical microscale
antilevers� so that its rotary inertia restricts the tip rotation, the
ree boundary acts as a clamped boundary at higher vibration
odes. It is shown that using full electrodes for clamped-clamped

oundary conditions is detrimental to the voltage output at higher
ibration modes. An experimental demonstration is presented for
he side effect of using a large tip mass on the electrical response
f cantilevered piezoelectric energy harvesters at higher vibration
odes.

Theoretical Background

2.1 Mathematical Formulation. A unimorph cantilevered pi-
zoelectric energy harvester that is excited by the motion of its
ase �in the form of translation in the transverse direction g�t�
ith superimposed small rotation h�t�� is shown in Fig. 1. Elec-

romechanical modeling of cantilevered piezoelectric energy har-
esters has been studied by several authors in the past five years
5–9�. Single-degree-of-freedom �SDOF� models �5,7� as well as
pproximate distributed parameter models �6,7� are available in
iterature. The origin of our discussion here is the experimentally
alidated �19� distributed parameter model �9� �based on the
uler–Bernoulli beam assumptions�, not only because of the is-
ues associated with SDOF modeling �8� but also because the
ccurate mode shape information and the information of higher
ibration modes �which form the basis of the following discus-

ig. 1 Piezoelectric energy harvester under translational and
mall rotational base excitations
ion� are completely lost in such oversimplified models. For a
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clear discussion of the effect of strain nodes and electrode loca-
tions on the electrical outputs, we focus only on the circuit equa-
tion rather than on the resulting complete electromechanical equa-
tions. For the closed-form voltage response and coupled structural
response expressions of the unimorph harvester shown in Fig. 1,
the reader is referred to Ref. �9�. The implementation of the dis-
tributed parameter unimorph energy harvester model proposed by
Erturk and Inman �9� to bimorph configurations as well as experi-
mental validations can be found in Ref. �19�.

As can be seen from Fig. 1, the conductive electrodes covering
the top and the bottom surfaces of the PZT layer are directly
connected to a resistive load �Rl� for a simple analysis. Although
it is not shown as an external element, the internal capacitance of
the PZT is also considered, and therefore, the circuit considered
here is an RC circuit. However, it is not difficult to include addi-
tional linear elements �inductors, resistors, and capacitors� to the
circuit in the analytical model �9�. For instance, the piezoelectric
leakage resistance can be represented as a resistor parallel to the
external resistive load in Fig. 1 �7�. In many cases, it is required to
use a full-wave rectifier for alternating current-to-direct current
�ac-dc� conversion �10,11�, which results in nonlinearity in the
circuit dynamics. Nevertheless, the following discussion is based
on the forcing term in the electrical equation coming from the
mechanical domain �as a function of vibration mode shapes�.
Therefore, the results of the following analysis are applicable to
cantilevered harvesters, which are connected to more sophisti-
cated circuits with the reasonable assumption that the mechanical
vibration mode shapes are not affected by the circuit dynamics.

Consider the following piezoelectric constitutive relation re-
duced from the tensorial representation �12� for the configuration
shown in Fig. 1:

D3 = e31S1 + �33
S E3 �1�

where D3 is the electric displacement component, e31 is the piezo-
electric constant, S1 is the strain component, �33

S is the permittivity
component at constant strain, and E3 is the electric field compo-
nent. The piezoelectric constant e31 is related to more commonly
used piezoelectric constant d31 through e31=c11

E d31 where c11
E is

the elastic stiffness constant �i.e., Young’s modulus� of the PZT
layer at constant electric field. Furthermore, 1 and 3 directions in
the subscripts are coincident with directions x and y in Fig. 1 and
the PZT layer is poled in the thickness direction.

The average bending strain in the PZT layer can be expressed at
position x and time t as

S1�x,t� = − hpc

�2wrel�x,t�
�x2 �2�

where hpc is the distance from the neutral axis of the cross section
to the center of the PZT layer and wrel�x , t� is the transverse dis-
placement of the beam relative to its base.

Since the individual electrodes are assumed to be perfectly con-
ductive, a single electric potential difference can be defined across
them. After expressing the electric field component E3�t� in terms
of the voltage v�t� across the electrodes of the PZT, i.e., E3�t�=
−v�t� /hp �where hp is the thickness of the PZT layer�, the circuit
equation can be obtained from �12�

d

dt��
A

D> · n>dA� = − b�
0

L �e31hpc

�2wrel�x,t�
�x2�t

+
�33

S

hp

dv�t�
dt

�dx =
v�t�
Rl

�3�

where D> is the vector of electric displacements, n> is the unit
outward normal, and b is the width of the electrode pair. Note that,
in Eq. �3�, it is assumed that each of the electrodes covers the
entire area of the respective surface �top or bottom� of the PZT.
Note that, if the electrical circuit includes more linear elements
than a single resistive load, the term 1 /Rl on the right-hand side of

Eq. �3� can be replaced by the admittance of the circuit seen
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cross the electrodes.
One can extract the circuit equation from Eq. �3� as

dv�t�
dt

+
v�t�
�c

= −
e31hpchp

�33
S L

�
0

L
�3wrel�x,t�

�x2�t
dx �4�

here �c is the time constant of the circuit as it is the multiplica-
ion of the load resistance Rl and the capacitance of the PZT, Cp

�33
S bL /hp, i.e., �c=RlCp. Equation �4� is a first order ordinary

ifferential equation for voltage response across the resistive load
nd the integrand in the forcing term is a function of the velocity
esponse of the beam. The elastic displacement response of the
eam can be represented by an absolutely and uniformly conver-
ent series of the eigenfunctions as

wrel�x,t� = �
r=1

�

�r�x��r�t� �5�

here �r�x� and �r�t� are the mass normalized eigenfunction and
he modal coordinate of the clamped-free beam for the rth vibra-
ion mode, respectively. If the harvester beam is assumed to be
roportionally damped �8,9�, �r�x� is the rth eigenfunction of the
ndamped free vibration problem given �in the absence of a tip
ass� by3

�r�x� =	 1

mL

cosh

�r

L
x − cos

�r

L
x − �r�sinh

�r

L
x − sin

�r

L
x��

�6�

here m is the mass per unit length of the beam and �rs are the
imensionless frequency numbers �or the eigenvalues� obtained
rom the following characteristic equation:

1 + cos � cosh � = 0 �7�

nd �r is expressed as

�r =
sinh �r − sin �r

cosh �r + cos �r
�8�

Substituting Eq. �5� into the right-hand side of Eq. �4� reduces
he circuit equation to

dv�t�
dt

+
v�t�
�c

= �
r=1

�

�r
d�r�t�

dt
�9�

here the modal coupling term �r is

�r = −
e31hpchp

�33
S L

�
0

L
d2�r�x�

dx2 dx = −
e31hpchp

�33
S L

�d�r�x�
dx

�
L

�10�

As can be seen from Eq. �9�, the forcing function on the right-
and side is a modal summation where the contribution from the
th vibration mode is the product of �r and d�r�t� /dt. The modal
elocity response, d�r�t� /dt, is also an output of the system to the
ase motion input and it is indeed affected by the voltage response
ue to backward electromechanical coupling �9,19�. A more criti-
al term is the modal coupling term �r, which is not only a func-
ion of geometric, material, piezoelectric, and dielectric param-
ters but also the bending slope eigenfunction evaluated at the
oundaries of the electrodes. Since each of the electrodes is as-
umed to be covering the entire respective surface of the PZT �top
r bottom� in the above derivation, and since the slope at the
lamped end of the beam is already zero, the contribution to the
orcing function from the rth vibration mode simply depends on
he slope at the free end, as in Eq. �10�. If the electrodes cover
nly a certain region x1	x	x2 over the PZT, the boundaries of

3
The effect of a tip mass is discussed in Sec. 2.3.
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the integral in Eq. �10� change and the resulting expression for �r
becomes4

�r = −
e31hpchp

�33
S L

�d�r�x�
dx

�
x1

x2

�11�

According to Eq. �11�, the modal electromechanical coupling
term �which is a measure of the modal forcing function in the
circuit equation� depends on the region covered by the electrodes
on the PZT surface. Therefore, contribution to the forcing function
in Eq. �9� from the rth vibration mode will be large if the differ-
ence of the slopes at the boundaries of the electrodes for that
mode is large and vice versa. Depending on the locations of the
electrodes, modal electromechanical coupling and therefore con-
tribution from certain vibration modes can be large or small. If it
is aimed to harvest energy from the rth vibration mode by exciting
the system harmonically at the rth natural frequency �
r�, the
main contribution to the forcing function in the circuit equation
will be from the rth term on the right-hand side of Eq. �9�, yield-
ing

dv�t�
dt

+
v�t�
�c


 �r
d�r�t�

dt
= �rAre

j
rt �12�

where Are
j
rt is the modal velocity response �Ar is a complex

modal constant and j is the unit imaginary number�. The steady
state voltage response to modal excitation is then

v�t� 

�rAr�c

1 + j
r�c
ej
rt �13�

where �r is of practical interest since v�t�→0 as �r→0 for exci-
tation of the harvester beam at the rth natural frequency.

It turns out from the foregoing derivation that the bending slope
difference at the electrode boundaries constitutes a strong param-
eter in the piezoelectric energy harvesting problem. If the slopes at
the boundaries of the electrodes are very close to each other for a
particular mode shape, the contribution to the electrical output
from that mode will be very low. Furthermore, the above deriva-
tion also shows that certain boundary conditions are not useful for
harvesting energy with full electrodes �e.g., clamped-clamped�.
The physics behind this discussion is related to the strain distri-
bution throughout the length of the beam. If the strain distribution
over the length of the beam at a certain level from the neutral axis
changes sign for a certain vibration mode, collecting the charge
developed by using continuous electrodes results in cancellation
of the electrical outputs in harvesting energy from that vibration
mode. The mathematics of cancellation is more obvious in Eq.
�10�, where the integrand is the curvature eigenfunction �which is
a measure of bending strain�. Hence, if the curvature changes sign
for a vibration mode, the net electric charge output is reduced due
to cancellation of the positive and negative areas under the curva-
ture eigenfunction in integration of the electric displacement over
the electrode area. The phenomenon was discussed by Cady �20�
more than 60 years ago in his study on vibrations of crystals.
Later, as a converse piezoelectric effect application, Crawley and
de Luis �21� pointed out the importance of piezoelectric actuator
locations for the modal actuation force of a cantilevered beam.
For improving the actuation force, they �21� suggested placing the
actuators away from the positions where the phase of dynamic
strain changes and they underlined the necessity of using seg-
mented actuators for the control of flexible structures.

The positions on the beam where the bending strain distribution
�at a constant level from the neutral axis� changes sign for a vi-
bration mode are called the strain nodes. Since the bending strain
at a point is proportional to the curvature in Euler–Bernoulli beam
theory, strain nodes of a vibration mode are simply the inflection

4It is assumed in the entire analysis that the width of the electrodes is identical to

that of the PZT.
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oints of the respective eigenfunction. For a cantilevered beam,
ll vibration modes other than the first mode have certain strain
odes. Hence the only vibration mode of a cantilevered piezoelec-
ric energy harvester where it is safe to use continuous electrode
airs is the first mode. A simple way of avoiding cancellation of
he electrical outputs at higher vibration modes implies collecting
he electric charge developed at the opposite sides of a strain node
ith separate electrode pairs. The leads of the segmented elec-

rodes can be combined in the circuit in an appropriate manner as
escribed later in this work.

2.2 Strain Nodes of a Cantilevered Beam Without a Tip
ass. The curvature eigenfunction is a direct measure of bending

train distribution and it is simply the second derivative of the
isplacement eigenfunction given by Eq. �6�. Since the system is
ositive definite ��r�0�, the positions of the strain nodes are the
oots of the following equation in the interval 0� x̄�1:

cosh �rx̄ + cos �rx̄ − �r�sinh �rx̄ + sin �rx̄� = 0 �14�

here x̄=x /L is the dimensionless position along the beam axis.
sing Eq. �14� along with Eqs. �7� and �8� gives the dimension-

ess positions of the strain nodes over the length of the beam for
he first five modes as shown in Table 1. For convenience, the
requency numbers of the first five vibration modes are also pro-
ided in Table 1 and they can be used in the following to predict
he undamped natural frequencies of the harvester beam in short
ircuit conditions �i.e., Rl→0�:


r = �r
2	 YI

mL4 �15�

here YI is the bending stiffness of the beam �9�. As can be seen
rom Table 1, the rth vibration mode has r−1 strain nodes and the
nly vibration mode of a cantilevered beam without strain nodes
s the fundamental mode.

The normalized displacement mode shapes and the strain mode
hapes of the first three vibration modes of a cantilevered beam
ithout a tip mass are displayed in Fig. 2 along with the positions
f the strain nodes for modes 2 and 3. These positions give an idea
n how to locate the segmented electrodes for harvesting energy
rom these modes without cancellation. For instance, to avoid can-
ellation in harvesting energy from the second vibration mode,
wo electrode pairs should be used to cover the regions 0	 x̄

0.2165 and 0.2165� x̄	1 separately. The voltage outputs of
hese electrode pairs will be out of phase with each other by
80 deg and they can be combined accordingly in the electrical
ircuit.

The discussion so far has focused on a cantilevered beam with-
ut a tip mass. In most applications, it is required to use a tip mass
o tune the fundamental natural frequency of the harvester beam to

dominant excitation frequency or just to reduce its natural fre-
uencies and increase its dynamic flexibility especially in micro-
cale applications. The effect of using a tip mass on the strain
odes is investigated in the following section.

2.3 Effect of Using a Tip Mass on the Strain Nodes. If a tip
ass Mt is attached rigidly at x=L to the cantilevered beam

able 1 Frequency numbers and dimensionless positions of
he strain nodes of a cantilevered Euler–Bernoulli beam with-
ut a tip mass for the first five vibration modes

Mode Frequency no. ��r� Strain node positions on x-axis �x̄=x /L�

1 1.87510407 — — — —
2 4.69409113 0.2165 — — —
3 7.85475744 0.1323 0.4965 — —
4 10.9955407 0.0944 0.3559 0.6417 —
5 14.1371684 0.0735 0.2768 0.5001 0.7212
hown in Fig. 1, the eigenfunctions and eigenvalues described by

11010-4 / Vol. 131, FEBRUARY 2009
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Eqs. �6� and �7� are no longer valid. If the respective differential
eigenvalue problem is solved for a cantilevered beam with a tip
mass, the eigenfunctions can be obtained as

�r�x� = Cr
cos
�r

L
x − cosh

�r

L
x + 
r�sin

�r

L
x − sinh

�r

L
x��

�16�

where Cr is a modal amplitude constant, which should be obtained
from the orthogonality conditions for the case with a tip mass �19�
and 
r is obtained from


r =

sin �r − sinh �r + �r
Mt

mL
�cos �r − cosh �r�

cos �r + cosh �r − �r
Mt

mL
�sin �r − sinh �r�

�17�

The characteristic equation of the eigenvalue problem is

1 + cos � cosh � + �
Mt

mL
�cos � sinh � − sin � cosh �� = 0

�18�

where Mt /mL is a dimensionless parameter as it is the tip mass-
to-beam mass ratio. In the above equations, the rotary inertia of
the tip mass is neglected for convenience, i.e., the tip mass is
considered as a point mass.

It should be noted that the curvature eigenfunction is the second
derivative of Eq. �16� with respect to x. It is then possible to study
the effect of a tip mass on the strain nodes in a dimensionless
basis. As an example, Fig. 3�a� shows the variation of the dis-
placement mode shape whereas Fig. 3�b� displays the variation of
the strain distribution of the second vibration mode with increas-
ing Mt /mL. The shift of the strain node position due to increasing
Mt /mL is shown in Fig. 3�b�. As the Mt /mL ratio goes from 0 to
10, the strain node of the second mode moves from x̄=0.2165 to
x=0.2632.

Figure 4�a� shows the strain node positions of the second and
the third modes versus the Mt /mL ratio. As the Mt /mL ratio in-
creases from 0 to 10, the only strain node of the second mode

¯ ¯

Fig. 2 „a… Normalized displacement and „b… normalized strain
mode shapes of a cantilevered beam without a tip mass for the
first three vibration modes
moves from x=0.2165 to x=0.2632 whereas the two strain nodes
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f the third vibration mode move from x̄=0.1323 and x̄=0.4965 to
=0.1468 and x̄=0.5530, respectively. It is also useful to investi-
ate the variation of the frequency numbers with the Mt /mL ratio,
hich is given in Fig. 4�b� for the first five vibration modes. Note

hat these frequency numbers give the natural frequencies when
hey are used in Eq. �15�. As can be seen from Figs. 4�a� and 4�b�,
train nodes move toward the free end of the beam and the fre-
uency numbers decrease with increasing Mt /mL ratio. The posi-
ions of the strain nodes are more sensitive to the variations in the

t /mL ratio in the relatively low Mt /mL region �i.e., for 0
Mt /mL	1�. As far as the frequency numbers are concerned,

ther than the frequency number of the first vibration mode, all

ig. 3 Variation of the „a… normalized displacement and „b…
ormalized strain mode shapes of the second vibration mode
ith tip mass-to-beam mass ratio

ig. 4 „a… Variation of the strain node positions of the second
nd the third vibration modes and „b… variation of the first five

requency numbers with tip mass-to-beam mass ratio

ournal of Vibration and Acoustics
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frequency numbers converge to a nonzero value as Mt /mL→�.
As Mt /mL→�, the frequency number of the rth mode of a
clamped-free beam with a tip mass converges to that of the �r
−1�th mode of a clamped-pinned beam without a tip mass5 �ex-
cept for the first frequency number �1, which goes to zero with a
very slow rate�. That the boundary conditions of a cantilevered
beam with a tip mass shift from clamped-free to clamped-pinned
as Mt /mL→� makes sense, as the rotary inertia of the tip mass is
neglected. Therefore, the direct consideration of the strain nodes
of a clamped-pinned beam should give a good estimate of the
strain nodes for very high values of Mt /mL in modes other than
the first mode. However, if the rotary inertia of the tip mass is not
negligible and if it increases as Mt /mL→�, the boundary condi-
tions shift from clamped-free to clamped-clamped and it becomes
more reasonable to estimate the strain node positions from the
eigenfunctions of a clamped-clamped beam for high values of
Mt /mL. Hence, it is also insightful to examine the characteristic
equation of a cantilevered Euler–Bernoulli beam where the rotary
inertia �It� of the tip mass is also considered

1 + cos � cosh � + �
Mt

mL
�cos � sinh � − sin � cosh ��

−
�3It

mL3 �cosh � sin � + sinh � cos ��

+
�4MtIt

m2L4 �1 − cos � cosh �� = 0 �19�

Here, the rotary inertia of the tip mass can be normalized with
respect to the rotary inertia of the free rigid beam about a certain
point and a similar dimensionless analysis can be performed.
Equation �19� shows that the rotary inertia of the tip mass intro-
duces two additional terms to Eq. �18�. The form of the eigenfunc-
tion expression given by Eq. �16� is still the same; however, the
eigenvalues to be used in Eq. �16� must be extracted from Eq.
�19�. As mentioned before, for a large tip mass and tip rotary
inertia, the free end of the beam also acts as a clamped end. This
fact is also evident from the dominating term in Eq. �19� for
�Mt /mL��It /mL3�→�, which is the characteristic equation of a
uniform Euler–Bernoulli beam with clamped-clamped boundary
conditions �1−cos � cosh �=0�. According to Eq. �11�, clamped-
clamped boundary conditions may cause strong cancellations in
the electrical outputs if full electrodes are used for covering the
PZT layer�s�. Therefore, employing a large tip mass for reducing
the natural frequencies of a cantilevered piezoelectric energy har-
vester has the side effect of reducing the electrical response of the
vibration modes other than the fundamental mode. This side effect
of using a tip mass on the electrical response of higher vibration
modes is demonstrated experimentally in Sec. 6.

2.4 Strain Nodes for Other Boundary Conditions. Since
the literature of energy harvesting �11,15� and the literature deal-
ing with piezoelectric beams �22� have considered boundary con-
ditions other than clamped-free, the numerical data of the strain
node positions for some other practical boundary conditions are
tabulated in this section. Table 2 displays the positions of the
strain nodes for the first five vibration modes of uniform Euler–
Bernoulli beams with pinned-pinned, clamped-clamped, and
clamped-pinned boundary conditions. The frequency numbers are
also provided and they can be used in Eq. �15� to predict the
undamped natural frequencies at short circuit conditions in each
case.

Since the pinned-pinned �Table 2a� and clamped-clamped
�Table 2b� boundary conditions are symmetric boundary condi-
tions �yielding symmetric and antisymmetric mode shapes for odd

5The dominating term in Eq. �18� for Mt /mL→� is the characteristic equation of
a clamped-pinned beam: tanh �−tan �=0 �because the system is positive definite,

��0 in the dominating term�.
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nd even modes, respectively�, the positions of the strain nodes
inflection points of the mode shapes� are symmetric with respect
o the center �x̄=0.5� of the beam. However, for the clamped-
inned boundary conditions �Table 2c�, no such symmetry exists
where x̄=0 is the clamped boundary�. It should be noted that it is
afe to cover the entire surface with continuous electrodes for
arvesting energy at the first vibration mode of a pinned-pinned
eam since the rule for the pinned-pinned case is the same as the
lamped-free case, i.e., the rth vibration mode has r−1 strain
odes �Table 2a�. However, a beam with clamped-clamped bound-
ry conditions has two strain nodes in the first vibration mode.
ccording to Table 2b, the rth vibration mode of a clamped-

lamped beam has r+1 strain nodes. Hence, three electrode pairs
with discontinuities at x̄=0.2242 and at x̄=0.7758� can be used to
xtract the electrical outputs of a clamped-clamped harvester
ithout cancellation for vibrations with the first mode shape.
able 2c shows that the rth vibration mode has r strain nodes for
clamped-pinned beam. Thus, two electrode pairs �with a discon-

inuity at x̄=0.2642� can handle the cancellation issue for the fun-
amental mode excitation of a harvester beam with clamped-
inned boundary conditions.

Among the boundary conditions investigated here, the clamped-
lamped boundary condition pair constitutes a unique case. Theo-
etically, for excitations at all vibration modes of a clamped-
lamped beam, the modal forcing term �r in the electrical
quation and therefore the voltage response are zero, if continuous
lectrodes cover the entire beam surface �see Eqs. �11� and �13��.

similar issue �of total cancellation� is expected for the even
ibration modes �r=2,4 ,6 , . . . ,2n where n is an integer� of the
inned-pinned case, if full electrodes cover the entire beam
ength. For the even modes of a beam with pinned-pinned bound-
ry conditions, the slopes at the pinned boundaries are not zero,
ut they are equal to each other, theoretically, yielding a total
ancellation at these modes due to Eq. �11�.

The data provided in Tables 1 and 2 are also useful for modal
ctuation of beams with these boundary conditions because a cou-
ling term that is similar to �r �given by Eq. �11�� appears in the
odal equation for the beam response �9�. According to Table 1,

he fundamental mode of a clamped-free beam can be excited by
ocating the piezoelectric actuator�s� anywhere along the beam.
ne should prefer a location close to the clamped end �Fig. 2�b��

Table 2 Frequency numbers and dimension
Bernoulli beams with „a… pinned-pinned, „b… cl
ary conditions

Mode Freq. No. ��r� St

�a� Pinned-pinned
1 � — —
2 2� 1 /2 —
3 3� 1 /3 2 /3
4 4� 1 /4 1 /2
5 5� 1 /5 2 /5

�b� Clamped-clampe
1 4.73004074 0.2242 0.775
2 7.85320462 0.1321 0.500
3 10.9956079 0.0944 0.355
4 14.1371655 0.0735 0.276
5 17.2787597 0.0601 0.226

�c� Clamped-pinne
1 3.92660231 0.2642 —
2 7.06858275 0.1469 0.553
3 10.2101761 0.1017 0.383
4 13.3517688 0.0778 0.293
5 16.4933614 0.0630 0.237
n order to minimize the required actuation input as previously
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discussed by Crawley and de Luis �21�. However, excitation of the
fundamental mode of a clamped-clamped beam is more critical as
the piezoelectric actuator�s� should not cover the positions x̄
=0.2242 and x̄=0.7758 �Table 2b�. Covering one of these strain
nodes with an actuator may require dramatically high voltage in-
puts for exciting the respective mode.

3 Experimental Demonstration
The cantilevered steel beam �with dimensions of 600�19.1

�3.05 mm3� shown in Fig. 5 is used in order to demonstrate the
effect of strain nodes on the voltage output. An electromagnetic
shaker with a stinger is used to excite the cantilevered beam at its
first two natural frequencies. Since the main purpose is to demon-
strate the importance of the strain nodes on energy harvesting by
using cantilevered beams with PZT layers/patches, the dimensions
of the beam are selected arbitrarily and the importance is given
only to justify the Euler–Bernoulli beam assumptions. Hence, the
results of the following study are valid for all microscale and
macroscale cantilevered piezoelectric energy harvesters, which
can be modeled as thin beams.

Here, the first two vibration modes are considered for a simple
demonstration of the voltage cancellation at higher vibration
modes. Note that the cantilevered harvester model �9� that forms
the theoretical background of this paper was experimentally vali-
dated in a recent paper �19�. Hence, the experimental demonstra-
tion of cancellation given here does not aim to verify the electrical
equations given in Sec. 2.1 quantitatively. The goal of this section
is to provide a qualitative verification of voltage cancellation for

s positions of the strain nodes for Euler–
ped-clamped, and „c… clamped-pinned bound-

node positions on x-axis �x̄=x /L�

ndary conditions
— — — —
— — — —
— — — —

3 /4 — — —
3 /5 4 /5 — —

oundary conditions
— — — —

0.8679 — — —
0.6442 0.9056 — —
0.5000 0.7232 0.9265 —
0.4091 0.5909 0.7735 0.9399

undary conditions
— — — —
— — — —

0.6924 — — —
0.5295 0.7647 — —
0.4286 0.6190 0.8095 —

Fig. 5 Experimental setup for demonstration of the effect of
les
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xcitations at higher modes, which is expected from the theory.
or convenience, small PZT patches are used instead of covering

he entire surface of the beam. Since the first vibration mode has
o strain nodes, we focus on the strain node of the second mode,
hich is at x=0.2165L as given in Table 1. Therefore, theoreti-

ally, the distance of this strain node is approximately 130 mm
rom the clamped end of the beam. Two PZT patches of dimen-
ions 72�19.1 mm2 are obtained from a monolithic PZT-5A
heet manufactured by Piezo Systems Inc. �as the width of the
eam is 19.1 mm and the lengths of the PZT sheets are restricted
o 72 mm by the manufacturer�. The PZT sheets come from the

anufacturer with continuous nickel electrodes. Therefore, in or-
er to realize the idea of segmented electrodes, one should either
tch the electrodes from the surface of the PZT at the desired
ocation or cut the PZTs to remove the electrical conductivity of
he electrodes at the strain node of the beam. The second option is
referred for convenience and one of the two patches is cut into
wo identical parts to obtain two patches of dimensions 36

19.1 mm2. First the small patches �PZT1 and PZT2� are at-
ached to the opposite sides of the strain node on the upper surface
f the beam �Fig. 5�. Then, the longer patch �PZT3� is attached to
he lower face of the beam such that the strain node coincides with
he center of this patch as shown in Fig. 5. Hence, approximately
he same region �94	x	166 mm� is covered on the upper and
he lower surfaces of the beam, and theoretically, the strain node
f the second mode is at the center of this region �at x=130 mm�.
herefore, the PZT and the electrodes are continuous at the lower
urface whereas they are discontinuous on the upper surface at the
heoretically predicted location of the strain node. In the following
iscussion, the open circuit voltage across the electrodes is mea-
ured in all cases without connecting the electrodes to a harvesting
ircuit �which corresponds to Rl→� in the theoretical discussion�.
or excitations at both vibration modes, the voltage input to the
lectromagnetic shaker is kept the same.

For excitation at the first natural frequency �which is about
.1 Hz�, the major contribution in Eq. �5� is from the first mode.
herefore, the dynamic strain distribution in PZT3 is expected to
e in phase throughout its length since the first mode has no strain
odes. Hence the amplitude of the voltage response across the
lectrode pair of PZT3 must be identical to the combined ampli-
ude of the voltage responses across the individual electrode pairs
f PZT1 and PZT2. The voltage histories across the electrode
airs of PZT1 and PZT2 are shown in Figs. 6�a� and 6�b�, respec-
ively. It is clear from Figs. 6�a� and 6�b� that the voltage re-
ponses of PZT1 and PZT2 are in phase and their amplitudes are
lso very close to each other.

Figure 6�c� shows the voltage response of PZT3 along with the
ummation of the voltage responses of PZT1 and PZT2 for exci-
ation at the first natural frequency. As expected, the voltage am-
litude of PZT3 is approximately identical to the summation of
he voltage amplitudes across the electrode pairs of PZT1 and
ZT2 as they are in phase. Also, the voltage response of PZT3 is
80 deg out of phase with the summation of PZT1 and PZT2
ince the lower face of the beam is in tension when the upper face
s in compression, and vice versa. The slight difference in the
mplitudes in Fig. 6�c� is expected to be due to experimental
mperfections. The PZTs were cut by hand and there is a finite
pacing between PZT1 and PZT2 as shown in Fig. 5. Figure 6�c�
s a verification of the fact that PZT patches with continuous elec-
rodes can be used safely for harvesting energy from the first
ibration mode since the strain distribution at a thickness level is
lways in phase over the length of a cantilevered beam.

If the beam is excited at its second natural frequency �which is
pproximately 40.8 Hz�, the dominant vibration mode is the sec-
nd mode. The voltage outputs of PZT1 and PZT2 are displayed
n Figs. 7�a� and 7�b� for excitation at the second natural fre-
uency. Unlike the voltage outputs for excitation at the first natu-
al frequency, as expected, the voltage outputs of these patches are

ow 180 deg out of phase with each other. Note that the voltage
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amplitudes of PZT1 and PZT2 are not identical, which means that
the strain distributions at different sides of x=130 mm are not
identical for excitation at the second natural frequency.

For excitation at the second natural frequency, voltage response
across the electrodes of PZT3 is shown in Fig. 7�c� along with the
appropriate combination of PZT1 and PZT2 outputs for maximum
voltage output. Since the charge developed in PZT3 is collected
by continuous electrodes, the phase difference in the strain distri-
bution at the opposite sides of the second mode results in cancel-
lation. Therefore the voltage output of PZT3 is less than the indi-
vidual outputs of PZT1 and PZT2 for the same mechanical input.
Clearly, it is not preferable to cover the strain node of a harvester

Fig. 6 Voltage histories for excitation at the first natural fre-
quency of the beam: „a… PZT1, „b… PZT2, and „c… PZT3 along
with the maximum response obtained by combining PZT1 and
PZT2

Fig. 7 Voltage histories for excitation at the second natural
frequency of the beam: „a… PZT1, „b… PZT2, and „c… PZT3 along
with the maximum response obtained by combining PZT1 and

PZT2
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eam with continuous electrodes. In order to obtain the maximum
oltage output from this sample region �94	x	166 mm� for ex-
itation at the second natural frequency, one should collect the
lectric charge developed in regions 94	x	130 mm and 130
x	166 mm by separate electrode pairs to obtain the individual

oltage outputs of Figs. 7�a� and 7�b�. These voltage outputs can
hen be combined by considering the phase difference �math-
matically, by subtracting the voltage outputs: PZT1-PZT2� to
btain the maximum voltage output �Fig. 7�c��. The physical com-
ination of these voltage outputs �i.e., realization of the subtrac-
ion PZT1-PZT2� is done by combining the correct leads coming
rom the respective segmented electrode pairs. The voltage ampli-
ude of the preferable combination of PZT1 and PZT2 is more
han four times the amplitude of the voltage response of PZT3.

In this simple example, the continuous electrode pair covering
he strain node yielded some voltage output because there is no
otal cancellation at the opposite sides of x=130 mm for PZT3.
his fact is in agreement with Fig. 8 since PZT1 and PZT2 out-
uts do not have the same amplitude. It is worthwhile to add that
he position of the strain node �x=130 mm� is predicted theoreti-
ally and the patches were located on the beam according to this
osition. Scanning the second mode shape of the beam experi-
entally and locating the patches according to the strain node of

he experimental mode shape would give more accurate results.
lso, the PZTs were cut by hand and the region covered by
ZT1+PZT2 is not identical to that covered by PZT3 due to the
iscontinuity between PZT1 and PZT2. Regardless of these ex-
erimental imperfections, the qualitative results discussed above
re in good agreement with the theory. In conclusion, depending
n how they are located on the energy harvester beam and the
oundary conditions of the beam, using continuous electrodes
ay result in dramatically lower electrical outputs in piezoelectric

ig. 8 Continuous and segmented electrode configurations
ith full-wave rectifiers: „a… suitable for mode 1 excitation, „b…
uitable for mode 2 excitation, and „c… suitable for both mode 1
nd mode 2 excitations
nergy harvesting.
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4 Relationship With the Energy Harvesting Literature
Recently, Kim et al. �16,17� studied harvesting energy from a

clamped circular plate due to a pressure drop in an air chamber.
Even though their system was not a beam and although they con-
sidered the deflection of the plate due to a uniform static pressure
rather than its vibrations, Kim et al. �16,17� also observed the
cancellation of the electrical outputs when continuous electrodes
are used. Based on their theoretical analysis, which uses the en-
ergy method, Kim et al. �16� found that no net charge output is
obtained if their unimorph circular plate is fully covered by con-
tinuous electrodes. They obtained theoretically that, if the elec-
trodes were “regrouped” after 0.707r �where r is the radius of the
plate�, the optimum electrical output could be extracted from the
deflection of the PZT due to constant static pressure. Although
Kim et al. �16� also mentioned that the problem can be handled by
collecting the charge developed in different regions separately and
reversing the leads in the electrical circuit, they used the idea of
“patterned poling” by changing the direction of polarization of the
outer PZT region �that is the region outside a specific radius� in
their experimental work �17�. Changing the poling direction im-
plies etching the electrodes at a specific region �at 0.5r and 0.75r
in two separate cases of their work� and then applying a very high
electric field in the desired portion of the PZT. After the patterned
poling process is completed, Kim et al. �17� used a conductive pen
to reconstruct the electrodes at the etched regions. Finally, the
electric charge is collected by reconstructed full electrodes and
improved results are obtained. They observed experimentally that
patterned poling after 0.75r gave the best results when compared
to the cases of patterned poling after 0.5r and the original case
with full electrodes and unmodified polarization �in good agree-
ment with their theoretical work �16�, which predicted the opti-
mum radius as 0.707r�. It should also be added that the unmodi-
fied case with full electrodes still gave some nonzero electric
charge output in the order of magnitude of the other cases, most
likely because of some physical imperfections, such as realization
of the clamped boundaries �17�.

It is worthwhile to relate the approach used by Kim et al. �17�
to our discussion on cantilevered beams. The optimum location
for etching the electrodes is where the electric displacement
changes sign and it corresponds to a strain node in our study on
cantilevered energy harvesters. Once patterned poling process is
completed, continuous electrodes can be used for collecting the
charge output. Mathematically, as far as our relevant equations for
beams are concerned, the piezoelectric constant �e31� changes sign
in the modified region after the patterned polarization process.
The issue of cancellation in the integral given by Eq. �10� was due
to the opposite sign of the curvature at the opposite sides of the
strain nodes when e31 had the same sign throughout the length of
the beam. The new polarization at one side of the strain node
makes the sign of the product of the piezoelectric constant and the
curvature the same at the opposite sides of the strain node. Hence
no cancellation takes place during the integration of the electric
displacement over the continuous electrode area. Briefly, in order
to avoid the cancellation, either the polarization at one side of the
strain node must be reversed �by patterned poling� so that continu-
ous electrodes can be used or the electrodes must be discontinuous
at the strain node if the polarization is to be kept the same over the
length of the beam �as demonstrated in Sec. 3�.

Although the patterned polarization approach solved the static
deflection problem of Kim et al. �17� permanently, it may not be a
flexible approach as far as the dynamic �vibration� problem is
concerned, since the deflection pattern changes with vibration
modes. For a simple explanation, consider the second vibration
mode of a cantilevered harvester again. If the polarization of the
harvester is reversed at one side of the strain node �which is lo-
cated at x̄=0.2165�, one can use continuous electrodes �covering
0	 x̄	1� to collect the charge developed in the PZT and this

avoids the cancellation in the integral of Eq. �10� for vibrations
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ith the second mode shape. After patterned poling, if the beam
ith continuous electrodes is used for harvesting energy at the
rst vibration mode, one ends up with a strong cancellation al-

hough there is no strain node in the first vibration mode. Even
hough the curvature has the same sign throughout the beam
ength for the first mode shape �Fig. 2�b��, the change in the sign
f e31 at x̄=0.2165 makes it necessary to consider the integral in
q. �10� in two parts where cancellation occurs between the two
reas �0	 x̄�0.2165 and 0.2165� x̄	1� under the electric dis-
lacement curve. Therefore, in the dynamic problem, the pat-
erned poling process can be favorable for a single vibration mode
nly. Otherwise, one has to repeat the patterned poling process
gain in order to use the same harvester beam �which was pat-
erned poled for a certain mode shape� for excitations with another

ode shape.
Based on the above discussion, it is reasonable to claim that

witching the leads of the segmented electrodes �as described in
ec. 3� is more flexible and reversible compared to the patterned
oling process in the vibration-based energy harvesting problem.
he patterned poling process can be useful for static problems as
permanent solution since �for a given loading� a single deflec-

ion pattern is involved in typical static problems, unlike the vi-
ration problems �where the deflection pattern depends on the
ibration mode�. Using segmented electrodes is easier to imple-
ent as the cancellation problem is mainly solved in the electrical

ircuit by combining the leads of the electrodes accordingly.
oreover, considering the fact that most PZT patches come with

ntegrated electrodes from the manufacturer, one may not have to
pply an etching process to obtain a discontinuity at the strain
ode of the harvester. In some cases, it may be possible to cut the
ZT patch �and therefore its electrodes� as done in our simple
xperimental demonstration in Sec. 3. The following section dis-
usses handling of the cancellation issue in the electrical circuit
or harvesting energy from multiple vibration modes with the
ame cantilevered energy harvester.

Avoiding Cancellation in the Circuit With Seg-
ented Electrodes
The configuration shown in Fig. 8�a� is the commonly em-

loyed �10,11� ac-dc conversion circuit through a full-wave recti-
er where the electrodes bracketing the PZT layer are connected

o a diode bridge to remove the sign alternation of the electrical
utput. In general, a smoothing capacitor is used at the dc side
efore the electrical load in order to bring the pulsating rectified
oltage to a relatively constant value. To be more realistic, instead
f a simple resistive load, it is possible to consider a battery/
apacitor charging circuit or a more sophisticated adaptive energy
arvesting circuit at the dc side, which is beyond the discussion of
his paper. Our interest here is to avoid the cancellation of the
lternating current output of the PZT before it is supplied to a
imple or a sophisticated harvesting circuit. Hence, for conve-
ience, the leads of the dc side are left open in Fig. 8�a�. As we
iscussed in the previous sections, if the harvester beam vibrates
ith the first mode shape, the strain distribution is in phase

hroughout the length of the beam. Hence, it is possible to collect
he charge developed in the PZT with continuous electrodes with-
ut cancellation. Considering the strain mode shape of the first
ode in Fig. 2�b�, it can be observed that the main contribution to

he electrical output is from the region that is close to the clamped
nd of the beam. However, covering the entire �top and bottom�
aces of the PZT with a continuous electrode pair gives the maxi-
um electrical output and this classical configuration with con-

inuous electrodes �Fig. 8�a�� can be used safely as the first vibra-
ion mode has no strain nodes.

If the harvester beam vibrates with the second mode shape,
sing the configuration with continuous electrodes �Fig. 8�a�� re-
ults in cancellation of the electrical outputs as theoretically dis-
ussed and experimentally demonstrated in this paper. In order to

void the cancellation in a simple manner, segmented electrodes
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can be used. Figure 8�b� shows two segmented electrode pairs
used for collecting the electric charge developed in 0	x
�0.2165L and 0.2165L�x	L separately. Note that the bottom
electrodes are connected to each other whereas the top electrodes
are connected to the diode bridge �series connection�. This con-
figuration prevents cancellation in harvesting energy from the sec-
ond vibration mode because the polarization of the electrodes in
these two regions is the opposite of each other all the time during
the vibratory motion �i.e., when the top electrode in 0	x
�0.2165L is ���, the bottom electrode in 0.2165L�x	L is also
���, and vice versa�. However, if one intends to use the seg-
mented electrode configuration shown in Fig. 8�b� for harvesting
energy from the first vibration mode, cancellation occurs because
of the way the voltage outputs of 0	x�0.2165L and 0.2165L
�x	L are combined. Therefore, the configuration displayed in
Fig. 8�b� is suitable for vibrations with the second mode shape but
it is not preferable for vibrations with the first mode shape.

The configuration given in Fig. 8�a� is suitable for harvesting
energy from the first mode �but it is not suitable for the second
mode� whereas the configuration of Fig. 8�b� is suitable for har-
vesting energy from the second mode �and it is unsuitable for the
first mode�. However, it is not difficult to combine the outputs of
the segmented electrode pairs in Fig. 8�b� to come up with a
configuration that can be used both for the first mode and second
mode vibrations. In the configuration of Fig. 8�c�, the electrode
pairs are connected to two separate diode bridges �again, in the
sense of series connection� so that cancellation is prevented re-
gardless of the polarization in the 0	x�0.2165L and 0.2165L
�x	L regions.

The foregoing approach of avoiding the cancellation issue ap-
pears to be more flexible and versatile than the patterned polar-
ization technique. Here, the only requirements are the removal of
electrodes at the strain nodes and simple considerations in the
electrical circuit. The idea described here is not limited to the first
two vibration modes and it can easily be extended to higher vi-
bration modes as well �based on the locations of the strain nodes
given in Table 1�. Alternative circuitry-based approaches can be
investigated to handle the cancellation problem for multimode ex-
citations with less number of diodes as the presence of diodes
creates losses in the electrical circuit.

6 Effect of Using a Tip Mass on the Electrical Re-
sponse at Higher Vibration Modes

In many papers on piezoelectric energy harvesting from canti-
levered beams, a tip mass is used either to tune the natural fre-
quency of the harvester to a certain value or to improve its struc-
tural flexibility by reducing the natural frequencies to practical
values especially in microscale applications. Even though exciting
a harvester beam harmonically at its first natural frequency is a
very useful practice to characterize the device performance and to
investigate the electromechanical trends, most ambient vibration
sources do not provide a single harmonic input. In general, ambi-
ent vibration energy has random frequency behavior and multiple
dominant harmonics as in the sample spectra given by Roundy et
al. �5�. In some cases, the frequency content of the vibration
source varies in time, as measured by Sodano et al. �18� from an
automobile compressor. Another type of motion input that is di-
rectly available in the ambient is of impulse type �e.g., the lateral
acceleration measured at the heel by Erturk et al. �23� during
walking�. Impulse type of acceleration fluctuation is usually asso-
ciated with rigid body motions and it excites a broad range of
harmonics. Briefly, in practice, it is almost inevitable to avoid
higher mode vibrations of a cantilevered harvester even though
the optimum case is to excite it at its most flexible mode �which is
the first mode�. Therefore, this section presents a simple experi-
ment to demonstrate the electrode configuration-based side effect
of using a relatively large tip mass on the voltage response of

higher vibration modes.
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As discussed in Sec. 2.3, a large tip mass makes the free bound-
ry of a cantilevered harvester close to a clamped boundary for
ibration modes other than the first mode. Although the attach-
ent of a large tip mass makes the first vibration mode more
exible and improves the voltage response for the fundamental
ode excitation, it results in a converse effect by restricting the

ranslation and more importantly the rotation at the free end for
xcitations at higher mode frequencies. Hence, in the presence of
tip mass with large rotary inertia, a clamped-free harvester starts

cting as a clamped-clamped harvester for vibration modes other
han the first mode. As discussed extensively in this paper,
lamped-clamped boundary conditions with full electrodes can be
etrimental to the voltage output of the harvester.

A simple experiment is conducted to demonstrate the trade-off
ue to using a tip mass for cantilevered harvesters. The experi-
ental setup employs a QuickPack QP25N bimorph manufac-

ured by Mide Technology Corporation. In the absence of a tip
ass �Fig. 9�a��, the overhang mass of the bimorph is about 2.2 g.
tip mass if 33.5 g is attached to the tip of the bimorph as

isplayed in Fig. 9�b�. Such relatively large tip masses and even
arger ones have been employed in literature �5�, especially for

icroscale energy harvesting applications �14�.
As shown in Fig. 9, an electromagnetic shaker is used to excite

he bimorph harvester from its base. The acceleration feedback at
he base of the harvester is obtained by a low-mass accelerometer
nd the tip velocity is measured by a laser vibrometer. A resistive
oad of 1 k� is used to obtain the electrical power frequency
esponse function �FRF� of the bimorph. Figure 10�a� shows the
ip displacement FRF obtained by using the tip velocity measure-

ent �per base acceleration in g� for the configurations with and
ithout the tip mass �Fig. 9�. Due to the attachment of the tip
ass, the tip displacement is increased only for the first vibration
ode and it is attenuated for the higher vibration modes �approxi-
ately by a factor of 2 for the second mode and by a factor of 4

or the third mode�. Note that the tip motion is strongly attenuated
t the off-resonance frequencies of the higher vibration modes as
ell �the y-axis of the plot is in log-scale�. Figure 10�b� shows the

lectrical power FRF per square of base acceleration �in g�. At-
achment of the tip mass increases the electrical power output for
he first vibration mode. However, it reduces the power output for
he second and the third mode excitations by a factor of more than

and by a factor of more than 5, respectively. Again, the attenu-
tion in the power output at the off-resonance frequencies is no-
able, especially by considering the fact that y-axis of the plot is
iven in a log-scale.

The foregoing experimental demonstration shows that attach-
ent of a tip mass suppresses the available vibration-to-electric

nergy conversion potential for excitations at higher vibration
odes, although it improves this potential for the first vibration
ode. This trade-off due to using a tip mass can be important if

he harvester is excited at the higher vibration modes as well �due

ig. 9 Piezoelectric bimorph and its experimental base excita-
ion with a shaker in clamped-free boundary conditions: „a…
ithout a tip mass and „b… with a tip mass
o random, varying frequency, or impulse type of excitations�. The

11010-10 / Vol. 131, FEBRUARY 2009
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cancellation problem at higher modes can be solved by identifying
the strain node positions and collecting the electric charge output
with segmented electrodes.

7 Summary and Conclusions
Cantilevered beams with piezoceramic layer�s� have been used

as piezoelectric energy harvesters for low power generation within
the past decade. Typically, a piezoelectric energy harvester is lo-
cated on a vibrating host structure and the dynamic strain field
induced in the piezoceramic layer�s� results in an alternating volt-
age output across the electrodes. Vibration modes of a cantile-
vered beam other than the first mode have certain strain nodes
where the dynamic strain distribution at a thickness level changes
sign in the direction of the beam length. Strain nodes of a vibra-
tion mode are simply the inflection points of the eigenfunctions.

In this paper, it is theoretically explained and experimentally
demonstrated that covering the strain nodes of vibration modes
with continuous electrodes results in cancellation of the electrical
outputs. A detailed dimensionless analysis is given for predicting
the locations of the strain nodes of a cantilevered beam in the
absence of a tip mass. Dimensionless derivations and results are
then presented for predicting the strain node positions and their
variations in the presence of a tip mass. Since the cancellation
problem is not peculiar to clamped-free boundary conditions, di-
mensionless data of modal strain nodes are tabulated for some
other practical boundary condition pairs as well. The locations of
strain nodes tabulated in this work are important also for applica-
tions of modal actuation since covering these positions with pi-
ezoelectric actuator�s� may require very high voltage inputs,
yielding inefficient actuation processes.

It is experimentally shown that the voltage output due to the
second mode excitation can be increased drastically, if segmented
electrodes are used instead of continuous electrodes. The relation-
ship between the discussion given here and a recent study on
piezoelectric energy harvesting from the static deflection of a
clamped circular plate is also explained. The use of segmented
electrode pairs to avoid cancellations is described for single-mode
and multimode vibrations of a cantilevered harvester. Alternative
circuitry-based approaches can be investigated to handle the can-
cellation problem for multimode excitations.

In most applications, a tip mass is used either to tune the natural

Fig. 10 Experimental comparison of the „a… tip displacement
and „b… electrical power FRFs of the bimorph cantilever con-
figurations with and without the tip mass
frequency of the harvester to a certain value or to improve its
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tructural flexibility by reducing the natural frequencies to practi-
al values especially in microscale applications. An electrode
onfiguration-based side effect of using a large tip mass on the
oltage response at higher vibration modes is discussed theoreti-
ally and demonstrated experimentally. This side effect can be
mportant for random, varying frequency, or impulse type of in-
uts, where higher modes are excited.
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