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Cantilevered beams with piezoceramic layers have been frequently used as piezoelectric
vibration energy harvesters in the past five years. The literature includes several single
degree-of-freedom models, a few approximate distributed parameter models and even
some incorrect approaches for predicting the electromechanical behavior of these har-
vesters. In this paper, we present the exact analytical solution of a cantilevered piezo-
electric energy harvester with Euler—Bernoulli beam assumptions. The excitation of the
harvester is assumed to be due to its base motion in the form of translation in the
transverse direction with small rotation, and it is not restricted to be harmonic in time.
The resulting expressions for the coupled mechanical response and the electrical outputs
are then reduced for the particular case of harmonic behavior in time and closed-form
exact expressions are obtained. Simple expressions for the coupled mechanical response,
voltage, current, and power outputs are also presented for excitations around the modal
frequencies. Finally, the model proposed is used in a parametric case study for a uni-
morph harvester, and important characteristics of the coupled distributed parameter
system, such as short circuit and open circuit behaviors, are investigated in detail. Modal
electromechanical coupling and dependence of the electrical outputs on the locations of
the electrodes are also discussed with examples. [DOI: 10.1115/1.2890402]
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1 Introduction

For the past five years, there has been an explosion of research
in the area of harvesting energy from ambient vibrations by using
the direct piezoelectric effect [1]. Research in this area involves
understanding the mechanics of vibrating structures, the constitu-
tive behavior of piezoelectric materials, and elementary circuit
theory. This promising way of powering small electronic compo-
nents and remote sensors has attracted researchers from different
disciplines of engineering including electrical and mechanical as
well as researchers from the field of material science.

The literature includes several experimental demonstrations
both in macroscale [2,3] and in microscale [4] piezoelectric en-
ergy harvesting. In most of the experimental work, the harvester,
which is a cantilevered composite beam with one or more piezo-
ceramic (PZT) layers,” is excited harmonically at its fundamental
natural frequency for the maximum electrical output. Although
most ambient vibration sources do not have harmonic behavior in
time, most previous research has assumed harmonic excitation.
Furthermore, in some of the works, the excitation frequency of the
harvester is so high that the resulting work deviates from the main
motivation of the problem since no such frequencies are available
in the ambient energy. Nevertheless, especially in the case of mi-
croscale harvesters [4], natural frequencies in the kilohertz fre-
quency band are almost inevitable due to the extremely low mass
of the structure.

Many researchers have also focused on the mathematical mod-
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eling of these harvesters. A reliable mathematical model may al-
low studying different aspects of energy harvesting, predicting the
electrical outputs, and, moreover, optimizing the harvester for the
maximum electrical output for a given input. The modeling ap-
proaches in the literature include coupled single degree-of-
freedom (SDOF) models [5,6], approximate distributed parameter
models (with the Rayleigh-Ritz method) [2,6] as well as some
distributed parameter modeling approaches [7,8] that consider a
single vibration mode and ignore (or oversimplify) the backward
coupling in the mechanical domain and even some incorrect mod-
eling attempts [9] based on informal and weak mathematical mod-
eling assumptions.

The SDOF modeling approach (or the so-called lumped param-
eter modeling) considers the cantilevered beam as a mass-spring-
damper system, which is very convenient for coupling the me-
chanical part of the harvester with a simple electrical harvesting
circuit. Although SDOF modeling gives initial insight into the
problem by allowing simple closed-form expressions, it is just a
simple approximation limited to a single vibration mode of the
bender and it lacks several important aspects of the physical sys-
tem, such as the dynamic mode shape and the accurate strain
distribution along the bender. Since these cantilevered harvesters
are excited mainly due to the motion of their base, the well-known
SDOF harmonic base excitation relation taken from the elemen-
tary vibration texts has been frequently referred in the energy
harvesting literature both for modeling [6,9] and studying the de-
tailed characteristics [10] of harvesters. Some authors have used
the SDOF harmonic base excitation relation just for representing
the problem in their experimental work, although they did not
provide any detailed mathematical modeling [4,11]. It was re-
cently shown [12] that the traditional form of the SDOF harmonic
base excitation relation may yield highly inaccurate results both
for transverse and longitudinal vibrations of cantilevered beams
and bars depending on the tip (proof) mass to beam/bar mass
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ratio. When a structure is excited due to the motion of its base, the
excitation source is nothing but its own inertia. As a result, the
conventional effective mass of cantilevered beams and bars results
in underestimation of the predicted response especially if there is
low or no tip mass. Erturk and Inman [12] introduced correction
factors for improving the existing SDOF harmonic base excitation
model for both transverse and longitudinal vibrations of cantile-
vers.

As an alternative modeling approach, Sodano et al. [2] and
duToit et al. [6] used the conventional combination of the varia-
tional principle (which is also referred to the Hamilton’s principle)
and the Rayleigh—Ritz method based on the Euler—Bernoulli beam
assumptions. This approximate modeling approach allows predict-
ing the electromechanical response in higher vibration modes.
However, it is a numerical approximation technique based on dis-
cretization of the continuous distributed parameter system and it is
not the exact solution. Other than these approximate techniques,
the literature also includes some analytical modeling approaches.
In their modeling paper, Lu et al. [7] used a single vibration mode
expression (rather than a modal expansion) in the piezoelectric
constitutive relation that gives the electric displacement [13] in
order to relate the electrical outputs to the mechanical mode
shape. Such an approach lacks two important points: backward
coupling in the mechanical domain (as coupling in the mechanical
equation is not considered) and the contributions from the other
vibration modes (as the correct approach implies using the expan-
sion of all vibration modes). Therefore, such a model is approxi-
mately valid in the vicinity of that respective vibration mode, and
the plots given for a wide frequency band (such as the power plot
in Ref. [7]) based on this modeling approach are meaningless
since all the other vibration modes are missing in the model. Chen
et al. [8] also presented a similar distributed parameter modeling
approach where the mechanical response was represented by
modal expansion, but the effect of backward piezoelectric cou-
pling in the mechanical equation was assumed to be viscous
damping. Representing the effect of electromechanical coupling in
the mechanical equation by a viscous damping coefficient is a
reasonable approach for a certain type of electromagnetic harvest-
ers described by Williams and Yates [14] but not for piezoelectric
harvesters. The effect of piezoelectric coupling in the mechanical
domain is more sophisticated than just viscous damping as it re-
sults in variation of the natural frequencies rather than just attenu-
ation of the motion amplitude, which is discussed in this paper
extensively. Quite recently, Ajitsaria et al. [9] proposed a model-
ing approach for “bimorph piezoelectric cantilever for voltage
generation.” Their main reference considers static modeling of
piezoelectric actuators where it is reasonable to assume a constant
radius of curvature over the beam length. However, Ajitsaria et al.
[9] tried to combine these static modeling equations (with con-
stant radius of curvature and static tip force) with the dynamic
Euler-Bernoulli beam equation (where the radius of curvature
varies) and base excitation (where there is no tip force).

In this paper, we present the exact electromechanical solution of
a cantilevered piezoelectric energy harvester for transverse vibra-
tions with Euler—Bernoulli beam assumptions. The harvester beam
is assumed to be excited by the motion of its base, which is
represented by translation in the transverse direction and small
rotation. First, the base motion is not restricted to be harmonic in
time so that the general coupled equations are obtained for the
mechanical response of the beam and the voltage output. Then,
the resulting equations are reduced for the case of harmonic base
translation with superimposed harmonic small rotation. Closed-
form expressions for the voltage, current, and power outputs as
well as the mechanical response are presented. The expressions
are further reduced to single-mode relations for the case of exci-
tation around a natural frequency of the bender.

We consider more sophisticated damping mechanisms in me-
chanical modeling of the harvester. The internal strain rate damp-
ing (i.e., Kelvin—Voigt damping) and the external air damping
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Fig. 1 Unimorph piezoelectric energy harvester under transla-
tional and small rotational base motions

effects are treated more accurately by defining separate damping
coefficients. The electrical circuit consists of a resistive load con-
nected to the electrodes bracketing the PZT layer. Therefore,
along with the internal capacitance of PZT, the electrical circuit is
a first order (RC) circuit. Although the harvester is taken as a
unimorph, the formulation for a bimorph can easily be obtained
by following a similar procedure.

The analytically obtained electromechanical expressions are
used in a parametric case study where certain electromechanical
frequency response functions (FRFs) are defined for graphical
demonstration. Voltage, current, power, and relative tip motion
FRFs are plotted against frequency for a wide range of load resis-
tance, and the resulting trends in the plots are investigated in
detail. Although the mathematical model assumes proportional
damping, how to relax this assumption is explained briefly along
with a short discussion of how to extract the internal strain rate
and external air damping coefficients from experimental measure-
ments. Short circuit and open circuit conditions of the FRFs are
discussed and the electromechanical outputs are also plotted
against load resistance for these extreme conditions of the resis-
tive load. Finally, the importance of modal electromechanical cou-
pling in energy harvesting is highlighted and its dependence on
the locations of the electrodes is discussed. The relevance of the
modal coupling concept and the locations of the electrodes to the
issue of strain nodes of vibration modes, which was previously
discussed [12] and experimentally verified [15], is demonstrated
here with FRFs.

2 Derivation of the Electromechanical Model

We consider the unimorph harvester shown in Fig. 1, which is
simply a uniform composite Euler—Bernoulli beam consisting of a
PZT layer perfectly bonded to the substructure layer. As well
known, another typical harvesting configuration is a bimorph with
two PZT layers and that configuration can also be modeled in a
similar manner by following the below modeling procedure. The
harvester shown in Fig. 1 is connected to the electrical circuit
through the electrodes, which bracket the PZT layer. The elec-
trodes are assumed to be perfectly conductive and they cover the
entire surface of the PZT at the bottom and at the top (so that the
electric field is uniform over the length of the beam). The simple
electrical circuit consists of a resistive load only. We assume per-
sistent excitation at the base of the harvester so that continuous
electrical outputs can be extracted from the resistive load. In gen-
eral, the leakage resistance of the PZT is much higher than the
load resistance, which allows neglecting it in the electrical circuit
as it is normally connected to the circuit in parallel to the resistive
load. In Fig. 1, the capacitance of the PZT is considered as inter-
nal to the PZT rather than showing it as an external element par-
allel to the resistive load. As we will see later in this work, the
piezoelectric constitutive relations [13] generate the electrical ca-
pacitance term. Therefore, although it is not shown in Fig. 1 as an
element parallel to the resistive load, the capacitance of the PZT
layer is not ignored and it will simply show up in the circuit
equation.

The harvester beam is typically excited due to the motion of its
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base. If the translation and the small rotation of the base are de-
noted by g(7) and h(z), respectively, then the base motion w(x,7)
on the beam can be represented as [16]

wi(x,1) = g(t) + xh(1) (1)

The governing equation of motion can then be written as [12]

FPM(x,1) . Iﬁswrel(x,t)

ﬁwrel(-xvt) ﬁzwrel(-’ﬁ t)
ox? T oxtor o

o ar

Pwy(x,1) Iwy(x,1)
m T —Ca
ar ot

2)

where w,(x,7) is the transverse deflection of the beam relative to
its base, M(x,1) is the internal bending moment, ¢,/ is the equiva-
lent damping term of the composite cross section due to structural
viscoelasticity (c, is the equivalent coefficient of strain rate damp-
ing and / is the equivalent area moment of inertia of the composite
cross section), ¢, is the viscous air damping coefficient, and m is
the mass per unit length of the beam. Both of the damping mecha-
nisms considered in the model satisfy the proportional damping
criterion, hence, they are mathematically convenient for the modal
analysis solution procedure [17]. The strain rate damping indeed
shows itself as an internal moment (M =cJJFw/dx>dt) in the
resulting equation of motion. For convenience, we consider it di-
rectly outside the internal moment term in Eq. (2); hence, it ap-
pears as a separate term.

The internal moment can be obtained by integrating the first
moment of the stress distribution at a cross section over the cross-
sectional area. The piezoelectric constitutive relations [13] give
the stress-strain (and electric field) relations and they are ex-
pressed for the substructure and the PZT layers as

T=YSS (3)

TV =Y,(S - d3 E) 4)

respectively. Here, T is the stress, S is the strain, Y is Young’s
modulus; d is the piezoelectric constant, and E is the electric field.
Equation (4) is obtained from the piezoelectric constitutive rela-
tion S;=s%,T|+ds,E3, where s¥| is the elastic compliance at con-
stant electric field and therefore Y), is simply the reciprocal of sf].
Furthermore, subscript/superscript p and s stand for PZT and sub-
structure layers, respectively; 1 and 3 directions are coincident
with x and y directions, respectively (where 1 is the direction of
axial strain and 3 is the direction of polarization). Then, the inter-
nal moment can be written as

hy, he
M(x,1)=— f Tibydy — f T{bydy (5)
h,

M Iy

h

where b is the width of the beam, #, is the position of the bottom
of the substructure layer from the neutral axis, /,, is the position of
the bottom of the PZT layer (therefore, top of the substructure
layer) from the neutral axis, and A, is the position of the top of the
PZT layer from the neutral axis (see the Appendix). Expressing
the bending strain in terms of radius of curvature [18] and em-
ploying Egs. (3) and (4) in Eq. (5) give

hy, (92 he
Wiel(x,1 Pwg(x,t
M(x,1) =J Ysb%yzdy+f Ypb%yzdy
h, X hy X

h. d
- f v()Y,b=Lydy (6)
h hl’

b

where the uniform electric field is written in terms of the voltage
v(7) across the PZT and the thickness &, of the PZT (E;(r)=
—v(#)/hy). Equation (6) can be reduced to
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M(x,t)=YI——— + Jv(1) (7)

azwrel(x »f )
o2

where Y1 is the bending stiffness of the composite cross section
given by

Y, (hy=13) + Y, (ki = )

YI=b 8
3 (8)
and the coupling term U can be written as
Y,d3 b
0 ==L (h — hy) ©)

2h,

If the PZT layer and/or the electrodes do not cover the entire
length of the beam but the region x; < x < x,, then the second term
in Eq. (7) should be multiplied by H(x—x;)—H(x—x,), where H(x)
is the Heaviside function. Note that, in energy harvesting from
higher vibration modes, it becomes necessary to use segmented
electrode pairs in order to avoid cancellation of the charge col-
lected by continuous electrode pairs [15]. In such a case, one
needs to define separate voltage terms, which should appear in Eq.
(7) as separate terms multiplied by Heaviside functions. However,
in our case, we assume that the electrodes and the PZT layer cover
the entire length of the beam displayed in Fig. 1 and it is conve-
nient to rewrite Eq. (7) as

Pw (.1
M(x,1) = YI#
ox

+ v (t)[H(x) - H(x-L)] (10)
where L is the length of the beam. In Eq. (10), although the PZT
layer and the electrodes cover the entire beam length, Heaviside
functions are associated with the second term in Eq. (10) in order
to ensure the survival of this term when the internal moment ex-
pression M(x,?) is used in the differential equation of motion

given by Eq. (2). Then, employing Eq. (10) in Eq. (2) yields

Ylfwrel(x,t) e Io"swrel(x,t) e Mg (x,1) . mﬂzwrel(x,t) .

Jo(t
ot S ontor “ o o ®

déx) dé(x-L) Pwy(x,1) wp(x,1)
X|————|=-m > —¢C, (11)

dx dx ot ot
where &(x) is the Dirac delta function and it satisfies [19]
" d"80x - xp) df*"(xy)

f T))f ()dx=(-1)" dx(”)o (12)

Equation (11) is the mechanical equation of motion with elec-
trical coupling. In order to obtain the electrical circuit equation
with mechanical coupling, one should consider the following pi-
ezoelectric constitutive relation:

Dy=dy T, +e5,E; (13)

where Dj is the electric displacement and 8:];3 is the permittivity at
constant stress. If we rearrange Eq. (13) to express axial stress T}
in terms of bending strain §; and Young’s modulus of PZT (Y,
=1/ lel), permittivity component must be replaced by permittivity
at constant strain, which is given by &5;=el,~d3,Y » [13]. After
writing the electric field in the PZT in terms of the voltage across
the PZT (that is, E5(r)=-v(t)/h,), one obtains

v(1)
D;(x,1) =d5,Y,S,(x,1) - s§3h—
p

(14)
The average bending strain at position x and time ¢ in the PZT
layer can be expressed as a function of the distance h,,. of the
center of the PZT layer (in thickness direction) to the neutral axis
(see the Appendix) and curvature of the beam at position x and
time ¢,
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ﬂzwrel(xJ)

Sl(x,t)z—hch (15)
Therefore, Eq. (14) becomes
Pw(x,1) s v
D3(xal)=_d3lyphch_833h_p (16)

The electric charge ¢(¢) developed in the PZT (and collected by
the electrodes) can be obtained by integrating the electric dis-
placement over the electrode area as [13]

L
& 1 !
ﬂﬂi[DmM:—f Gmn@ylﬁgl+£¢ﬂlw
A 0 ox h

P
(17)

where D is the vector of electric displacements and 7 is the unit
outward normal. Clearly, the nonzero terms of these vectors are
the ones in 3 direction (i.e., in the y-direction). Then, the current
generated by the PZT can be given by

L
L _dg(D)
i(r)= 7 =- d3 Y ,hy, b

Pw e (x,1) ~ e33bL dv(t)

20 T h d
=0 ox“ot p t

(18)

Here, the current generated is a function with two components:
The first component is due to the vibratory motion of the beam
and the second component includes the voltage across the PZT. It
is obvious from Eq. (18) that the second term is due to the static
capacitance of the PZT. In the literature, the term s§3bL/ h, is
called the capacitance of the PZT layer (in general, it is denoted
by C,) and this capacitance is connected to the resistive load (R))
shown in Fig. 1 in parallel although, physically, the capacitance of
the PZT is internal to the PZT itself. Since the current expression
given by Eq. (18) includes the capacitance information of the
PZT, in this model, it is convenient to connect the PZT directly to
the resistive load as a current source without any external capaci-
tive element as we did in Fig. 1. Then, the voltage across the
resistive load is simply

fwrcl(xvt)

L
t)=Rji(t)=—R dy Y, h,b dx +
U() Il() 1|:J;_0 314 plipe &Xzﬂl‘ X hp

e33bL dv(7)
dt

(19)
or alternately the electrical circuit equation can be written as

S L 3
bL dv(t t FWier(x,1
€33 (1) U()z_f dyyY b Wiel(x )dx

+ 2
h, dt R, =0 ox~ot

(20)

where v(r) is the voltage across the resistive load.

Equations (11) and (20) are the distributed parameter electro-
mechanical equations for a cantilevered piezoelectric energy har-
vester in transverse vibrations.

3 General Transient Base Motions

The aim of this section is to provide the formal solution proce-
dure of the electromechanically coupled equations of a harvester
beam, which are Egs. (11) and (20). The relative vibratory motion
of the beam can be represented by an absolutely and uniformly
convergent series of the eigenfunctions as

Weet(%,0) = X ¢,(x) 7,(0)

r=1

21)

where ¢,(x) and 7,(¢) are the mass normalized eigenfunction and
the modal coordinate of the clamped-free beam for the rth mode,
respectively. Since the system is proportionally damped, the
eigenfunctions denoted by ¢,(x) are indeed the mass normalized
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eigenfunctions of the corresponding undamped free vibration
problem [17] given by

1 A, A, . A, .\,
¢,(x) = \/—| cosh —x — cos —x — o,| sinh —x —sin —x
mL L L L L

(22)

where the \,’s are the dimensionless frequency numbers obtained
from the characteristic equation given by

1+coshcoshA=0 (23)

and o, is expressed as

o = sinh N, —sin \,. (24)
cosh N, +cos\,

Note that, for the sake of completeness, the tip mass (or the so-
called proof mass) is excluded and the above expressions are for a
cantilevered beam without a tip mass. The effect of a tip mass on
the resulting formulation of the base excitation problem as well as
the respective expressions for the eigenfunctions and the charac-
teristic equation can be found in a recent paper by Erturk and
Inman [20].

The mass normalized form of the eigenfunctions given by Eq.
(22) satisfies the following orthogonality conditions:

d',(x)

dx*

_ 2
dx = w6,

L L
f mey(x) b, (x)dx = 5,4, J YIg(x)
x=0 x=0

(25)

where &, is the Kronecker delta, defined as being equal to unity
for s=r and equal to zero for s # r, and w, is the undamped natural
frequency of the rth mode given by

, | v
=N

Using Eq. (21) in the partial differential equation of motion
along with the orthogonality conditions given by Eq. (25), the
electromechanically coupled ordinary differential equation for the
modal response of the beam can be obtained as

(26)

d*n,(t dn(t
20 200 0 20+ x a0 =N D)
where

d

_p 4 o8
dx x=L
is the modal coupling term and
clw c

— T a 29
& 2Yl  2mo, @9

is the mechanical damping ratio that includes the effects of both
strain rate damping and viscous air damping [12]. It is clear from
Eq. (29) that strain rate damping is assumed to be proportional to
the bending stiffness of the beam, whereas air damping is assumed
to be proportional to the mass per unit length of the beam.

The modal mechanical forcing function N,(r) can be expressed
as

N,(1) = N}'(1) + N;(1) (30)

Here, the components of mechanical excitation (which are the
inertial and the damping excitation terms) are given by the fol-
lowing expressions, respectively;”

3If the excitation due to the external damping of the medium (which is generally
air) is negligible when compared to the inertial excitation (i.e., Ni(t) < N/'(1)), one
can simply set it equal to zero (Ny(r)=0).
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d*g(t d*h(t
(0 (1) ey
,dg(r) — odh(1
N:lt) = ( a7 )
where
L L
Y= ¢d = f xep,(x)dx (32)
x=0 x=0

The modal response (that is, the solution of the ordinary differ-
ential equation given by Eq. (27)) can be expressed using the
Duhamel integral as

1

1
0= [ N0 = xo (D) sin @, (s - )dr

Ord =0
(33)

where w,;= w,w/ 1 —{f is the damped natural frequency of the rth
mode. Clearly, obtaining 7,(¢) from Eq. (33) implies knowing the
voltage v(z) across the PZT.

Consider Eq. (20), which is a first order ordinary differential
equation for v(z), whose forcing term is a function of the relative
vibratory motion. Using Eq. (21) in Eq. (20) yields

20, T Se i (34)
where
_d31Y,,hpch f ¢ Po ) daYphyhy, d, )
" e3,L 0 dx? e3,L dx |,
(35)

Equation (34) can be solved for v(z) by using the following inte-
grating factor:

W(t) =e™ (36)
where 7. is the time constant of the circuit given by
Rje3sbL
T.= el b X (37)
hy

Multiplying both sides of Eq. (34) by the integration factor and
solving the resulting equation yield the following expression for
the voltage across the resistive load:

o(t) = e—t/T(.( ol E dﬂr(f) )

where ¢ is an arbitrary constant that depends on the initial value of
the voltage v(f) across the resistive load as well as the initial
velocity of the beam. However, the form of Eq. (33) assumes the
initial displacement and the velocity of the beam to be zero (a
more complicated form of it could handle the initial displacement
and velocity terms). Therefore, since we assume zero initial con-
ditions for the mechanical domain, the term ¢ in Eq. (38) depends
only on the initial value of the voltage across the resistive load.
Hence, if the initial voltage is zero (v(0)=0), simply, c=0 and this
is what we assume for the sake of simplicity.

Then, if the summation sign and the integral are switched in Eq.
(38), and for ¢=0, one obtains

(38)

“Yet, one can obtain the value of ¢ for nonzero initial conditions both in the
mechanical domain (for the beam) and in the electrical domain (for the electrical
circuit). Note that, for nonzero initial conditions in the mechanical domain, the Du-
hamel integral given by Eq. (33) for the modal mechanical response must be modi-
fied accordingly (i.e., initial displacement and velocity terms must be introduced).
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D)

dt (39)

()= ¢,
r=1

Now, consider the resulting coupled equations (in time do-
main), which are given by Egs. (33) and (39). One can either
eliminate the voltage term v(7) or the modal mechanical response
term 7,(f) in order to obtain a single equation in v(¢) or 7,(¢).
Eliminating 7,(r) and obtaining a single expression for v(r) is
preferable for the energy harvesting problem. When the modal
mechanical response is eliminated in Eq. (39), one obtains the

following implicit expression for the voltage across the resistive
load:

[N,(7) = x,v(7)]

% 4 .
v(t) = e—t/rFE b et/%_(

r=1 @rd dt

=0

X =57 sin @, ,(t — T)dT) dt (40)

When the voltage term is eliminated in Eq. (33), one obtains the
following implicit equation for the modal response:

. ©
i 2z A7)
n0=—| |N@D-xe D ¢ | e —dr
0q) - dr
X =& = sin @, (1 — DdT (41)

The solution of Eq. (41) for 7,(r) can be used in Eq. (21) to obtain
the coupled physical response of the beam.

4 Harmonic Base Motion (Translation With Small Ro-
tation) at an Arbitrary Frequency

In this section, we assume the translation and small rotation of
the beam to be harmonic in time (ie., g(f)=Ye/® and h(r)
=6ye/*", where Y, and 6, are the amplitudes of the base translation
and_rotation, respectively, w is the driving frequency, and j
=y-1 is the unit imaginary number) and obtain closed-form ex-
pressions for steady state voltage output and beam response. Since
the electromechanical system is assumed to be linear, we expect
the voltage output to be harmonic also in the form of v(r)
=V,e/® (where V,, is the amplitude of the harmonic voltage across
the resistive load). Then, the modal equation of motion given by
Eq. (27) can be reduced to>

&t d
er() +2{,0,— — 20, 27,(0) + x,Voel

dt

= mw2(7;VY0 + Yfeo)ejw[ (42)
The steady state solution of Eq. (42) can be expressed as
20 W 0 jwt
mw- (Y Yo+ v,.60) — x,Vole
(1) = [ (%2 0+ %60 = x:Vol (43)

2 .
W, — 0 +j2{,w,.w0

It is important to note that the input in the energy harvesting
problem is the base motion wy,(x,7)=(Yy+x6,)e/* and the output
is the voltage across the resistive load v(r)=V,ye/“. Although they
look like two separate forcing terms in Eq. (43), v(z) is indeed
induced due to wy(x,?), but it acts back as a forcing term in the
mechanical equation due to the electromechanical coupling. Fur-
thermore, v(¢) and wy(x,7) do not have to be in phase, which
makes V,, complex valued although Y, and 6, are real valued.

SExcitation due to air damping is ignored.
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For the electrical circuit, from Eq. (34), one obtains

1+ joT, . - dnt
( ]a)TL)Voe]wtz 2 . 77r( ) (44)

7, dt

r=1

Then, using Eq. (43) in Eq. (44), one can eliminate 7,(f) and
obtain the following implicit expression for the voltage amplitude
V, across the load resistance:

45
wf -+ 20,0, 45)

1+ jor, o jelmaP (Y Yo+ Y06 — x,Vol
<—C> Vo= E b -
c

r=1

However, it is now straightforward to express V,, explicitly as

E jme e, ( Y, Yo+ %0 6o)
2

w? + 20, 0,0

r=1 w, —
Vo= : (46)
JOX P l+jwT,
- wf -+ 2L w0 T,

which is the amplitude of the voltage across the resistive load.
Therefore, the voltage response v() (across the resistive load) due
to the harmonic base motion wy(x,7)=(Yy+x6y)e/* can be ex-
pressed as

D Jma o, (VY + ¥l 6p)e”"

=1 wf -0’ + 2L w0
v(t) =~ (47)
JOX,$r 1 +jor,
r=1 w% - o +j2§rwrw Te

Note that, after obtaining the time history of the voltage across the
resistive load, one can easily obtain the current generated by the
PZT by using i(t)=v(r)/R;. Furthermore, the instantaneous power
output can be expressed using the well-known relation P(r)
=v*(1)/R,. It is worthwhile to mention that, due to the similarity
between the energy harvesting problem (for persistent vibrations)
and the piezoelectric shunt damping problem, some of the equa-
tions derived here may also be applicable to the multimode shunt
damping of a cantilevered beam (see, for instance, Moheimani et
al. [21]). Note that the resistive load connected to the leads of the
electrodes in the circuit can easily be replaced by the impedance
of a more general (but linear) RLC circuit and we can obtain
closed-form expressions for harmonic excitations as long as the
linearity of the electromechanical system is preserved.

It is also possible to eliminate the voltage term in Eq. (43) in
order to obtain the modal mechanical response of the beam as

S Joe (VYo + ¥ 0)
2

N ) o W~ W+ j2L w0
70 = (VYo+v0) - x| =
JOX P, 1+ joT,
' cuf -’ + 2L w0 7,
mw?e’®

(48)

wz -+ 2L w0
which can be employed in Eq. (21) to obtain the vibratory re-
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sponse of the beam relative to its base as

Wee(,1) = E (y/Yo+ 7?00)
r=1

Joe,(¥'Yo+ ¥i6)

? — o? +j2f0,0

r=1 @p—
—Xr © . .
JOXr 1+ jw7,
2 2,
r=1 @~ @ +JZ§,(U,(1) Te

mw’p,(x)e

2_ 2 -
w,— o +j2{,0,0

(49)

5 Harmonic Base Translation at an Arbitrary Fre-
quency

In the energy harvesting literature, the base excitation is con-
sidered as harmonic translation in the transverse direction and the
beam is assumed to be not rotating. In such a case (i.e., when
h(t)=0), the resulting expressions for the steady state voltage re-
sponse can be reduced to

%

jmo’ e,y
2_ 2 .
- 0~ 0+ 200 )
o(f) = ———— . Yol (50)
E ja)Xr(pr 1 +ije
=1 wf -+ 2L w0 7.

and the vibratory response of the beam relative to its base can be
obtained from

~ . w
JOP Yy
2 2 -
r=1 W, — +.]2§rwrw

Wrel(-x,t) = E 7?} — Xr © .
r=1 JOX-Pr

2 .
- W= 0* + 20, 0,0 7,

1+ jor,

maw?d,(x)Y e’

2

I B e— 51
0’ — 0+ j2L0,0 51

6 Harmonic Base Translation Around a Natural Fre-
quency

If the beam is excited around the natural frequency of the rth
mode, the main contributions in the summation signs appearing in
Egs. (50) and (51) are from the rth mode. In most cases, the mode
of interest is the fundamental vibration mode of the harvester (i.e.,
r=1). Therefore, it is a useful practice to consider the beam to be
excited around w,. The reduced expression for the voltage across
the resistive load can be written as

jrme’ ey

Jotxie+ (1 +jw7-c)(w% - +j2{ 0 0)

v¥(t) = Yoele!

(52)

and the reduced expression for vibratory response of the beam
relative to its base is

Transactions of the ASME

Downloaded From: http://vibrationacoustics.asmedigitalcollection.asme.or g/ on 09/27/2013 Terms of Use: http://asme.or g/terms



(1 +jor)mw’y} ¢ (x)
jotxie+ (1 +jw7".)(w% - w2+j2§1w1w)

Yoejwr

(53)

where the superscript “*” denotes that the respective expression is

TcmwSYo“Pﬁ‘”

reduced for excitation around a specific vibration mode (which is
the fundamental mode in this case).
Equation (52) can be rewritten as
v¥(t) = |V:|ef(‘”’+q’v) (54)

where the amplitude of the voltage output is (assuming Y,>0)

Vol= =— 2 > 2 (55)
V[w) - 0" (1 +27.6,0) ] +[2{,0,0 + T.0(x; ¢ + @] - )]
and the phase angle between the base displacement and the reduced voltage output is simply
™ 2w+ Tcw(XIQDl"'w%_wz))
®, =~ sgn(e;y) —tan-1< 56
0Ty en(e;y)) w%—w2(1+2TC{1w1) (56)
where “sgn” is the signum function.
Similarly, Eq. (53) can be expressed as
W:;(x’z) = |W:;l(x)|e"(“’”q’w) (57)
where the amplitude of the vibratory motion at point x (relative to the base of the beam) can be written as
W mo*Yo| Y $1 (V1 + (07,)?
| rel(x)| = r,.2 2 2 2 2172 (58)
Vo) - o' (1 +27.0,0) ] +[2{ 0,0+ T.0(x¢, + 0] - ©7)]
and the phase angle between the base displacement and the relative displacement at point x is simply
o1y ¢ (x 2w+ T.0 + 0 - o’
q)wztan"l( cwﬂﬁbl( ))—tan_l( 4 12 L2 (X191 1 )) (59)
Vi bi(x) o)~ 0 (1+27.40))
The reduced expression for the current flow through the resistive load can then be obtained as
() = [Igenr+®? (60)
where
. C,mw’Y, N
|I(‘)|= : )4 0|(pl‘y|| (61)

and ®,;=®,, i.e., the voltage across the resistive load and the
current flow through it are in phase, reasonably. In Eq. (61), C,, is
the capacitance of the PZT due to C[,=s§3bL/ hy, as mentioned
previously and C,=7,/R, from Eq. (37).

The amplitude of the power output (reduced for the fundamen-
tal vibration mode) can then be expressed as

|P*| CpTc(mqDl 7;1"‘”31/0)2
0

B [w% -1+ 2%510’1)]24' [2{ 010+ T.0(x 0 + w% -]
(62)

(@

\“[‘1’% - 0’ (1+27.50) +[24 00+ o(x ¢ + w% - )]

It is important to note that Egs. (52)—(62) are valid only at the
excitation frequencies around the first natural frequency of the
harvester beam. Replacing the subscript “1” by r in Egs.
(52)—(62), one can obtain the respective electrical and mechanical
expressions for excitation frequencies around the rth natural fre-
quency.

7 Parametric Case Study for a Unimorph Harvester

In this section, we analyze the unimorph harvester shown in
Fig. 2 by using the proposed distributed parameter model. The

PZT

(b)

Fig. 2 (a) The unimorph piezoelectric energy harvester used for the
parametric case study and (b) a detail from its cross section (dimensions

are in millimeters)
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Table 1 Geometric, material, and electromechanical param-
eters of the sample harvester

Length of the beam, L (mm) 100
Width of the beam, b (mm) 20
Thickness of the substructure, /2, (mm) 0.5
Thickness of the PZT, /&, (mm) 0.4
Young’s modulus of the substructure, Y, (GPa) 100
Young’s modulus of the PZT, Y, (GPa) 66
Mass density of the substructure, p, (kg/m?) 7165
Mass density of the PZT, p, (kg/m?) 7800
Piezoelectric constant, d3; (pm/V) -190
Permittivity, &3, (nF/m) 15.93

geometric, material, and the electromechanical parameters of the
harvester are given in Table 1. The conductive electrodes brack-
eting the PZT layer (not shown in Fig. 2) are assumed to be
covering the entire length of the harvester beam. The excitation of
the harvester is due to the harmonic translation w,(f)=Yqe/“" of its
base in the transverse direction and we are interested in the steady
state dynamic behavior of the system. Rather than specifying cer-
tain Y and o values for the input, it is preferred to obtain the
results in terms of these parameters so that it becomes possible to
represent the electromechanical outputs as FRFs.

Let the frequency range of interest be 0—1000 Hz. Then, for the
parameters given in Table 1, it is straightforward to show that the
uncoupled harvester has three natural frequencies lying in this
frequency range. The first part of our analysis focuses on the
following four important FRFs: voltage across the resistive load,
current flow through the resistive load, electrical power output,
and the relative motion transmissibility from the base to the tip of
the beam. The first three FRFs are for the electrical domain, and
clearly, the third one (power output) depends on the first two
(voltage and current). The last FRF gives the ratio of the vibration
amplitude at the tip of the beam (relative to its base) to the am-
plitude of the input base translation. Therefore, only the mechani-
cal FRF gives some idea about the electromechanical effects on
the beam caused by the energy harvesting circuit at different vi-
bration modes. It is worthwhile to mention that distributed param-
eter modeling is not limited to the motion at the tip of the beam as
the analysis presented here allows predicting the coupled vibra-
tory response at any point along the beam.

Due to the electromechanical coupling, each vibration mode
has a short circuit resonance frequency ) (for R;,—0) and an
open circuit resonance frequency w.° (for R;— ), where sub-
script r stands for the mode number. These frequencies are defined
for the extreme cases of the resistive load, and for its moderate
values, reasonably, the resonance frequency of the respective vi-
bration mode takes values between ;" and ‘. In the below
analysis, after plotting each FRF against the excitation frequency,
we investigate the short circuit and open circuit behaviors of the
outputs by plotting them against the load resistance.

7.1 Identification of Mechanical Damping Coefficients. Be-
fore presenting the resulting FRFs and discussing their respective
trends, it may be appropriate to add a few words on mechanical
damping and evaluation of the mechanical damping coefficients
from experimental measurements. With the form of the differen-
tial equation of motion given by Eq. (2), we assumed two separate
damping terms for the internal (strain rate) and the external vis-
cous (air) damping mechanisms, which are ¢,/ and c,, respec-
tively. This is the formal way of treating the problem and a de-
tailed discussion is available in Ref. [12]. As mentioned
previously, ¢,/ is assumed to be stiffness proportional and c, is
assumed to be mass proportional. Evaluating these damping coef-
ficients from experimental measurements requires knowing the
frequencies and damping ratios of two separate vibration modes
(say, modes m and n) [22]. Then, for r=m and r=n, one has two

041002-8 / Vol. 130, AUGUST 2008

linear algebraic equations to solve for the unknowns c,/ and c,
(see Eq. (29)). Suppose that, for the harvester of our interest (Fig.
2), we obtain the damping ratios of the first two modes as ¢
=0.010 and {,=0.013 from experimental modal analysis under
short circuit conditions (R;—0) and this is what we assume for
our parametric study. We also know that w;=300.4 rad/s and
®,=1882.5 rad/s. Then, the two equations coming from Eq. (29)
give the proportionality constants as c,//YI=1.2433 X 1075 s/rad
and c,/m=4.886 rad/s. Once these proportionality constants are
used in the mathematical model, the rest of the modal damping
ratios are automatically set to the following numbers: {3=0.033,
4=0.064, {5=0.106, and so on. However, one should always
keep in mind that proportional damping is a convenient math-
ematical modeling assumption and the physical system may not
agree with this assumption. In other words, the damping ratios of
higher vibration modes may not converge to the above values. At
this point, it is important to note that instead of using ¢,/ and ¢, in
the distributed parameter model we propose, one can always use
the modal damping ratios (£,’s) obtained experimentally directly
in the modal expansions appearing in the resulting electrome-
chanical expressions. For example, if the first three modes are of
interest, one obtains the damping ratios of these modes experi-
mentally and employs them in the summation terms of the result-
ing equations by just considering these three modes (n=3). This
way allows a relaxation in the proportional damping assumption
and one does not need to obtain the values of ¢,/ and c,.

7.2 Frequency Response of Voltage Output. Having dis-
cussed some important points regarding the mechanical damping
and its accurate evaluation, we start investigating the resulting
electromechanical FRFs. Since the value of load resistance R, is
an important parameter that shapes the dynamic behavior of the
system, we plot the FRFs for five different orders of magnitude of
R, ranging from 107 () to 10° ). As discussed previously, short
circuit behavior is expected for low values of load resistance (R,
—0), whereas the system is expected to move toward the open
circuit conditions for large values of load resistance (R;— ).

The voltage FRF is described as the ratio of the voltage output
to the base acceleration. Therefore, this FRF can be extracted
from Eq. (50) as

0

5 imoey;

U(t) r=1 “’z - wz +j2§rwrw
- w?Y, e/”"z “ . . (63)
0 JOX P, 1 +jwt,
1 wf -+ 20,00 T,

The modulus of the “voltage FRF” given by Eq. (63) is plotted
in Fig. 3. As can be seen from Fig. 3, the amplitude of the voltage
output increases monotonically with increasing load resistance for
all excitation frequencies. Furthermore, with increasing load resis-
tance, the resonance frequency of each vibration mode moves
from the short circuit resonance frequency (w)) to the open cir-
cuit resonance frequency (w°). As an example, the enlarged view
of the first resonance is displayed in Fig. 3. For excitation at the
first vibration mode, the maximum voltage is obtained for wi
=47.8 Hz when R;=10? Q). However, when R,=10° () is used, the
resonance frequency of the fundamental vibration mode becomes
{°=48.8 Hz. For every excitation frequency, the maximum volt-
age output is obtained when the system is close to open circuit
conditions. A similar trend (the existence of open circuit and short
circuit resonance frequencies) is valid for all vibration modes.
Table 2 shows the frequencies of the short circuit and the open
circuit resonances for the first three vibration modes.

As mentioned, the voltage output increases monotonically with
increasing load resistance at every excitation frequency. The two
important excitation frequencies of the fundamental vibration
mode are the short circuit and the open circuit resonance frequen-
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Fig. 3 Voltage FRF for five different values of load resistance (with the en-
larged view of Mode 1 resonance showing the short circuit and open circuit

behaviors)

cies, which are w|°=47.8 Hz and ]°=48.8 Hz, respectively.
Variation of the voltage output with load resistance for excitations
at these frequencies is shown in Fig. 4. As can be seen from Fig.
4, for low values of load resistance, the voltage outputs at these
two particular excitation frequencies increase with the same slope
(in log-log scale) and the voltage output at the short circuit reso-
nance frequency is higher since the system is close to short circuit
conditions. However, the curves intersect at a certain value of load
resistance (around 39.8 k{)) and for the values of load resistance
higher than the value at the intersection point, the voltage output
at the open circuit resonance frequency is higher expectedly. The

Table 2 Short circuit and open circuit resonance frequencies
of the harvester for the first three vibration modes

Mode 1 Mode 2 Mode 3
)¢ (Hz) (short circuit) 47.8 299.6 838.2
48.8 301.5 839.2

) (Hz) (open circuit)

10 ; .

Excitation at the short circuit
resonance frequency (mode 1)\

&
o
©

&
o:

Excitation at the open circuit
resonance frequency (mode 1) |

Voltage [Volts.seczlm]
3

&

-
o,

417 1 L
10° 10° 10* 10
Load resistance [Ohms]

Fig. 4 Variation of voltage output with load resistance for base
excitations at the short circuit and open circuit resonance fre-
quencies of the first vibration mode

Journal of Vibration and Acoustics

voltage output becomes less sensitive to the variations in the load
resistance at open circuit conditions (i.e., for very large values of
load resistance).

7.3 Frequency Response of Current Output. The current
FRF can easily be obtained by dividing the voltage FRF by the
load resistance as follows:

i(?) v(t)

- wZYOejwt = RZ(J)ZY()eja”
_ jmog,y!
— wf -+ 2000
= - (64)
o) 1+ jor,
Rl E B JZerPr JWT,
— 0, — 0 +j2l 0.0 7.

The modulus of the current FRF is plotted against frequency in
Fig. 5. Unlike the voltage FRF shown in Fig. 3, the amplitude of
the current decreases with increasing load resistance. Indeed, this
is the opposite of the voltage behavior shown in Fig. 3 but the
behavior is still monotonic. For every excitation frequency, the
maximum value of the current is obtained when the system is
close to short circuit conditions.

Figure 6 shows the current output as a function of load resis-
tance for excitations at the short circuit and the open circuit reso-
nance frequencies of the first mode. It is clear from Fig. 6 that the
current is highly insensitive to the variations of the load resistance
at the range of its low values (i.e., the slope is almost zero). In this
relatively low load resistance region, the current output is higher
at the short circuit resonance frequency, as in the case of voltage
(Fig. 4), since the system is close to short circuit conditions. Then,
current starts decreasing with further increase in load resistance,
and at a certain value of load resistance (again, around 39.8 k(),
the curves intersect. For the values of load resistance higher than
the value at this intersection point, the current output at the open
circuit resonance frequency becomes higher since the system ap-
proaches the open circuit conditions.

7.4 Frequency Response of Power Output. The FRF of the
power output is simply the product of the voltage and the current
FRFs given by Egs. (63) and (64), respectively. Therefore, unlike
the voltage and the current FRFs, the power output FRF is defined
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Fig. 5 Current FRF for five different values of load resistance (with the en-
larged view of Mode 1 resonance showing the short circuit and open circuit

behaviors)

10° ;
Excitation at the short circuit —o =0l as the power divided by the square of the base acceleration. The
resonance frequency (mode 1) . . . . . .
0= 6l modulus of the power output FRF is displayed in Fig. 7. Since it
—_ is the product of two FRFs that have the opposite behaviors with
NE qOH e LY | increasing load resistance, the behavior of the power output FRF
§ - with load resistance is more interesting than the previous two
9 Excitation at the open circuit \ electrical outputs and it deserves more discussion. It is clear from
£ resonance frequency:(mode 1) Fig. 7 that the power output FRF does not exhibit a monotonic
= behavior with increasing (or decreasing) load resistance. Among
g 10°t the sample values of the load resistance considered in this work,
3 the value of maximum power output for the first vibration mode
corresponds to R,;=10° () (see the first enlarged view in Fig. 7) at
frequency w=48.66 Hz, which is expectedly around the open cir-
& ‘ ‘ cuit resonance frequency of the first mode (Table 2) for this rela-
10100 10 10* 108 tively large value of load resistance. Considering the second vi-
Load resistance [Ohms] bration mode (see the second enlarged view in Fig. 7), one

observes that the maximum power output is obtained for R,
Fig.6 Variation of current output with load resistance for base = 10* ) at frequency w=300.88 Hz and this frequency has a mod-
excitations at the short circuit and open circuit resonance fre- erate value between the short circuit and the open circuit reso-
quencies of the first vibration mode

10°

&

£ 2
Yo —R=10°Q
] 3
9 R =10°Q
s --R=10"Q
< R =10°Q
>-O 6
S R =10°Q
a

0 200 400 600 800 1000
Frequency [Hz]

Fig. 7 Power output FRF for five different values of load resistance (with the
enlarged views of Mode 1 and Mode 2 resonances showing the short circuit
and open circuit behaviors)
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Fig. 8 Variation of power output with load resistance for base
excitations at the short circuit and open circuit resonance fre-
quencies of the first vibration mode

nance frequencies of the second vibration mode (Table 2) since
the respective resistive load also has a moderate value. According
to Fig. 7, among the sample values of load resistance employed in
the analysis, the maximum power output for excitation at the third
vibration mode corresponds to R;=10° Q) at frequency o
=838.34 Hz, which is close to the short circuit resonance fre-
quency of the third vibration mode (Table 2) as this resistive load
has a relatively low value. One should note that the values of the
load resistance we use in this analysis are taken arbitrarily to
observe the general trends. Therefore, the maximum power out-
puts obtained from each vibration mode are for these sample val-
ues and they are not necessarily the maximum possible (or the
optimized) power outputs. It is a straightforward practice to obtain
the optimum resistive load and its respective resonance frequency
for each vibration mode and it is beyond the discussion of this
section, which aims to address more general points. Another in-
teresting point to mention is the switching between the curves of
different values of load resistance, which results in intersections
between the FRFs. These intersections are observed not only
around the resonance frequencies (see the first enlarged view, e.g.,
the curves for R;=10* ) and R;=10° () intersect at 48.19 Hz) but
also they are observed at the off-resonance frequencies (e.g., the
curves for R;=10° Q and R,=10* ) intersect at 193.68 Hz). At
these intersection frequencies, the two respective load resistance
values yield the same power output.

We further investigate the variation of power output with load
resistance for excitations at the short circuit and open circuit reso-
nance frequencies of the first vibration mode through Fig. 8. It can
be remembered from Figs. 4 and 6 that the voltage and the current
outputs obtained at the short circuit resonance frequency are
higher than the ones obtained at the open circuit resonance fre-
quency up to a certain load resistance (approximately 39.8 k() in
this case) after which the opposite is valid. Since the power output
is simply the product of the voltage and current, this observation
is also valid for the power versus load resistance curves. As can be
seen form Fig. 8, we have the same intersection point (R;
=39.8 k() and the power output at the short circuit resonance
frequency is higher before this point, whereas the power output at
the open circuit resonance frequency is higher after this point. The
trend in the low load resistance region is similar to that of the
voltage output where the graphs increase with the same slope (in
log-log scale) with increasing load resistance.

More importantly, since the behavior of power with changing
load resistance is not monotonic, both of the power graphs shown
in Fig. 8 display peak values, which correspond to the optimum
values of load resistance. When the optimum values of load resis-
tance are used for each of the cases (short circuit and open circuit
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excitations), both of them yield the same power output. Consider-
ing Figs. 4 and 6, it can be observed that neither voltages nor
currents are identical at these optimum values of load resistance
for excitations at short circuit and open circuit resonance frequen-
cies. However, the products of voltage and current for both cases
are identical so that the power outputs for these resistive loads are
identical for the short circuit and open circuit resonance frequency
excitations separately.

7.5 Frequency Response of Beam Vibration. Now, we de-
fine the relative tip motion FRF (or the relative motion transmis-
sibility function), which is the ratio of the vibration (displace-
ment) amplitude at the tip of the beam (relative to the base) to the
amplitude of the base displacement. Therefore, this mechanical
FRF can be expressed using Eq. (51) as

%0

joe,y)
w 2 2,
Wrel(Lvt) W r=1 @r @ +J2§rw’w
Y, Jjot = E Yr — Xr ©
0¢ =1 Jox,e, 1+ joT,
=1 wf -+ j2L w0 T.
2
mw-¢,(L
¢(L) 65)

wf -+ 2L 0,0

Note that one could as well define the relative motion transmis-
sibility FRF for any other point (say, for point x;) throughout the
beam (by simply setting ¢,(x;) at the right hand side of Eq. (65)).
However, the motion at the tip of the beam is of particular interest,
because it is the position of the maximum transverse displacement
for the practical vibration modes. As a consequence, the vibratory
motion at the tip of the beam plays an important role while decid-
ing on the volume of the harvester.

Figure 9 shows the modulus of the relative tip motion FRF
against excitation frequency. Considering the main graph, it is not
easy to distinguish between the FRFs for different values of load
resistance. However, as can be seen from the enlarged views in
Fig. 9, there are considerable variations around the resonance fre-
quencies. We observe the same short circuit and open circuit reso-
nance frequency behaviors. Note that the uncoupled (purely me-
chanical) FRF is also provided, and expectedly, as R;—0, the
coupled FRF converges to the uncoupled FRF.

As the value of load resistance is increased from R;=10% Q to
R,=10° Q, the vibration amplitude at the short circuit resonance
frequency (47.8 Hz) decreases considerably (by a factor of about
2.5). However, when R, is further increased to 106 (), the ampli-
tude of vibrations at this frequency starts increasing. Therefore, it
can be concluded that the vibration amplitude at a frequency does
not necessarily show a monotonic behavior with increasing/
decreasing load resistance, as in the case of the power output FRF.
If we investigate the vibration amplitude at the open circuit reso-
nance frequency (48.8 Hz) as R, is increased from 102 ) to
10° (), we see that the vibration amplitude first starts decreasing
smoothly and then it starts increasing sharply.

Figure 10 allows investigating the variation of relative tip dis-
placement amplitude with load resistance more clearly. As can be
seen from Fig. 10, the relative tip vibration is insensitive to varia-
tions of load resistance in the low load resistance region and rea-
sonably the vibration amplitude at the short circuit resonance fre-
quency is higher in this region. As the load resistance is further
increased, due to the electromechanical effects, the vibration am-
plitude at the short circuit resonance frequency is attenuated. One
should be aware of the fact that this attenuation in the vibration
amplitude at the short circuit resonance frequency is indeed more
complicated than just damping. Considering the first enlarged
view in Fig. 9, one can see that the peak moves from
47.8 Hz to 48.8 Hz. This is the reason of the attenuation of vibra-
tion amplitude at 47.8 Hz. At this point, one should expect some
increase in the vibration amplitude at 48.8 Hz and this is what we
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Fig. 9 Relative tip motion FRF for the uncoupled system and for the coupled
system with five different values of load resistance (with the enlarged views of
Mode 1 and Mode 2 resonances showing the short circuit and open circuit

behaviors)

observe both in Figs. 9 and 10. As the load resistance increases,
the peak, which used to be at the short circuit resonance fre-
quency, moves toward the open circuit resonance frequency, caus-
ing not only an attenuation at the former frequency but also an
increase at the latter frequency.

It is also worthwhile to investigate the power versus load resis-
tance (Fig. 8) and the relative tip displacement versus load resis-
tance (Fig. 10) trends simultaneously. At the short circuit reso-
nance frequency, as the load resistance is increased gradually, the
power output increases until the load resistance takes its optimum
value. At the same time, the vibration amplitude is attenuated
considerably. Further increase in the load resistance reduces the
power output, which is associated with a slight increase in the
vibration amplitude. At the open circuit resonance frequency, an
increase in the load resistance first reduces the vibration amplitude
slightly and the power increases at the same time. Then, in the
vicinity of the optimum load resistance for excitation at open cir-
cuit resonance frequency, the vibration amplitude starts increasing

80 T T
—w= ﬁ,j‘:
& 70k Excitation at the short circuit //7
» resonance frequency (mode 1) ——p = ¢ /
.-E \ ® (1)1 //
o 4
g I/
m 60+ ! 1
=~ /
. !
° i
-,% 50F Excitation at the open circuit W T
g resonance frequency (mode 1)
E
@ 40f
30 : .
10° 10° 10° 10°

Load resistance [Ohms]

Fig. 10 Variation of relative tip displacement to base displace-
ment ratio with load resistance for base excitations at the short
circuit and open circuit resonance frequencies of the first vi-
bration mode
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and it increases with increasing load resistance with a high rate.
The important observation is the opposite trend in the relative tip
displacement for excitations at the short circuit and the open cir-
cuit resonance frequencies around their respective optimum resis-
tive loads.

It should be mentioned that the relative tip motion FRF exhibits
antiresonance frequencies. In the frequency range 0—1000 Hz, an
antiresonance frequency is captured at 536.7 Hz for short circuit
conditions, which moves to 538.6 Hz for open circuit conditions.
It can be seen from Fig. 9 that, at this antiresonance frequency, the
relative displacement at the tip of the beam is less than 1% of the
base displacement. Note that this is the formal definition of an
antiresonance frequency of an FRF in the vibration literature and
this frequency should not be confused with the open circuit fre-
quency of a vibration mode, which duToit et al. [6] call the anti-
resonance frequency in their SDOF model. Although it is not pos-
sible to see from Fig. 9, the FRFs are not identical at the off-
resonance frequencies and they are slightly different. The
intersections between the curves observed for the power FRF are
also observed here in the relative tip motion FRF.

8 Electromechanical Coupling and the Effect of Strain
Nodes

Consider the general form of the circuit equation given by Eq.
(34). The forcing term at the right hand side of this equation
determines the amplitude of the electrical output. Other than the
modal mechanical response (in the form of modal velocity re-
sponse), the forcing term depends on the modal coupling term ¢,.
As far as the mechanical equation of motion is concerned, the
coupling information is included in the term yx,, as can be seen
from Eq. (27). Although ¢, and y, are defined separately in the
electrical and the mechanical equations for convenience, they are
not too different terms. Both ¢, and y, depend on the geometric
parameters of the beam, Young’s modulus, and the electrome-
chanical parameters of the PZT, and more importantly, the bend-
ing slope eigenfunction evaluated at the boundaries of the elec-
trodes. If the type of the PZT and the geometry of the composite
harvester beam are already decided, the last term related to the
bending slope plays a very important role in shaping the coupled
dynamics of the electromechanical system.
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In the main derivation, since we assumed the electrodes to be
covering the entire length of the beam, the parameter related to the
bending slope eigenfunction was reduced to the slope at the free
end of the beam (because the slope at the root of the beam is
already zero). If the electrodes cover only the arbitrary region x;
<Xx<0x,, the term related to the bending slope eigenfunction ap-
pearing in the coupling term expressions, Egs. (28) and (35), must
be modified as follows:

de,(x)
dx

X=Xy

de,(x)

66
x=L dx ( )

X=X 1

which describes the dependence of electromechanical coupling on
the locations of the electrodes for harvesting energy from the rth
vibration mode. If the continuous electrodes are located such that
the slopes at their boundaries are identical for a vibration mode,
one should expect zero or very low electromechanical coupling
for vibrations at that mode. It should be kept in mind that good
electromechanical coupling yields good electrical outputs in en-
ergy harvesting. Therefore, for vibrations at a particular mode
shape, the aim must be to keep the bending slope difference at the
boundaries of the electrodes maximum so that the maximum elec-
trical output is extracted from the system.

The physical reason is the existence of the strain nodes where
the distribution of the bending strain throughout the length of the
beam changes sign, i.e., its phase changes by 180 deg [12]. Strain
nodes exist in all vibration modes other than the fundamental
vibration mode of a cantilevered beam. Only in the first vibration
mode, the strain distribution along the length of the beam is in
phase. In all higher vibration modes, the curvature eigenfunction
(d*¢,(x)/dx?) of the beam (which is a measure of bending strain)
changes sign as we move from the clamped end to the free end of
the beam. We observe from Eq. (35) that the electromechanical
coupling is proportional to the integral of the curvature over the
length of the electrodes. This is why we end up with the bending
slope eigenfunction (d¢,(x)/dx) evaluated at the boundaries of the
electrodes. Due to the sign change in the integrand, cancellation
occurs and the electromechanical coupling and consequently the
electrical outputs are reduced drastically. In order to avoid this
cancellation, segmented electrode pairs must be used to collect the
electric charge developed at the opposite sides of strain nodes.
The resulting electrical outputs of these electrode pairs will be out
of phase by 180 deg. and their leads must be combined accord-
ingly for the maximum electrical output in the circuit [15].

We provide two simple demonstrations from our parametric
case study given in the previous section for a specific resistive
load (R,=10° Q). The first vibration mode has no strain nodes,
whereas the second vibration mode has one strain node at x
=0.216L, and the third vibration mode has two strain nodes at x
=0.132L and x=0.497L (remember that x is measured from the
clamped end of the beam and L is the length of the beam). Fur-
thermore, for the second mode shape, it can be obtained that the
slope at x=0.471L is zero. For the third mode shape, one of the
two positions where the slope is zero is x=0.291L [12]. Note that
all these numbers are for an Euler—Bernoulli beam without a tip
mass, and existence of a tip mass alters these numerical values
[15].

Figure 11 shows three voltage FRFs for different electrode con-
figurations and the attention is given to the second vibration
mode. In the first configuration, the continuous electrode pair cov-
ers the entire surface of the beam (0 <x< L), which was already
the case in our main discussion. We know that it gives the best
electrical output for the first vibration mode since the strain dis-
tribution along the length of the beam is in phase for this mode.
However, we also know that the second vibration mode has a
strain node at x=0.216L and covering this point by continuous
electrodes should cause some cancellation. In order to see this, we
introduce the second configuration where the electrodes cover the
region between the strain node of the second mode and the free
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Fig. 11 Effect of the location of continuous electrode pair on

the voltage FRF (focusing on the vibrations around the second
mode)

end of the beam (that is, 0.216L <x<L). As can be seen from Fig.
11, this configuration improves the voltage output from the second
vibration mode (by a factor of more than 1.4). If desired, another
electrode pair can be used to cover the region 0 <x<0.216L and
these two outputs (which are 180 deg out of phase) can be com-
bined for the best output from the second vibration mode. The
third configuration covers the region 0 <x<<0.471L. The major
strain distributions between 0<x<0.216L and 0.216L<x
<0.471L cancel each other, and as can be seen from Fig. 11, the
resulting voltage output from the second vibration mode is re-
duced drastically for this configuration (by a factor of more than
70). The slight contribution comes from residues of the neighbor-
ing modes, particularly from the first mode. It should also be
mentioned that, among these configurations, the first and the third
vibration modes give the best voltage output for the first configu-
ration where the entire surface of the beam is covered with con-
tinuous electrodes.

Next, consider Fig. 12 where the attention is given to the third
vibration mode. Again, we consider three electrode configurations.
The continuous electrode pair covers the entire length of the beam
in the first configuration (0 <x<L). Although this configuration
gives the highest voltage output for the first vibration mode, this is
not the case for the third mode, which has two strain nodes at x
=0.132L and x=0.497L. In the second configuration, the elec-
trodes cover the region between these strain nodes, which is
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Frequency [Hz]
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Fig. 12 Effect of the location of continuous electrode pair on
the voltage FRF (focusing on the vibrations around the third
mode)
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0.132L<x<<0.497L. As can be seen from Fig. 12, this configura-
tion improves the voltage output from the third mode (by a factor
of more than 1.2). One might as well obtain the voltage outputs
from the remaining regions 0<x<<0.132L and 0.497L<x<L,
and combine all three outputs to obtain the maximum voltage
output. Note that the voltage output from the electrode pair cov-
ering 0.132L <x<0.497L will be 180 deg out of phase and the
outputs of the other two regions will be in phase. In the third
configuration, the electrodes cover the region 0 <x<<0.291L for
demonstrating the cancellation in the third mode clearly. Since the
strain distributions in 0<x<<0.132L and 0.132L<x<<0.291L
cancel each other, the voltage output is attenuated by a factor of
more than 13. The slight electrical output is due to the contribu-
tions from the neighboring modes, especially from the second
vibration mode. One should also notice the antiresonance frequen-
cies that show up in the FRF for the second and the third electrode
configurations.

9 Conclusions

In this paper, a distributed parameter electromechanical model
for cantilevered piezoelectric harvesters is derived. The analytical
formulation of the coupled system is based on Euler—Bernoulli
beam assumptions. The harvester beam is assumed to be excited
due to the translational motion of its base in the transverse direc-
tion with superimposed small rotation. In mechanical modeling,
the internal strain rate damping (i.e., Kelvin—Voigt damping) and
the external air damping are treated more accurately by defining
separate damping coefficients.

The electromechanical equations are first derived for general
transient base motions. In other words, the base motion is not
restricted to be harmonic in time so that general coupled expres-
sions for the mechanical response and voltage output are obtained.
Then, the electromechanically coupled equations are reduced for
the case of harmonic base translation with small rotation, and
closed-form expressions are presented for the voltage, current, and
power outputs as well as the coupled mechanical response of the
harvester. The resulting equations are further reduced for the case
of excitation around a natural frequency.

The analytically obtained expressions are then used in a para-
metric case study. In order to observe the frequency response be-
havior of the electrical outputs and the relative tip motion of the
harvester, the FRFs which relate the voltage, current, power, and
relative tip motion to the base motion are identified. These FRFs
are plotted against frequency for a wide range of load resistance.
Short circuit and open circuit conditions of the system are dis-
cussed. For a better understanding of short circuit and open circuit
conditions, the electromechanical outputs are also plotted against
load resistance for these two extreme cases of the resistive load.
The mathematical modeling is based on the assumption of propor-
tional damping (strain rate damping is assumed to be stiffness
proportional, whereas air damping is assumed to be mass propor-
tional). However, after describing how to identify the strain rate
and air damping coefficients from experimental measurements, a
simple relaxation is described for handling experimentally ob-
tained nonproportional damping in the modal expansion.

Finally, electromechanical coupling and its relevance to the lo-
cations of the electrodes and the strain nodes are discussed. Once
the geometry and the material of the bender are decided, the lo-
cations of the electrodes become important in determining the
magnitude of the modal electromechanical coupling, which deter-
mines the magnitude of the electrical outputs. The issue of strain
nodes of vibration mode shapes and cancellation of the electrical
outputs due to covering the strain nodes of higher vibration modes
with continuous electrodes are described with examples. Sugges-
tions are made for increasing the electromechanical coupling and
therefore the electrical outputs of the harvester.
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Appendix

Consider Fig. 13(a), which displays the cross section of the
composite unimorph beam of Fig. 1. The width of the beam is
denoted by b, the thickness of the PZT layer is /,, and the thick-
ness of the substructure layer is A, The procedure of finding the
position of the neutral axis of a composite cross section is de-
scribed in elementary strength of material texts (e.g., Timoshenko
and Young [18]) and it requires transforming the cross section to a
homogeneous cross section of single Young’s modulus (see Fig.
13(b)). We take the PZT as the material of the transformed cross
section and define the ratio of Young’s moduli as n=Y,/Y,. In the
transformed cross section, the width of the substructure layer is
increased if Y >Y, or it is reduced if ¥,>Y,. For demonstration,
the typical case ¥,>Y, is assumed in Fig. 13(b) (which is also the
case in our parametric case study) so that widening occurs in the
substructure layer. Then, it is a simple practice to obtain the pa-
rameters defined in Fig. 13(b) (and therefore the position of the
neutral axis) in terms of the parameters of Fig. 13(a) and Young’s
moduli ratio n as follows:

hy + 2nh, b+ nh; hy + 2h,hy + nh?
ba 2(h,+nhy) ™ 2(h,+nhy)
(A1)

_nhy(h,+h)

P 2(h, + nhy)

where £, is the distance from the top of the PZT layer to the
neutral axis, &g, is the distance from the bottom of the substruc-
ture layer to the neutral axis, and h),. is the distance from the
center of the PZT layer to the neutral axis. Note that the geometric
parameters used in the main formulation (/,, 4, and h,) describe
positions from the neutral axis rather than distances. Therefore,
they can be expressed as

hg == hxm hb = hl’a -h hL‘ = hpa (Az)

It can be remembered from the main text that /,, is the position of
the bottom of the substructure layer from the neutral axis (always
negative), h, is the position of the bottom of the PZT layer from
the neutral axis (positive or negative), and h.. is the position of the
top of the PZT layer from the neutral axis (always positive).

P>
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