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Cantilevered beams with piezoceramic layers have been frequently used as piezoelectric
vibration energy harvesters in the past five years. The literature includes several single
degree-of-freedom models, a few approximate distributed parameter models and even
some incorrect approaches for predicting the electromechanical behavior of these har-
vesters. In this paper, we present the exact analytical solution of a cantilevered piezo-
electric energy harvester with Euler–Bernoulli beam assumptions. The excitation of the
harvester is assumed to be due to its base motion in the form of translation in the
transverse direction with small rotation, and it is not restricted to be harmonic in time.
The resulting expressions for the coupled mechanical response and the electrical outputs
are then reduced for the particular case of harmonic behavior in time and closed-form
exact expressions are obtained. Simple expressions for the coupled mechanical response,
voltage, current, and power outputs are also presented for excitations around the modal
frequencies. Finally, the model proposed is used in a parametric case study for a uni-
morph harvester, and important characteristics of the coupled distributed parameter
system, such as short circuit and open circuit behaviors, are investigated in detail. Modal
electromechanical coupling and dependence of the electrical outputs on the locations of
the electrodes are also discussed with examples. �DOI: 10.1115/1.2890402�
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Introduction
For the past five years, there has been an explosion of research

n the area of harvesting energy from ambient vibrations by using
he direct piezoelectric effect �1�. Research in this area involves
nderstanding the mechanics of vibrating structures, the constitu-
ive behavior of piezoelectric materials, and elementary circuit
heory. This promising way of powering small electronic compo-
ents and remote sensors has attracted researchers from different
isciplines of engineering including electrical and mechanical as
ell as researchers from the field of material science.
The literature includes several experimental demonstrations

oth in macroscale �2,3� and in microscale �4� piezoelectric en-
rgy harvesting. In most of the experimental work, the harvester,
hich is a cantilevered composite beam with one or more piezo-

eramic �PZT� layers,2 is excited harmonically at its fundamental
atural frequency for the maximum electrical output. Although
ost ambient vibration sources do not have harmonic behavior in

ime, most previous research has assumed harmonic excitation.
urthermore, in some of the works, the excitation frequency of the
arvester is so high that the resulting work deviates from the main
otivation of the problem since no such frequencies are available

n the ambient energy. Nevertheless, especially in the case of mi-
roscale harvesters �4�, natural frequencies in the kilohertz fre-
uency band are almost inevitable due to the extremely low mass
f the structure.

Many researchers have also focused on the mathematical mod-

1Corresponding author.
2Here, as a common practice, the abbreviation PZT is used for a generic piezo-

lectric ceramic, rather than a specific material.
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eling of these harvesters. A reliable mathematical model may al-
low studying different aspects of energy harvesting, predicting the
electrical outputs, and, moreover, optimizing the harvester for the
maximum electrical output for a given input. The modeling ap-
proaches in the literature include coupled single degree-of-
freedom �SDOF� models �5,6�, approximate distributed parameter
models �with the Rayleigh–Ritz method� �2,6� as well as some
distributed parameter modeling approaches �7,8� that consider a
single vibration mode and ignore �or oversimplify� the backward
coupling in the mechanical domain and even some incorrect mod-
eling attempts �9� based on informal and weak mathematical mod-
eling assumptions.

The SDOF modeling approach �or the so-called lumped param-
eter modeling� considers the cantilevered beam as a mass-spring-
damper system, which is very convenient for coupling the me-
chanical part of the harvester with a simple electrical harvesting
circuit. Although SDOF modeling gives initial insight into the
problem by allowing simple closed-form expressions, it is just a
simple approximation limited to a single vibration mode of the
bender and it lacks several important aspects of the physical sys-
tem, such as the dynamic mode shape and the accurate strain
distribution along the bender. Since these cantilevered harvesters
are excited mainly due to the motion of their base, the well-known
SDOF harmonic base excitation relation taken from the elemen-
tary vibration texts has been frequently referred in the energy
harvesting literature both for modeling �6,9� and studying the de-
tailed characteristics �10� of harvesters. Some authors have used
the SDOF harmonic base excitation relation just for representing
the problem in their experimental work, although they did not
provide any detailed mathematical modeling �4,11�. It was re-
cently shown �12� that the traditional form of the SDOF harmonic
base excitation relation may yield highly inaccurate results both
for transverse and longitudinal vibrations of cantilevered beams

and bars depending on the tip �proof� mass to beam/bar mass
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atio. When a structure is excited due to the motion of its base, the
xcitation source is nothing but its own inertia. As a result, the
onventional effective mass of cantilevered beams and bars results
n underestimation of the predicted response especially if there is
ow or no tip mass. Erturk and Inman �12� introduced correction
actors for improving the existing SDOF harmonic base excitation
odel for both transverse and longitudinal vibrations of cantile-

ers.
As an alternative modeling approach, Sodano et al. �2� and

uToit et al. �6� used the conventional combination of the varia-
ional principle �which is also referred to the Hamilton’s principle�
nd the Rayleigh–Ritz method based on the Euler–Bernoulli beam
ssumptions. This approximate modeling approach allows predict-
ng the electromechanical response in higher vibration modes.
owever, it is a numerical approximation technique based on dis-

retization of the continuous distributed parameter system and it is
ot the exact solution. Other than these approximate techniques,
he literature also includes some analytical modeling approaches.
n their modeling paper, Lu et al. �7� used a single vibration mode
xpression �rather than a modal expansion� in the piezoelectric
onstitutive relation that gives the electric displacement �13� in
rder to relate the electrical outputs to the mechanical mode
hape. Such an approach lacks two important points: backward
oupling in the mechanical domain �as coupling in the mechanical
quation is not considered� and the contributions from the other
ibration modes �as the correct approach implies using the expan-
ion of all vibration modes�. Therefore, such a model is approxi-
ately valid in the vicinity of that respective vibration mode, and

he plots given for a wide frequency band �such as the power plot
n Ref. �7�� based on this modeling approach are meaningless
ince all the other vibration modes are missing in the model. Chen
t al. �8� also presented a similar distributed parameter modeling
pproach where the mechanical response was represented by
odal expansion, but the effect of backward piezoelectric cou-

ling in the mechanical equation was assumed to be viscous
amping. Representing the effect of electromechanical coupling in
he mechanical equation by a viscous damping coefficient is a
easonable approach for a certain type of electromagnetic harvest-
rs described by Williams and Yates �14� but not for piezoelectric
arvesters. The effect of piezoelectric coupling in the mechanical
omain is more sophisticated than just viscous damping as it re-
ults in variation of the natural frequencies rather than just attenu-
tion of the motion amplitude, which is discussed in this paper
xtensively. Quite recently, Ajitsaria et al. �9� proposed a model-
ng approach for “bimorph piezoelectric cantilever for voltage
eneration.” Their main reference considers static modeling of
iezoelectric actuators where it is reasonable to assume a constant
adius of curvature over the beam length. However, Ajitsaria et al.
9� tried to combine these static modeling equations �with con-
tant radius of curvature and static tip force� with the dynamic
uler–Bernoulli beam equation �where the radius of curvature
aries� and base excitation �where there is no tip force�.
In this paper, we present the exact electromechanical solution of
cantilevered piezoelectric energy harvester for transverse vibra-

ions with Euler–Bernoulli beam assumptions. The harvester beam
s assumed to be excited by the motion of its base, which is
epresented by translation in the transverse direction and small
otation. First, the base motion is not restricted to be harmonic in
ime so that the general coupled equations are obtained for the

echanical response of the beam and the voltage output. Then,
he resulting equations are reduced for the case of harmonic base
ranslation with superimposed harmonic small rotation. Closed-
orm expressions for the voltage, current, and power outputs as
ell as the mechanical response are presented. The expressions

re further reduced to single-mode relations for the case of exci-
ation around a natural frequency of the bender.

We consider more sophisticated damping mechanisms in me-
hanical modeling of the harvester. The internal strain rate damp-

ng �i.e., Kelvin–Voigt damping� and the external air damping
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effects are treated more accurately by defining separate damping
coefficients. The electrical circuit consists of a resistive load con-
nected to the electrodes bracketing the PZT layer. Therefore,
along with the internal capacitance of PZT, the electrical circuit is
a first order �RC� circuit. Although the harvester is taken as a
unimorph, the formulation for a bimorph can easily be obtained
by following a similar procedure.

The analytically obtained electromechanical expressions are
used in a parametric case study where certain electromechanical
frequency response functions �FRFs� are defined for graphical
demonstration. Voltage, current, power, and relative tip motion
FRFs are plotted against frequency for a wide range of load resis-
tance, and the resulting trends in the plots are investigated in
detail. Although the mathematical model assumes proportional
damping, how to relax this assumption is explained briefly along
with a short discussion of how to extract the internal strain rate
and external air damping coefficients from experimental measure-
ments. Short circuit and open circuit conditions of the FRFs are
discussed and the electromechanical outputs are also plotted
against load resistance for these extreme conditions of the resis-
tive load. Finally, the importance of modal electromechanical cou-
pling in energy harvesting is highlighted and its dependence on
the locations of the electrodes is discussed. The relevance of the
modal coupling concept and the locations of the electrodes to the
issue of strain nodes of vibration modes, which was previously
discussed �12� and experimentally verified �15�, is demonstrated
here with FRFs.

2 Derivation of the Electromechanical Model
We consider the unimorph harvester shown in Fig. 1, which is

simply a uniform composite Euler–Bernoulli beam consisting of a
PZT layer perfectly bonded to the substructure layer. As well
known, another typical harvesting configuration is a bimorph with
two PZT layers and that configuration can also be modeled in a
similar manner by following the below modeling procedure. The
harvester shown in Fig. 1 is connected to the electrical circuit
through the electrodes, which bracket the PZT layer. The elec-
trodes are assumed to be perfectly conductive and they cover the
entire surface of the PZT at the bottom and at the top �so that the
electric field is uniform over the length of the beam�. The simple
electrical circuit consists of a resistive load only. We assume per-
sistent excitation at the base of the harvester so that continuous
electrical outputs can be extracted from the resistive load. In gen-
eral, the leakage resistance of the PZT is much higher than the
load resistance, which allows neglecting it in the electrical circuit
as it is normally connected to the circuit in parallel to the resistive
load. In Fig. 1, the capacitance of the PZT is considered as inter-
nal to the PZT rather than showing it as an external element par-
allel to the resistive load. As we will see later in this work, the
piezoelectric constitutive relations �13� generate the electrical ca-
pacitance term. Therefore, although it is not shown in Fig. 1 as an
element parallel to the resistive load, the capacitance of the PZT
layer is not ignored and it will simply show up in the circuit
equation.

Fig. 1 Unimorph piezoelectric energy harvester under transla-
tional and small rotational base motions
The harvester beam is typically excited due to the motion of its
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ase. If the translation and the small rotation of the base are de-
oted by g�t� and h�t�, respectively, then the base motion wb�x , t�
n the beam can be represented as �16�

wb�x,t� = g�t� + xh�t� �1�

he governing equation of motion can then be written as �12�

�2M�x,t�
�x2 + csI

�5wrel�x,t�
�x4�t

+ ca

�wrel�x,t�
�t

+ m
�2wrel�x,t�

�t2

= − m
�2wb�x,t�

�t2 − ca

�wb�x,t�
�t

�2�

here wrel�x , t� is the transverse deflection of the beam relative to
ts base, M�x , t� is the internal bending moment, csI is the equiva-
ent damping term of the composite cross section due to structural
iscoelasticity �cs is the equivalent coefficient of strain rate damp-
ng and I is the equivalent area moment of inertia of the composite
ross section�, ca is the viscous air damping coefficient, and m is
he mass per unit length of the beam. Both of the damping mecha-
isms considered in the model satisfy the proportional damping
riterion, hence, they are mathematically convenient for the modal
nalysis solution procedure �17�. The strain rate damping indeed
hows itself as an internal moment �Ms=csI�

3wrel /�x2�t� in the
esulting equation of motion. For convenience, we consider it di-
ectly outside the internal moment term in Eq. �2�; hence, it ap-
ears as a separate term.

The internal moment can be obtained by integrating the first
oment of the stress distribution at a cross section over the cross-

ectional area. The piezoelectric constitutive relations �13� give
he stress-strain �and electric field� relations and they are ex-
ressed for the substructure and the PZT layers as

T1
s = YsS1

s �3�

T1
p = Yp�S1

p − d31E3� �4�

espectively. Here, T is the stress, S is the strain, Y is Young’s
odulus; d is the piezoelectric constant, and E is the electric field.
quation �4� is obtained from the piezoelectric constitutive rela-

ion S1=s11
E T1+d31E3, where s11

E is the elastic compliance at con-
tant electric field and therefore Yp is simply the reciprocal of s11

E .
urthermore, subscript/superscript p and s stand for PZT and sub-
tructure layers, respectively; 1 and 3 directions are coincident
ith x and y directions, respectively �where 1 is the direction of

xial strain and 3 is the direction of polarization�. Then, the inter-
al moment can be written as

M�x,t� = −�
ha

hb

T1
sbydy −�

hb

hc

T1
pbydy �5�

here b is the width of the beam, ha is the position of the bottom
f the substructure layer from the neutral axis, hb is the position of
he bottom of the PZT layer �therefore, top of the substructure
ayer� from the neutral axis, and hc is the position of the top of the
ZT layer from the neutral axis �see the Appendix�. Expressing

he bending strain in terms of radius of curvature �18� and em-
loying Eqs. �3� and �4� in Eq. �5� give

M�x,t� =�
ha

hb

Ysb
�2wrel�x,t�

�x2 y2dy +�
hb

hc

Ypb
�2wrel�x,t�

�x2 y2dy

−�
hb

hc

v�t�Ypb
d31

hp
ydy �6�

here the uniform electric field is written in terms of the voltage
�t� across the PZT and the thickness hp of the PZT �E3�t�=

v�t� /hp�. Equation �6� can be reduced to

ournal of Vibration and Acoustics
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M�x,t� = YI
�2wrel�x,t�

�x2 + �v�t� �7�

where YI is the bending stiffness of the composite cross section
given by

YI = b�Ys�hb
3 − ha

3� + Yp�hc
3 − hb

3�
3

� �8�

and the coupling term � can be written as

� = −
Ypd31b

2hp
�hc

2 − hb
2� �9�

If the PZT layer and/or the electrodes do not cover the entire
length of the beam but the region x1�x�x2, then the second term
in Eq. �7� should be multiplied by H�x−x1�−H�x−x2�, where H�x�
is the Heaviside function. Note that, in energy harvesting from
higher vibration modes, it becomes necessary to use segmented
electrode pairs in order to avoid cancellation of the charge col-
lected by continuous electrode pairs �15�. In such a case, one
needs to define separate voltage terms, which should appear in Eq.
�7� as separate terms multiplied by Heaviside functions. However,
in our case, we assume that the electrodes and the PZT layer cover
the entire length of the beam displayed in Fig. 1 and it is conve-
nient to rewrite Eq. �7� as

M�x,t� = YI
�2wrel�x,t�

�x2 + �v�t��H�x� − H�x − L�� �10�

where L is the length of the beam. In Eq. �10�, although the PZT
layer and the electrodes cover the entire beam length, Heaviside
functions are associated with the second term in Eq. �10� in order
to ensure the survival of this term when the internal moment ex-
pression M�x , t� is used in the differential equation of motion
given by Eq. �2�. Then, employing Eq. �10� in Eq. �2� yields

YI
�4wrel�x,t�

�x4 + csI
�5wrel�x,t�

�x4�t
+ ca

�wrel�x,t�
�t

+ m
�2wrel�x,t�

�t2 + �v�t�

��d��x�
dx

−
d��x − L�

dx
� = − m

�2wb�x,t�
�t2 − ca

�wb�x,t�
�t

�11�

where ��x� is the Dirac delta function and it satisfies �19�

�
−�

�
d�n���x − x0�

dx�n� f�x�dx = �− 1�ndf �n��x0�
dx�n� �12�

Equation �11� is the mechanical equation of motion with elec-
trical coupling. In order to obtain the electrical circuit equation
with mechanical coupling, one should consider the following pi-
ezoelectric constitutive relation:

D3 = d31T1 + �33
T E3 �13�

where D3 is the electric displacement and �33
T is the permittivity at

constant stress. If we rearrange Eq. �13� to express axial stress T1
in terms of bending strain S1 and Young’s modulus of PZT �Yp

=1 /s11
E �, permittivity component must be replaced by permittivity

at constant strain, which is given by �33
S =�33

T −d31
2 Yp �13�. After

writing the electric field in the PZT in terms of the voltage across
the PZT �that is, E3�t�=−v�t� /hp�, one obtains

D3�x,t� = d31YpS1�x,t� − �33
S v�t�

hp
�14�

The average bending strain at position x and time t in the PZT
layer can be expressed as a function of the distance hpc of the
center of the PZT layer �in thickness direction� to the neutral axis
�see the Appendix� and curvature of the beam at position x and

time t,
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S1�x,t� = − hpc

�2wrel�x,t�
�x2 �15�

herefore, Eq. �14� becomes

D3�x,t� = − d31Yphpc

�2wrel�x,t�
�x2 − �33

S v�t�
hp

�16�

The electric charge q�t� developed in the PZT �and collected by
he electrodes� can be obtained by integrating the electric dis-
lacement over the electrode area as �13�

q�t� =�
A

D · ndA = −�
x=0

L �d31Yphpcb
�2wrel�x,t�

�x2 + �33
S b

v�t�
hp

	dx

�17�

here D is the vector of electric displacements and n> is the unit
utward normal. Clearly, the nonzero terms of these vectors are
he ones in 3 direction �i.e., in the y-direction�. Then, the current
enerated by the PZT can be given by

i�t� =
dq�t�

dt
= −�

x=0

L

d31Yphpcb
�3wrel�x,t�

�x2�t
dx −

�33
S bL

hp

dv�t�
dt

�18�
ere, the current generated is a function with two components:
he first component is due to the vibratory motion of the beam
nd the second component includes the voltage across the PZT. It
s obvious from Eq. �18� that the second term is due to the static
apacitance of the PZT. In the literature, the term �33

S bL /hp is
alled the capacitance of the PZT layer �in general, it is denoted
y Cp� and this capacitance is connected to the resistive load �Rl�
hown in Fig. 1 in parallel although, physically, the capacitance of
he PZT is internal to the PZT itself. Since the current expression
iven by Eq. �18� includes the capacitance information of the
ZT, in this model, it is convenient to connect the PZT directly to

he resistive load as a current source without any external capaci-
ive element as we did in Fig. 1. Then, the voltage across the
esistive load is simply

v�t� = Rli�t� = − Rl��
x=0

L

d31Yphpcb
�3wrel�x,t�

�x2�t
dx +

�33
S bL

hp

dv�t�
dt �

�19�
r alternately the electrical circuit equation can be written as

�33
S bL

hp

dv�t�
dt

+
v�t�
Rl

= −�
x=0

L

d31Yphpcb
�3wrel�x,t�

�x2�t
dx �20�

here v�t� is the voltage across the resistive load.
Equations �11� and �20� are the distributed parameter electro-
echanical equations for a cantilevered piezoelectric energy har-

ester in transverse vibrations.

General Transient Base Motions
The aim of this section is to provide the formal solution proce-

ure of the electromechanically coupled equations of a harvester
eam, which are Eqs. �11� and �20�. The relative vibratory motion
f the beam can be represented by an absolutely and uniformly
onvergent series of the eigenfunctions as

wrel�x,t� = 

r=1

�

�r�x��r�t� �21�

here �r�x� and �r�t� are the mass normalized eigenfunction and
he modal coordinate of the clamped-free beam for the rth mode,
espectively. Since the system is proportionally damped, the

igenfunctions denoted by �r�x� are indeed the mass normalized

41002-4 / Vol. 130, AUGUST 2008
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eigenfunctions of the corresponding undamped free vibration
problem �17� given by

�r�x� =� 1

mL
�cosh

	r

L
x − cos

	r

L
x − 
r�sinh

	r

L
x − sin

	r

L
x	�

�22�

where the 	r’s are the dimensionless frequency numbers obtained
from the characteristic equation given by

1 + cos 	 cosh 	 = 0 �23�

and 
r is expressed as


r =
sinh 	r − sin 	r

cosh 	r + cos 	r
�24�

Note that, for the sake of completeness, the tip mass �or the so-
called proof mass� is excluded and the above expressions are for a
cantilevered beam without a tip mass. The effect of a tip mass on
the resulting formulation of the base excitation problem as well as
the respective expressions for the eigenfunctions and the charac-
teristic equation can be found in a recent paper by Erturk and
Inman �20�.

The mass normalized form of the eigenfunctions given by Eq.
�22� satisfies the following orthogonality conditions:

�
x=0

L

m�s�x��r�x�dx = �rs, �
x=0

L

YI�s�x�
d4�r�x�

dx4 dx = �r
2�rs

�25�

where �rs is the Kronecker delta, defined as being equal to unity
for s=r and equal to zero for s�r, and �r is the undamped natural
frequency of the rth mode given by

�r = 	r
2� YI

mL4 �26�

Using Eq. �21� in the partial differential equation of motion
along with the orthogonality conditions given by Eq. �25�, the
electromechanically coupled ordinary differential equation for the
modal response of the beam can be obtained as

d2�r�t�
dt2 + 2�r�r

d�r�t�
dt

+ �r
2�r�t� + 
rv�t� = Nr�t� �27�

where


r = ��d�r�x�
dx

�
x=L

�28�

is the modal coupling term and

�r =
csI�r

2YI
+

ca

2m�r
�29�

is the mechanical damping ratio that includes the effects of both
strain rate damping and viscous air damping �12�. It is clear from
Eq. �29� that strain rate damping is assumed to be proportional to
the bending stiffness of the beam, whereas air damping is assumed
to be proportional to the mass per unit length of the beam.

The modal mechanical forcing function Nr�t� can be expressed
as

Nr�t� = Nr
m�t� + Nr

c�t� �30�

Here, the components of mechanical excitation �which are the
inertial and the damping excitation terms� are given by the fol-
lowing expressions, respectively;3

3If the excitation due to the external damping of the medium �which is generally
air� is negligible when compared to the inertial excitation �i.e., Nr

c�t��Nr
m�t��, one

c
can simply set it equal to zero �Nr�t�=0�.
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Nr
m�t� = − m��r

wd2g�t�
dt2 + �r

�d2h�t�
dt2 	 ,

�31�

Nr
c�t� = − ca��r

wdg�t�
dt

+ �r
�dh�t�

dt
	

here

�r
w =�

x=0

L

�r�x�dx, �r
� =�

x=0

L

x�r�x�dx �32�

The modal response �that is, the solution of the ordinary differ-
ntial equation given by Eq. �27�� can be expressed using the
uhamel integral as

�r�t� =
1

�rd
�

�=0

t

�Nr��� − 
rv����e−�r�r�t−�� sin �rd�t − ��d�

�33�

here �rd=�r
�1−�r

2 is the damped natural frequency of the rth
ode. Clearly, obtaining �r�t� from Eq. �33� implies knowing the

oltage v�t� across the PZT.
Consider Eq. �20�, which is a first order ordinary differential

quation for v�t�, whose forcing term is a function of the relative
ibratory motion. Using Eq. �21� in Eq. �20� yields

dv�t�
dt

+
hp

Rl�33
S bL

v�t� = 

r=1

�

�r
d�r�t�

dt
�34�

here

�r = −
d31Yphpchp

�33
S L

�
x=0

L
d2�r�x�

dx2 dx = −
d31Yphpchp

�33
S L

�d�r�x�
dx

�
x=L

�35�

quation �34� can be solved for v�t� by using the following inte-
rating factor:

��t� = et/�c �36�

here �c is the time constant of the circuit given by

�c =
Rl�33

S bL

hp
�37�

ultiplying both sides of Eq. �34� by the integration factor and
olving the resulting equation yield the following expression for
he voltage across the resistive load:

v�t� = e−t/�c�� et/�c

r=1

�

�r
d�r�t�

dt
dt + c	 �38�

here c is an arbitrary constant that depends on the initial value of
he voltage v�t� across the resistive load as well as the initial
elocity of the beam. However, the form of Eq. �33� assumes the
nitial displacement and the velocity of the beam to be zero �a

ore complicated form of it could handle the initial displacement
nd velocity terms�. Therefore, since we assume zero initial con-
itions for the mechanical domain, the term c in Eq. �38� depends
nly on the initial value of the voltage across the resistive load.
ence, if the initial voltage is zero �v�0�=0�, simply, c=0 and this

s what we assume for the sake of simplicity.4

Then, if the summation sign and the integral are switched in Eq.
38�, and for c=0, one obtains

4Yet, one can obtain the value of c for nonzero initial conditions both in the
echanical domain �for the beam� and in the electrical domain �for the electrical

ircuit�. Note that, for nonzero initial conditions in the mechanical domain, the Du-
amel integral given by Eq. �33� for the modal mechanical response must be modi-

ed accordingly �i.e., initial displacement and velocity terms must be introduced�.
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v�t� = e−t/�c

r=1

�

�r� et/�c
d�r�t�

dt
dt �39�

Now, consider the resulting coupled equations �in time do-
main�, which are given by Eqs. �33� and �39�. One can either
eliminate the voltage term v�t� or the modal mechanical response
term �r�t� in order to obtain a single equation in v�t� or �r�t�.
Eliminating �r�t� and obtaining a single expression for v�t� is
preferable for the energy harvesting problem. When the modal
mechanical response is eliminated in Eq. �39�, one obtains the
following implicit expression for the voltage across the resistive
load:

v�t� = e−t/�c

r=1

�
�r

�rd
� et/�c

d

dt��
�=0

t

�Nr��� − 
rv����

�e−�r�r�t−�� sin �rd�t − ��d�	dt �40�

When the voltage term is eliminated in Eq. �33�, one obtains the
following implicit equation for the modal response:

�r�t� =
1

�rd
�

�=0

t �Nr��� − 
re
−�/�c


r=1

�

�r� e�/�c
d�r���

d�
d��

�e−�r�r�t−�� sin �rd�t − ��d� �41�

The solution of Eq. �41� for �r�t� can be used in Eq. �21� to obtain
the coupled physical response of the beam.

4 Harmonic Base Motion (Translation With Small Ro-
tation) at an Arbitrary Frequency

In this section, we assume the translation and small rotation of
the beam to be harmonic in time �i.e., g�t�=Y0ej�t and h�t�
=�0ej�t, where Y0 and �0 are the amplitudes of the base translation
and rotation, respectively, � is the driving frequency, and j
=�−1 is the unit imaginary number� and obtain closed-form ex-
pressions for steady state voltage output and beam response. Since
the electromechanical system is assumed to be linear, we expect
the voltage output to be harmonic also in the form of v�t�
=V0ej�t �where V0 is the amplitude of the harmonic voltage across
the resistive load�. Then, the modal equation of motion given by
Eq. �27� can be reduced to5

d2�r�t�
dt2 + 2�r�r

d�r�t�
dt

+ �r
2�r�t� + 
rV0ej�t

= m�2��r
wY0 + �r

��0�ej�t �42�

The steady state solution of Eq. �42� can be expressed as

�r�t� =
�m�2��r

wY0 + �r
��0� − 
rV0�ej�t

�r
2 − �2 + j2�r�r�

�43�

It is important to note that the input in the energy harvesting
problem is the base motion wb�x , t�= �Y0+x�0�ej�t and the output
is the voltage across the resistive load v�t�=V0ej�t. Although they
look like two separate forcing terms in Eq. �43�, v�t� is indeed
induced due to wb�x , t�, but it acts back as a forcing term in the
mechanical equation due to the electromechanical coupling. Fur-
thermore, v�t� and wb�x , t� do not have to be in phase, which
makes V0 complex valued although Y0 and �0 are real valued.

5
Excitation due to air damping is ignored.
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For the electrical circuit, from Eq. �34�, one obtains

�1 + j��c

�c
	V0ej�t = 


r=1

�

�r
d�r�t�

dt
�44�

hen, using Eq. �43� in Eq. �44�, one can eliminate �r�t� and
btain the following implicit expression for the voltage amplitude
0 across the load resistance:

�1 + j��c

�c
	V0 = 


r=1

�

�r

j��m�2��r
wY0 + �r

��0� − 
rV0�
�r

2 − �2 + j2�r�r�
�45�

owever, it is now straightforward to express V0 explicitly as

V0 =



r=1

�
jm�3�r��r

wY0 + �r
��0�

�r
2 − �2 + j2�r�r�



r=1

�
j�
r�r

�r
2 − �2 + j2�r�r�

+
1 + j��c

�c

�46�

hich is the amplitude of the voltage across the resistive load.
herefore, the voltage response v�t� �across the resistive load� due

o the harmonic base motion wb�x , t�= �Y0+x�0�ej�t can be ex-
ressed as

v�t� =



r=1

�
jm�3�r��r

wY0 + �r
��0�ej�t

�r
2 − �2 + j2�r�r�



r=1

�
j�
r�r

�r
2 − �2 + j2�r�r�

+
1 + j��c

�c

�47�

ote that, after obtaining the time history of the voltage across the
esistive load, one can easily obtain the current generated by the
ZT by using i�t�=v�t� /Rl. Furthermore, the instantaneous power
utput can be expressed using the well-known relation P�t�
v2�t� /Rl. It is worthwhile to mention that, due to the similarity
etween the energy harvesting problem �for persistent vibrations�
nd the piezoelectric shunt damping problem, some of the equa-
ions derived here may also be applicable to the multimode shunt
amping of a cantilevered beam �see, for instance, Moheimani et
l. �21��. Note that the resistive load connected to the leads of the
lectrodes in the circuit can easily be replaced by the impedance
f a more general �but linear� RLC circuit and we can obtain
losed-form expressions for harmonic excitations as long as the
inearity of the electromechanical system is preserved.

It is also possible to eliminate the voltage term in Eq. �43� in
rder to obtain the modal mechanical response of the beam as

�r�t� = 
��r
wY0 + �r

��0� − 
r� 

r=1

�
j��r��r

wY0 + �r
��0�

�r
2 − �2 + j2�r�r�



r=1

�

j�
r�r

�r
2 − �2 + j2�r�r�

+
1 + j��c

�c

��
�

m�2ej�t

�r
2 − �2 + j2�r�r�

�48�
hich can be employed in Eq. �21� to obtain the vibratory re-
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sponse of the beam relative to its base as

wrel�x,t� = 

r=1

� 
��r
wY0 + �r

��0�

− 
r� 

r=1

�
j��r��r

wY0 + �r
��0�

�r
2 − �2 + j2�r�r�



r=1

�
j�
r�r

�r
2 − �2 + j2�r�r�

+
1 + j��c

�c

��
�

m�2�r�x�ej�t

�r
2 − �2 + j2�r�r�

�49�

5 Harmonic Base Translation at an Arbitrary Fre-
quency

In the energy harvesting literature, the base excitation is con-
sidered as harmonic translation in the transverse direction and the
beam is assumed to be not rotating. In such a case �i.e., when
h�t�=0�, the resulting expressions for the steady state voltage re-
sponse can be reduced to

v�t� =



r=1

�
jm�3�r�r

w

�r
2 − �2 + j2�r�r�



r=1

�
j�
r�r

�r
2 − �2 + j2�r�r�

+
1 + j��c

�c

Y0ej�t �50�

and the vibratory response of the beam relative to its base can be
obtained from

wrel�x,t� = 

r=1

� 
�r
w − 
r� 


r=1

�
j��r�r

w

�r
2 − �2 + j2�r�r�



r=1

�
j�
r�r

�r
2 − �2 + j2�r�r�

+
1 + j��c

�c

��
�

m�2�r�x�Y0ej�t

�r
2 − �2 + j2�r�r�

�51�

6 Harmonic Base Translation Around a Natural Fre-
quency

If the beam is excited around the natural frequency of the rth
mode, the main contributions in the summation signs appearing in
Eqs. �50� and �51� are from the rth mode. In most cases, the mode
of interest is the fundamental vibration mode of the harvester �i.e.,
r=1�. Therefore, it is a useful practice to consider the beam to be
excited around �1. The reduced expression for the voltage across
the resistive load can be written as

v*�t� =
j�cm�3�1�1

w

j��c
1�1 + �1 + j��c���1
2 − �2 + j2�1�1��

Y0ej�t

�52�

and the reduced expression for vibratory response of the beam

relative to its base is
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w
rel
* �x,t� =

�1 + j��c�m�2�1
w�1�x�

j��c
1�1 + �1 + j��c���1
2 − �2 + j2�1�1��

Y0ej�t

�53�
here the superscript “*” denotes that the respective expression is

are in millimeters…
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reduced for excitation around a specific vibration mode �which is
the fundamental mode in this case�.

Equation �52� can be rewritten as

v*�t� = �V
0
*�ej��t+�v� �54�
where the amplitude of the voltage output is �assuming Y0�0�
�V
0
*� =

�cm�3Y0��1�1
w�

���1
2 − �2�1 + 2�c�1�1��2 + �2�1�1� + �c��
1�1 + �1

2 − �2��2
�55�

nd the phase angle between the base displacement and the reduced voltage output is simply

�v =
�

2
sgn��1�1

w� − tan−1�2�1�1� + �c��
1�1 + �1
2 − �2�

�1
2 − �2�1 + 2�c�1�1�

	 �56�

here “sgn” is the signum function.
Similarly, Eq. �53� can be expressed as

w
rel
* �x,t� = �W

rel
* �x��ej��t+�w� �57�

here the amplitude of the vibratory motion at point x �relative to the base of the beam� can be written as

�W
rel
* �x�� =

m�2Y0��1
w�1�x���1 + ���c�2

���1
2 − �2�1 + 2�c�1�1��2 + �2�1�1� + �c��
1�1 + �1

2 − �2��2
�58�

nd the phase angle between the base displacement and the relative displacement at point x is simply

�w = tan−1���c�1
w�1�x�

�1
w�1�x�

	 − tan−1�2�1�1� + �c��
1�1 + �1
2 − �2�

�1
2 − �2�1 + 2�c�1�1�

	 �59�

The reduced expression for the current flow through the resistive load can then be obtained as

i*�t� = �I
0
*�ej��t+�i� �60�

here

�I
0
*� =

Cpm�3Y0��1�1
w�

���1
2 − �2�1 + 2�c�1�1��2 + �2�1�1� + �c��
1�1 + �1

2 − �2��2
�61�
nd �i=�v, i.e., the voltage across the resistive load and the
urrent flow through it are in phase, reasonably. In Eq. �61�, Cp is
he capacitance of the PZT due to Cp=�33

S bL /hp as mentioned
reviously and Cp=�c /Rl from Eq. �37�.

The amplitude of the power output �reduced for the fundamen-
al vibration mode� can then be expressed as

�P
0
*� =

Cp�c�m�1�1
w�3Y0�2

��1
2 − �2�1 + 2�c�1�1��2 + �2�1�1� + �c��
1�1 + �1

2 − �2��2

�62�

(a)

Fig. 2 „a… The unimorph piezoele
parametric case study and „b… a det
It is important to note that Eqs. �52�–�62� are valid only at the
excitation frequencies around the first natural frequency of the
harvester beam. Replacing the subscript “1” by r in Eqs.
�52�–�62�, one can obtain the respective electrical and mechanical
expressions for excitation frequencies around the rth natural fre-
quency.

7 Parametric Case Study for a Unimorph Harvester
In this section, we analyze the unimorph harvester shown in

Fig. 2 by using the proposed distributed parameter model. The

(b)

ic energy harvester used for the
from its cross section „dimensions
ctr
ail
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eometric, material, and the electromechanical parameters of the
arvester are given in Table 1. The conductive electrodes brack-
ting the PZT layer �not shown in Fig. 2� are assumed to be
overing the entire length of the harvester beam. The excitation of
he harvester is due to the harmonic translation wb�t�=Y0ej�t of its
ase in the transverse direction and we are interested in the steady
tate dynamic behavior of the system. Rather than specifying cer-
ain Y0 and � values for the input, it is preferred to obtain the
esults in terms of these parameters so that it becomes possible to
epresent the electromechanical outputs as FRFs.

Let the frequency range of interest be 0–1000 Hz. Then, for the
arameters given in Table 1, it is straightforward to show that the
ncoupled harvester has three natural frequencies lying in this
requency range. The first part of our analysis focuses on the
ollowing four important FRFs: voltage across the resistive load,
urrent flow through the resistive load, electrical power output,
nd the relative motion transmissibility from the base to the tip of
he beam. The first three FRFs are for the electrical domain, and
learly, the third one �power output� depends on the first two
voltage and current�. The last FRF gives the ratio of the vibration
mplitude at the tip of the beam �relative to its base� to the am-
litude of the input base translation. Therefore, only the mechani-
al FRF gives some idea about the electromechanical effects on
he beam caused by the energy harvesting circuit at different vi-
ration modes. It is worthwhile to mention that distributed param-
ter modeling is not limited to the motion at the tip of the beam as
he analysis presented here allows predicting the coupled vibra-
ory response at any point along the beam.

Due to the electromechanical coupling, each vibration mode
as a short circuit resonance frequency �r

sc �for Rl→0� and an
pen circuit resonance frequency �r

oc �for Rl→��, where sub-
cript r stands for the mode number. These frequencies are defined
or the extreme cases of the resistive load, and for its moderate
alues, reasonably, the resonance frequency of the respective vi-
ration mode takes values between �r

sc and �r
oc. In the below

nalysis, after plotting each FRF against the excitation frequency,
e investigate the short circuit and open circuit behaviors of the
utputs by plotting them against the load resistance.

7.1 Identification of Mechanical Damping Coefficients. Be-
ore presenting the resulting FRFs and discussing their respective
rends, it may be appropriate to add a few words on mechanical
amping and evaluation of the mechanical damping coefficients
rom experimental measurements. With the form of the differen-
ial equation of motion given by Eq. �2�, we assumed two separate
amping terms for the internal �strain rate� and the external vis-
ous �air� damping mechanisms, which are csI and ca, respec-
ively. This is the formal way of treating the problem and a de-
ailed discussion is available in Ref. �12�. As mentioned
reviously, csI is assumed to be stiffness proportional and ca is
ssumed to be mass proportional. Evaluating these damping coef-
cients from experimental measurements requires knowing the
requencies and damping ratios of two separate vibration modes

able 1 Geometric, material, and electromechanical param-
ters of the sample harvester

ength of the beam, L �mm� 100
idth of the beam, b �mm� 20

hickness of the substructure, hs �mm� 0.5
hickness of the PZT, hp �mm� 0.4
oung’s modulus of the substructure, Ys �GPa� 100
oung’s modulus of the PZT, Yp �GPa� 66
ass density of the substructure, �s �kg /m3� 7165
ass density of the PZT, �p �kg /m3� 7800

iezoelectric constant, d31 �pm/V� −190
ermittivity, �33

S �nF/m� 15.93
say, modes m and n� �22�. Then, for r=m and r=n, one has two
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linear algebraic equations to solve for the unknowns csI and ca
�see Eq. �29��. Suppose that, for the harvester of our interest �Fig.
2�, we obtain the damping ratios of the first two modes as �1
=0.010 and �2=0.013 from experimental modal analysis under
short circuit conditions �Rl→0� and this is what we assume for
our parametric study. We also know that �1=300.4 rad /s and
�2=1882.5 rad /s. Then, the two equations coming from Eq. �29�
give the proportionality constants as csI /YI=1.2433�10−5 s / rad
and ca /m=4.886 rad /s. Once these proportionality constants are
used in the mathematical model, the rest of the modal damping
ratios are automatically set to the following numbers: �3=0.033,
�4=0.064, �5=0.106, and so on. However, one should always
keep in mind that proportional damping is a convenient math-
ematical modeling assumption and the physical system may not
agree with this assumption. In other words, the damping ratios of
higher vibration modes may not converge to the above values. At
this point, it is important to note that instead of using csI and ca in
the distributed parameter model we propose, one can always use
the modal damping ratios ��r’s� obtained experimentally directly
in the modal expansions appearing in the resulting electrome-
chanical expressions. For example, if the first three modes are of
interest, one obtains the damping ratios of these modes experi-
mentally and employs them in the summation terms of the result-
ing equations by just considering these three modes �n=3�. This
way allows a relaxation in the proportional damping assumption
and one does not need to obtain the values of csI and ca.

7.2 Frequency Response of Voltage Output. Having dis-
cussed some important points regarding the mechanical damping
and its accurate evaluation, we start investigating the resulting
electromechanical FRFs. Since the value of load resistance Rl is
an important parameter that shapes the dynamic behavior of the
system, we plot the FRFs for five different orders of magnitude of
Rl ranging from 102 � to 106 �. As discussed previously, short
circuit behavior is expected for low values of load resistance �Rl

→0�, whereas the system is expected to move toward the open
circuit conditions for large values of load resistance �Rl→��.

The voltage FRF is described as the ratio of the voltage output
to the base acceleration. Therefore, this FRF can be extracted
from Eq. �50� as

v�t�
− �2Y0ej�t =



r=1

�
− jm��r�r

w

�r
2 − �2 + j2�r�r�



r=1

�
j�
r�r

�r
2 − �2 + j2�r�r�

+
1 + j��c

�c

�63�

The modulus of the “voltage FRF” given by Eq. �63� is plotted
in Fig. 3. As can be seen from Fig. 3, the amplitude of the voltage
output increases monotonically with increasing load resistance for
all excitation frequencies. Furthermore, with increasing load resis-
tance, the resonance frequency of each vibration mode moves
from the short circuit resonance frequency ��r

sc� to the open cir-
cuit resonance frequency ��r

oc�. As an example, the enlarged view
of the first resonance is displayed in Fig. 3. For excitation at the
first vibration mode, the maximum voltage is obtained for �1

sc

=47.8 Hz when Rl=102 �. However, when Rl=106 � is used, the
resonance frequency of the fundamental vibration mode becomes
�1

oc=48.8 Hz. For every excitation frequency, the maximum volt-
age output is obtained when the system is close to open circuit
conditions. A similar trend �the existence of open circuit and short
circuit resonance frequencies� is valid for all vibration modes.
Table 2 shows the frequencies of the short circuit and the open
circuit resonances for the first three vibration modes.

As mentioned, the voltage output increases monotonically with
increasing load resistance at every excitation frequency. The two
important excitation frequencies of the fundamental vibration

mode are the short circuit and the open circuit resonance frequen-
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ies, which are �1
sc=47.8 Hz and �1

oc=48.8 Hz, respectively.
ariation of the voltage output with load resistance for excitations
t these frequencies is shown in Fig. 4. As can be seen from Fig.
, for low values of load resistance, the voltage outputs at these
wo particular excitation frequencies increase with the same slope
in log-log scale� and the voltage output at the short circuit reso-
ance frequency is higher since the system is close to short circuit
onditions. However, the curves intersect at a certain value of load
esistance �around 39.8 k�� and for the values of load resistance
igher than the value at the intersection point, the voltage output
t the open circuit resonance frequency is higher expectedly. The

Fig. 3 Voltage FRF for five different
larged view of Mode 1 resonance sho
behaviors…

able 2 Short circuit and open circuit resonance frequencies
f the harvester for the first three vibration modes

Mode 1 Mode 2 Mode 3

�r
sc �Hz� �short circuit� 47.8 299.6 838.2

�r
oc �Hz� �open circuit� 48.8 301.5 839.2

ig. 4 Variation of voltage output with load resistance for base
xcitations at the short circuit and open circuit resonance fre-

uencies of the first vibration mode
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voltage output becomes less sensitive to the variations in the load
resistance at open circuit conditions �i.e., for very large values of
load resistance�.

7.3 Frequency Response of Current Output. The current
FRF can easily be obtained by dividing the voltage FRF by the
load resistance as follows:

i�t�
− �2Y0ej�t =

v�t�
− Rl�

2Y0ej�t

=



r=1

�
− jm��r�r

w

�r
2 − �2 + j2�r�r�

Rl�

r=1

�
j�
r�r

�r
2 − �2 + j2�r�r�

+
1 + j��c

�c
	 �64�

The modulus of the current FRF is plotted against frequency in
Fig. 5. Unlike the voltage FRF shown in Fig. 3, the amplitude of
the current decreases with increasing load resistance. Indeed, this
is the opposite of the voltage behavior shown in Fig. 3 but the
behavior is still monotonic. For every excitation frequency, the
maximum value of the current is obtained when the system is
close to short circuit conditions.

Figure 6 shows the current output as a function of load resis-
tance for excitations at the short circuit and the open circuit reso-
nance frequencies of the first mode. It is clear from Fig. 6 that the
current is highly insensitive to the variations of the load resistance
at the range of its low values �i.e., the slope is almost zero�. In this
relatively low load resistance region, the current output is higher
at the short circuit resonance frequency, as in the case of voltage
�Fig. 4�, since the system is close to short circuit conditions. Then,
current starts decreasing with further increase in load resistance,
and at a certain value of load resistance �again, around 39.8 k��,
the curves intersect. For the values of load resistance higher than
the value at this intersection point, the current output at the open
circuit resonance frequency becomes higher since the system ap-
proaches the open circuit conditions.

7.4 Frequency Response of Power Output. The FRF of the
power output is simply the product of the voltage and the current
FRFs given by Eqs. �63� and �64�, respectively. Therefore, unlike

lues of load resistance „with the en-
ng the short circuit and open circuit
va
wi
the voltage and the current FRFs, the power output FRF is defined
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as the power divided by the square of the base acceleration. The
modulus of the power output FRF is displayed in Fig. 7. Since it
is the product of two FRFs that have the opposite behaviors with
increasing load resistance, the behavior of the power output FRF
with load resistance is more interesting than the previous two
electrical outputs and it deserves more discussion. It is clear from
Fig. 7 that the power output FRF does not exhibit a monotonic
behavior with increasing �or decreasing� load resistance. Among
the sample values of the load resistance considered in this work,
the value of maximum power output for the first vibration mode
corresponds to Rl=105 � �see the first enlarged view in Fig. 7� at
frequency �=48.66 Hz, which is expectedly around the open cir-
cuit resonance frequency of the first mode �Table 2� for this rela-
tively large value of load resistance. Considering the second vi-
bration mode �see the second enlarged view in Fig. 7�, one
observes that the maximum power output is obtained for Rl
=104 � at frequency �=300.88 Hz and this frequency has a mod-
erate value between the short circuit and the open circuit reso-

lues of load resistance „with the en-
ng the short circuit and open circuit

nt values of load resistance „with the
esonances showing the short circuit
Fig. 5 Current FRF for five different va
larged view of Mode 1 resonance showi
ig. 6 Variation of current output with load resistance for base
xcitations at the short circuit and open circuit resonance fre-
uencies of the first vibration mode
Fig. 7 Power output FRF for five differe
enlarged views of Mode 1 and Mode 2 r
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ance frequencies of the second vibration mode �Table 2� since
he respective resistive load also has a moderate value. According
o Fig. 7, among the sample values of load resistance employed in
he analysis, the maximum power output for excitation at the third
ibration mode corresponds to Rl=103 � at frequency �
838.34 Hz, which is close to the short circuit resonance fre-
uency of the third vibration mode �Table 2� as this resistive load
as a relatively low value. One should note that the values of the
oad resistance we use in this analysis are taken arbitrarily to
bserve the general trends. Therefore, the maximum power out-
uts obtained from each vibration mode are for these sample val-
es and they are not necessarily the maximum possible �or the
ptimized� power outputs. It is a straightforward practice to obtain
he optimum resistive load and its respective resonance frequency
or each vibration mode and it is beyond the discussion of this
ection, which aims to address more general points. Another in-
eresting point to mention is the switching between the curves of
ifferent values of load resistance, which results in intersections
etween the FRFs. These intersections are observed not only
round the resonance frequencies �see the first enlarged view, e.g.,
he curves for Rl=104 � and Rl=105 � intersect at 48.19 Hz� but
lso they are observed at the off-resonance frequencies �e.g., the
urves for Rl=103 � and Rl=104 � intersect at 193.68 Hz�. At
hese intersection frequencies, the two respective load resistance
alues yield the same power output.

We further investigate the variation of power output with load
esistance for excitations at the short circuit and open circuit reso-
ance frequencies of the first vibration mode through Fig. 8. It can
e remembered from Figs. 4 and 6 that the voltage and the current
utputs obtained at the short circuit resonance frequency are
igher than the ones obtained at the open circuit resonance fre-
uency up to a certain load resistance �approximately 39.8 k� in
his case� after which the opposite is valid. Since the power output
s simply the product of the voltage and current, this observation
s also valid for the power versus load resistance curves. As can be
een form Fig. 8, we have the same intersection point �Rl

39.8 k�� and the power output at the short circuit resonance
requency is higher before this point, whereas the power output at
he open circuit resonance frequency is higher after this point. The
rend in the low load resistance region is similar to that of the
oltage output where the graphs increase with the same slope �in
og-log scale� with increasing load resistance.

More importantly, since the behavior of power with changing
oad resistance is not monotonic, both of the power graphs shown
n Fig. 8 display peak values, which correspond to the optimum
alues of load resistance. When the optimum values of load resis-

ig. 8 Variation of power output with load resistance for base
xcitations at the short circuit and open circuit resonance fre-
uencies of the first vibration mode
ance are used for each of the cases �short circuit and open circuit
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excitations�, both of them yield the same power output. Consider-
ing Figs. 4 and 6, it can be observed that neither voltages nor
currents are identical at these optimum values of load resistance
for excitations at short circuit and open circuit resonance frequen-
cies. However, the products of voltage and current for both cases
are identical so that the power outputs for these resistive loads are
identical for the short circuit and open circuit resonance frequency
excitations separately.

7.5 Frequency Response of Beam Vibration. Now, we de-
fine the relative tip motion FRF �or the relative motion transmis-
sibility function�, which is the ratio of the vibration �displace-
ment� amplitude at the tip of the beam �relative to the base� to the
amplitude of the base displacement. Therefore, this mechanical
FRF can be expressed using Eq. �51� as

wrel�L,t�
Y0ej�t = 


r=1

� 
�r
w − 
r� 


r=1

�
j��r�r

w

�r
2 − �2 + j2�r�r�



r=1

�
j�
r�r

�r
2 − �2 + j2�r�r�

+
1 + j��c

�c

��
�

m�2�r�L�
�r

2 − �2 + j2�r�r�
�65�

Note that one could as well define the relative motion transmis-
sibility FRF for any other point �say, for point x1� throughout the
beam �by simply setting �r�x1� at the right hand side of Eq. �65��.
However, the motion at the tip of the beam is of particular interest,
because it is the position of the maximum transverse displacement
for the practical vibration modes. As a consequence, the vibratory
motion at the tip of the beam plays an important role while decid-
ing on the volume of the harvester.

Figure 9 shows the modulus of the relative tip motion FRF
against excitation frequency. Considering the main graph, it is not
easy to distinguish between the FRFs for different values of load
resistance. However, as can be seen from the enlarged views in
Fig. 9, there are considerable variations around the resonance fre-
quencies. We observe the same short circuit and open circuit reso-
nance frequency behaviors. Note that the uncoupled �purely me-
chanical� FRF is also provided, and expectedly, as Rl→0, the
coupled FRF converges to the uncoupled FRF.

As the value of load resistance is increased from Rl=102 � to
Rl=105 �, the vibration amplitude at the short circuit resonance
frequency �47.8 Hz� decreases considerably �by a factor of about
2.5�. However, when Rl is further increased to 106 �, the ampli-
tude of vibrations at this frequency starts increasing. Therefore, it
can be concluded that the vibration amplitude at a frequency does
not necessarily show a monotonic behavior with increasing/
decreasing load resistance, as in the case of the power output FRF.
If we investigate the vibration amplitude at the open circuit reso-
nance frequency �48.8 Hz� as Rl is increased from 102 � to
106 �, we see that the vibration amplitude first starts decreasing
smoothly and then it starts increasing sharply.

Figure 10 allows investigating the variation of relative tip dis-
placement amplitude with load resistance more clearly. As can be
seen from Fig. 10, the relative tip vibration is insensitive to varia-
tions of load resistance in the low load resistance region and rea-
sonably the vibration amplitude at the short circuit resonance fre-
quency is higher in this region. As the load resistance is further
increased, due to the electromechanical effects, the vibration am-
plitude at the short circuit resonance frequency is attenuated. One
should be aware of the fact that this attenuation in the vibration
amplitude at the short circuit resonance frequency is indeed more
complicated than just damping. Considering the first enlarged
view in Fig. 9, one can see that the peak moves from
47.8 Hz to 48.8 Hz. This is the reason of the attenuation of vibra-
tion amplitude at 47.8 Hz. At this point, one should expect some

increase in the vibration amplitude at 48.8 Hz and this is what we

AUGUST 2008, Vol. 130 / 041002-11

3 Terms of Use: http://asme.org/terms



o
t
q
i
i

t
t
n
p
v
c
p
v
i
s
v
c

F
m
c
b

0

Downloaded Fr
bserve both in Figs. 9 and 10. As the load resistance increases,
he peak, which used to be at the short circuit resonance fre-
uency, moves toward the open circuit resonance frequency, caus-
ng not only an attenuation at the former frequency but also an
ncrease at the latter frequency.

It is also worthwhile to investigate the power versus load resis-
ance �Fig. 8� and the relative tip displacement versus load resis-
ance �Fig. 10� trends simultaneously. At the short circuit reso-
ance frequency, as the load resistance is increased gradually, the
ower output increases until the load resistance takes its optimum
alue. At the same time, the vibration amplitude is attenuated
onsiderably. Further increase in the load resistance reduces the
ower output, which is associated with a slight increase in the
ibration amplitude. At the open circuit resonance frequency, an
ncrease in the load resistance first reduces the vibration amplitude
lightly and the power increases at the same time. Then, in the
icinity of the optimum load resistance for excitation at open cir-
uit resonance frequency, the vibration amplitude starts increasing

Fig. 9 Relative tip motion FRF for the
system with five different values of loa
Mode 1 and Mode 2 resonances sho
behaviors…

ig. 10 Variation of relative tip displacement to base displace-
ent ratio with load resistance for base excitations at the short

ircuit and open circuit resonance frequencies of the first vi-

ration mode

41002-12 / Vol. 130, AUGUST 2008

om: http://vibrationacoustics.asmedigitalcollection.asme.org/ on 09/27/201
and it increases with increasing load resistance with a high rate.
The important observation is the opposite trend in the relative tip
displacement for excitations at the short circuit and the open cir-
cuit resonance frequencies around their respective optimum resis-
tive loads.

It should be mentioned that the relative tip motion FRF exhibits
antiresonance frequencies. In the frequency range 0–1000 Hz, an
antiresonance frequency is captured at 536.7 Hz for short circuit
conditions, which moves to 538.6 Hz for open circuit conditions.
It can be seen from Fig. 9 that, at this antiresonance frequency, the
relative displacement at the tip of the beam is less than 1% of the
base displacement. Note that this is the formal definition of an
antiresonance frequency of an FRF in the vibration literature and
this frequency should not be confused with the open circuit fre-
quency of a vibration mode, which duToit et al. �6� call the anti-
resonance frequency in their SDOF model. Although it is not pos-
sible to see from Fig. 9, the FRFs are not identical at the off-
resonance frequencies and they are slightly different. The
intersections between the curves observed for the power FRF are
also observed here in the relative tip motion FRF.

8 Electromechanical Coupling and the Effect of Strain
Nodes

Consider the general form of the circuit equation given by Eq.
�34�. The forcing term at the right hand side of this equation
determines the amplitude of the electrical output. Other than the
modal mechanical response �in the form of modal velocity re-
sponse�, the forcing term depends on the modal coupling term �r.
As far as the mechanical equation of motion is concerned, the
coupling information is included in the term 
r, as can be seen
from Eq. �27�. Although �r and 
r are defined separately in the
electrical and the mechanical equations for convenience, they are
not too different terms. Both �r and 
r depend on the geometric
parameters of the beam, Young’s modulus, and the electrome-
chanical parameters of the PZT, and more importantly, the bend-
ing slope eigenfunction evaluated at the boundaries of the elec-
trodes. If the type of the PZT and the geometry of the composite
harvester beam are already decided, the last term related to the
bending slope plays a very important role in shaping the coupled

coupled system and for the coupled
esistance „with the enlarged views of
g the short circuit and open circuit
un
d r
win
dynamics of the electromechanical system.
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In the main derivation, since we assumed the electrodes to be
overing the entire length of the beam, the parameter related to the
ending slope eigenfunction was reduced to the slope at the free
nd of the beam �because the slope at the root of the beam is
lready zero�. If the electrodes cover only the arbitrary region x1
x�x2, the term related to the bending slope eigenfunction ap-

earing in the coupling term expressions, Eqs. �28� and �35�, must
e modified as follows:

�d�r�x�
dx

�
x=L

→ �d�r�x�
dx

�
x=x1

x=x2

�66�

hich describes the dependence of electromechanical coupling on
he locations of the electrodes for harvesting energy from the rth
ibration mode. If the continuous electrodes are located such that
he slopes at their boundaries are identical for a vibration mode,
ne should expect zero or very low electromechanical coupling
or vibrations at that mode. It should be kept in mind that good
lectromechanical coupling yields good electrical outputs in en-
rgy harvesting. Therefore, for vibrations at a particular mode
hape, the aim must be to keep the bending slope difference at the
oundaries of the electrodes maximum so that the maximum elec-
rical output is extracted from the system.

The physical reason is the existence of the strain nodes where
he distribution of the bending strain throughout the length of the
eam changes sign, i.e., its phase changes by 180 deg �12�. Strain
odes exist in all vibration modes other than the fundamental
ibration mode of a cantilevered beam. Only in the first vibration
ode, the strain distribution along the length of the beam is in

hase. In all higher vibration modes, the curvature eigenfunction
d2�r�x� /dx2� of the beam �which is a measure of bending strain�
hanges sign as we move from the clamped end to the free end of
he beam. We observe from Eq. �35� that the electromechanical
oupling is proportional to the integral of the curvature over the
ength of the electrodes. This is why we end up with the bending
lope eigenfunction �d�r�x� /dx� evaluated at the boundaries of the
lectrodes. Due to the sign change in the integrand, cancellation
ccurs and the electromechanical coupling and consequently the
lectrical outputs are reduced drastically. In order to avoid this
ancellation, segmented electrode pairs must be used to collect the
lectric charge developed at the opposite sides of strain nodes.
he resulting electrical outputs of these electrode pairs will be out
f phase by 180 deg. and their leads must be combined accord-
ngly for the maximum electrical output in the circuit �15�.

We provide two simple demonstrations from our parametric
ase study given in the previous section for a specific resistive
oad �Rl=105 ��. The first vibration mode has no strain nodes,
hereas the second vibration mode has one strain node at x
0.216L, and the third vibration mode has two strain nodes at x
0.132L and x=0.497L �remember that x is measured from the
lamped end of the beam and L is the length of the beam�. Fur-
hermore, for the second mode shape, it can be obtained that the
lope at x=0.471L is zero. For the third mode shape, one of the
wo positions where the slope is zero is x=0.291L �12�. Note that
ll these numbers are for an Euler–Bernoulli beam without a tip
ass, and existence of a tip mass alters these numerical values

15�.
Figure 11 shows three voltage FRFs for different electrode con-

gurations and the attention is given to the second vibration
ode. In the first configuration, the continuous electrode pair cov-

rs the entire surface of the beam �0�x�L�, which was already
he case in our main discussion. We know that it gives the best
lectrical output for the first vibration mode since the strain dis-
ribution along the length of the beam is in phase for this mode.
owever, we also know that the second vibration mode has a

train node at x=0.216L and covering this point by continuous
lectrodes should cause some cancellation. In order to see this, we
ntroduce the second configuration where the electrodes cover the

egion between the strain node of the second mode and the free
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end of the beam �that is, 0.216L�x�L�. As can be seen from Fig.
11, this configuration improves the voltage output from the second
vibration mode �by a factor of more than 1.4�. If desired, another
electrode pair can be used to cover the region 0�x�0.216L and
these two outputs �which are 180 deg out of phase� can be com-
bined for the best output from the second vibration mode. The
third configuration covers the region 0�x�0.471L. The major
strain distributions between 0�x�0.216L and 0.216L�x
�0.471L cancel each other, and as can be seen from Fig. 11, the
resulting voltage output from the second vibration mode is re-
duced drastically for this configuration �by a factor of more than
70�. The slight contribution comes from residues of the neighbor-
ing modes, particularly from the first mode. It should also be
mentioned that, among these configurations, the first and the third
vibration modes give the best voltage output for the first configu-
ration where the entire surface of the beam is covered with con-
tinuous electrodes.

Next, consider Fig. 12 where the attention is given to the third
vibration mode. Again, we consider three electrode configurations.
The continuous electrode pair covers the entire length of the beam
in the first configuration �0�x�L�. Although this configuration
gives the highest voltage output for the first vibration mode, this is
not the case for the third mode, which has two strain nodes at x
=0.132L and x=0.497L. In the second configuration, the elec-
trodes cover the region between these strain nodes, which is

Fig. 11 Effect of the location of continuous electrode pair on
the voltage FRF „focusing on the vibrations around the second
mode…

Fig. 12 Effect of the location of continuous electrode pair on
the voltage FRF „focusing on the vibrations around the third

mode…
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.132L�x�0.497L. As can be seen from Fig. 12, this configura-
ion improves the voltage output from the third mode �by a factor
f more than 1.2�. One might as well obtain the voltage outputs
rom the remaining regions 0�x�0.132L and 0.497L�x�L,
nd combine all three outputs to obtain the maximum voltage
utput. Note that the voltage output from the electrode pair cov-
ring 0.132L�x�0.497L will be 180 deg out of phase and the
utputs of the other two regions will be in phase. In the third
onfiguration, the electrodes cover the region 0�x�0.291L for
emonstrating the cancellation in the third mode clearly. Since the
train distributions in 0�x�0.132L and 0.132L�x�0.291L
ancel each other, the voltage output is attenuated by a factor of
ore than 13. The slight electrical output is due to the contribu-

ions from the neighboring modes, especially from the second
ibration mode. One should also notice the antiresonance frequen-
ies that show up in the FRF for the second and the third electrode
onfigurations.

Conclusions
In this paper, a distributed parameter electromechanical model

or cantilevered piezoelectric harvesters is derived. The analytical
ormulation of the coupled system is based on Euler–Bernoulli
eam assumptions. The harvester beam is assumed to be excited
ue to the translational motion of its base in the transverse direc-
ion with superimposed small rotation. In mechanical modeling,
he internal strain rate damping �i.e., Kelvin–Voigt damping� and
he external air damping are treated more accurately by defining
eparate damping coefficients.

The electromechanical equations are first derived for general
ransient base motions. In other words, the base motion is not
estricted to be harmonic in time so that general coupled expres-
ions for the mechanical response and voltage output are obtained.
hen, the electromechanically coupled equations are reduced for

he case of harmonic base translation with small rotation, and
losed-form expressions are presented for the voltage, current, and
ower outputs as well as the coupled mechanical response of the
arvester. The resulting equations are further reduced for the case
f excitation around a natural frequency.

The analytically obtained expressions are then used in a para-
etric case study. In order to observe the frequency response be-

avior of the electrical outputs and the relative tip motion of the
arvester, the FRFs which relate the voltage, current, power, and
elative tip motion to the base motion are identified. These FRFs
re plotted against frequency for a wide range of load resistance.
hort circuit and open circuit conditions of the system are dis-
ussed. For a better understanding of short circuit and open circuit
onditions, the electromechanical outputs are also plotted against
oad resistance for these two extreme cases of the resistive load.
he mathematical modeling is based on the assumption of propor-

ional damping �strain rate damping is assumed to be stiffness
roportional, whereas air damping is assumed to be mass propor-
ional�. However, after describing how to identify the strain rate
nd air damping coefficients from experimental measurements, a
imple relaxation is described for handling experimentally ob-
ained nonproportional damping in the modal expansion.

Finally, electromechanical coupling and its relevance to the lo-
ations of the electrodes and the strain nodes are discussed. Once
he geometry and the material of the bender are decided, the lo-
ations of the electrodes become important in determining the
agnitude of the modal electromechanical coupling, which deter-
ines the magnitude of the electrical outputs. The issue of strain

odes of vibration mode shapes and cancellation of the electrical
utputs due to covering the strain nodes of higher vibration modes
ith continuous electrodes are described with examples. Sugges-

ions are made for increasing the electromechanical coupling and

herefore the electrical outputs of the harvester.
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Appendix
Consider Fig. 13�a�, which displays the cross section of the

composite unimorph beam of Fig. 1. The width of the beam is
denoted by b, the thickness of the PZT layer is hp, and the thick-
ness of the substructure layer is hs. The procedure of finding the
position of the neutral axis of a composite cross section is de-
scribed in elementary strength of material texts �e.g., Timoshenko
and Young �18�� and it requires transforming the cross section to a
homogeneous cross section of single Young’s modulus �see Fig.
13�b��. We take the PZT as the material of the transformed cross
section and define the ratio of Young’s moduli as n=Ys /Yp. In the
transformed cross section, the width of the substructure layer is
increased if Ys�Yp or it is reduced if Yp�Ys. For demonstration,
the typical case Ys�Yp is assumed in Fig. 13�b� �which is also the
case in our parametric case study� so that widening occurs in the
substructure layer. Then, it is a simple practice to obtain the pa-
rameters defined in Fig. 13�b� �and therefore the position of the
neutral axis� in terms of the parameters of Fig. 13�a� and Young’s
moduli ratio n as follows:

hpa =
hp

2 + 2nhphs + nhs
2

2�hp + nhs�
, hsa =

hp
2 + 2hphs + nhs

2

2�hp + nhs�
,

�A1�

hpc =
nhs�hp + hs�
2�hp + nhs�

where hpa is the distance from the top of the PZT layer to the
neutral axis, hsa is the distance from the bottom of the substruc-
ture layer to the neutral axis, and hpc is the distance from the
center of the PZT layer to the neutral axis. Note that the geometric
parameters used in the main formulation �ha, hb, and hc� describe
positions from the neutral axis rather than distances. Therefore,
they can be expressed as

ha = − hsa, hb = hpa − hp, hc = hpa �A2�

It can be remembered from the main text that ha is the position of
the bottom of the substructure layer from the neutral axis �always
negative�, hb is the position of the bottom of the PZT layer from
the neutral axis �positive or negative�, and hc is the position of the
top of the PZT layer from the neutral axis �always positive�.
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