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On the Fundamental Transverse
Vibration Frequency of a
Free-Free Thin Beam With
Identical End Masses
Current research in vibration-based energy harvesting and in microelectromechanical
system technology has focused renewed attention on the vibration of beams with end
masses. This paper shows that the commonly accepted and frequently quoted fundamen-
tal natural frequency formula for a beam with identical end masses is incorrect. It is also
shown that the higher mode frequency expressions suggested in the referred work
(Haener, J., 1958, “Formulas for the Frequencies Including Higher Frequencies of Uni-
form Cantilever and Free-Free Beams With Additional Masses at the Ends,” ASME J.
Appl. Mech. 25, pp. 412) are also incorrect. The correct characteristic (frequency) equa-
tion is derived and nondimensional comparisons are made between the results of the
previously published formula and the corrected formulation using Euler–Bernoulli beam
assumptions. The previous formula is shown to be accurate only for the extreme case of
very large end mass to beam mass ratios. Curve fitting is used to report alternative first
order and second order polynomial ratio expressions for the first natural frequency, as
well as for the frequencies of some higher modes. �DOI: 10.1115/1.2776341�
Introduction
The recent interest in energy harvesting �1–3� using various

antilever beams covered with piezoceramic material has renewed
nterest in simple single degree-of-freedom formulas for beams
ith a single end mass. Much of the modeling work in energy
arvesting has focused on quoting simple formulas for the fre-
uency of a beam with an end mass. For representing the dynam-
cs of some particular energy harvesters, it was noted that a free-
ree beam with end masses may be useful. In deriving an
nalytical formulation for energy harvesting using a beam with
wo end masses, the previously published beam frequency equa-
ions stemming from the work of Haener �4� decades ago and
eported in many handbooks and tabulations �5,6� was examined.
nfortunately, the early natural frequency formulas �both for the

undamental natural frequency and for the higher mode frequen-
ies� proposed by Haener �4� are incorrect, yet they still persist.
he goal of this paper is to provide the correct calculation of the
atural frequencies of thin beams with identical end masses.

On the Existing Fundamental Natural Frequency
ormula
For decades, the following expression suggested by Haener �4�

as appeared in various structural dynamics reference books �5,6�
or representing the fundamental transverse vibration frequency of
free-free slender �Euler–Bernoulli� beam with identical masses

t both ends:

f1 =
�

2
��1 +

5.45

1 − 77.4�M/mb�2� EI

mbL3 �1�

here E is Young’s modulus, I is the cross-sectional area moment
f inertia, L is the length, mb is the total mass of the beam, and M
s the mass rigidly attached to each end of the beam. This form of
q. �1� gives the natural frequency in hertz and it can be con-
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verted to rad/s according to �1=2�f1. After rearranging Eq. �1�
by separating the dimensionless frequency term from the material
and geometric parameters, one can obtain the following equation,
which gives the resulting natural frequency in rad/s:

�1 = �2�1 +
5.45

1 − 77.4�M/mb�2� EI

mbL3 �2�

It is clear from Eq. �2� that it may yield imaginary numbers and
may even tend to infinity for certain values of M /mb �end mass to
beam mass ratio�. For this fundamental natural frequency expres-
sion to yield a finite positive real value, the following inequality
must be satisfied:

1 +
5.45

1 − 77.4�M/mb�2 � 0 �3�

which can be reduced to the following acceptable ranges of
M /mb:

0 �
M

mb
� 0.1137

M

mb
� 0.2887 �4�

and for the following range of M /mb, the expression suggested by
Haener �4� results in imaginary numbers, which has no physical
meaning:

0.1137 �
M

mb
� 0.2887 �5�

The natural frequency of the rth mode of an Euler–Bernoulli
beam can be expressed as �5�

�r = �r
2� EI

mbL3 �6�

where �r is well known as the dimensionless frequency parameter
of the rth mode �5�. Therefore, according to Eq. �2�, the dimen-
sionless frequency parameter of the first elastic mode suggested

by Haener �4� is
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�1 = ��1 +
5.45

1 − 77.4�M/mb�2�1/4

�7�

hen �1 is plotted against M /mb, the invalid end mass to beam
ass ratio region given by Eq. �5� can be seen clearly �Fig. 1�.
he question arising at this point is as follows: Does Eq. �1� yield
orrect results for the M /mb regions given by Eq. �4� where it
ives positive real numbers? Probably the simplest case one can
heck is M =0 �and therefore M /mb=0�, which is the case when
here are no end masses. In this particular case, the beam reduces
o a uniform free-free Euler–Bernoulli beam without end masses,
hose dimensionless frequency parameter for the first mode2 is
1=4.7300. However, when M =0 is used in Eq. �1�, one obtains

�1 = ��1 + 5.45�1/4 = 5.0066 �8�
hich has 5.8% relative error. It should be noted from Eq. �6� that

he natural frequency �1 is proportional to �1
2 and, therefore, the

elative error in the resulting natural frequency predicted by using
q. �1� for the particular case of M =0 is about 12%.
In the original paper �4�, without any explanation, the term

M /mb�2�0.08 appears next to the fundamental natural frequency
xpression given by Eq. �1�, which is not mentioned in the books
f Blevins �5� and Pilkey �6�. This range yields M /mb�0.2828,
nd it is roughly one of the limitations we obtained in Eq. �4�.
owever, it is important to notice from Fig. 1 that this limitation

s just for Eq. �1� to give real valued finite results, not necessarily
orrect fundamental natural frequency predictions. Moreover,
aener �4� claims that “the value of the natural frequency ob-

ained in Eq. �1� is about 1% too large for M /mb�0.02 and is
ood to three decimals for 0.1553�M /mb�1,” which means that
e was not aware of the fact that his equation gives imaginary
umbers for 0.1137�M /mb�0.2887. As will be shown, Eq. �1�
s incorrect even with this restriction since the characteristic equa-
ion given in the original paper �4� is incorrect.

In the following sections, we first derive the characteristic �fre-
uency� equation for the transverse vibrations of a free-free
uler–Bernoulli beam with identical masses at both ends and
how that it is different from the one presented by Haener �4�. The
ifference and the relative error are then highlighted by comparing
he resulting dimensionless frequency parameter predictions
raphically against mass ratio. It is also shown that the higher
ode frequency relations suggested by Haener �4� are also incor-

ect. Finally, the correct dimensionless frequency parameters for

2It is the first nonzero root of the transcendental equation 1−cos � cosh �=0 �see,

ig. 1 Dimensionless frequency parameter of the first vibra-
ion mode calculated from the relation suggested by Haener †4‡
ersus end mass to beam mass ratio
or instance, Blevins �5��.

ournal of Vibration and Acoustics
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the first five modes are plotted against end mass to beam mass
ratio and simple relations obtained by curve fitting are presented
for the first five natural frequencies.

Fig. 2 Dimensionless frequency parameter of the first mode
calculated from the eigensolution and from the relation sug-
gested by Haener †4‡ versus end mass to beam mass ratio

Fig. 3 Relative percentage error due to using the relation sug-
gested by Haener †4‡ „a… in the dimensionless frequency pa-

rameter and „b… in the fundamental natural frequency
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Mathematical Formulation
The equation of motion of an undamped Euler–Bernoulli beam

ith uniform cross section can be written as follows and its deri-
ation is available in numerous vibration texts �7�:

EI
�4w�x,t�

�x4 +
mb

L

�2w�x,t�
�t2 = 0 �9�

here w�x , t� is the displacement in the transverse direction and x
enotes the axial position along the beam. According to the sign
onvention used by Timoshenko and Young �8�, the bending mo-
ent and shear force can be expressed as

M�x,t� = EI
�2w�x,t�

�x2 S�x,t� = EI
�3w�x,t�

�x3 �10�

he moment equilibrium at the boundaries gives

�EI
�2w�x,t�

�x2 �
x=0

= 0 �EI
�2w�x,t�

�x2 �
x=L

= 0 �11�

nd one can obtain the following equations from the force equi-
ibrium at the boundaries:

�M
�2w�x,t�

�t2 �
x=0

+ �EI
�3w�x,t�

�x3 �
x=0

= 0

�M
�2w�x,t�

�t2 �
x=L
� − EI

�3w�x,t�
�x3 �

x=L

= 0 �12�

t should be noted that, while writing Eq. �11�, the rotary inertias
f the end masses are neglected to be consistent with Haener �4�.

Using separation of variables for the solution of Eq. �9� by
etting w�x , t�= w̄�x�f�t� yields the following ordinary differential
quations in spatial domain and time domain, respectively:

d4w̄�x�
dx4 − �2 mb

EIL
w̄�x� = 0 �13�

d2f�t�
dt2 + �2f�t� = 0 �14�

mploying the following relation between the frequency � and

he dimensionless parameter �:

ree beam with additional masses at both ends:”
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�4 = �2mbL3

EI
�15�

the solutions of Eqs. �13� and �14� can be expressed as

w̄�x� = A cos
�x

L
+ B cosh

�x

L
+ C sin

�x

L
+ D sinh

�x

L
�16�

f�t� = E cos �t + F sin �t �17�

where A, B, C, D, E, and F are constants. After separating the
variables, the boundary conditions given by Eqs. �11� and �12� are
reduced to

�d2w̄�x�
dx2 �

x=0
= 0 �d2w̄�x�

dx2 �
x=L

= 0 �18�

�4

L3

M

mb
w̄�0�� −

d3w̄�x�
dx3 �

x=0
= 0

�4

L3

M

mb
w̄�L�� +

d3w̄�x�
dx3 �

x=L

= 0

�19�

When Eq. �16� is used in Eqs. �18� and �19�, one obtains

− A + B = 0 − A cos � + B cosh � − C sin � + D sinh � = 0

�20�

− A
M

mb
� − B

M

mb
� − C + D = 0 �21�

A	 M

mb
� cos � + sin �
 + B	 M

mb
� cosh � + sinh �


+ C	 M

mb
� sin � − cos �
 + D	 M

mb
� sinh � + cosh �
 = 0

�22�
Then, Eqs. �20�–�22� can be expressed in the matrix form as
�
− 1 1 0 0

− c � ch � − s � sh �

− �M/mb�� − �M/mb�� − 1 1

�M/mb�� c � + s � �M/mb�� ch � + sh � �M/mb�� s � − c � �M/mb�� sh � + ch �
�


A

B

C

D
� = 


0

0

0

0
� �23�
here c, s, ch, and sh stand for cos, sin, cosh, and sinh, respec-
ively. Note that the variable elements of the above coefficient

atrix are functions of the dimensionless parameters � and M /mb
nly. For nontrivial solutions of Eq. �23�, the coefficient matrix
hould be singular and, therefore, its determinant should vanish,
ielding

1 − cos � cosh � + 2
M

mb
��sin � cosh � − sinh � cos ��

+ 2	 M

mb
�
2

sin � sinh � = 0 �24�

t this point, we compare the above characteristic equation with
he one obtained by Haener �4� for a “constant cross-section free-
1 − cos � cosh � − 2	 M

mb
�
2

sin � sinh � = 0 �25�

As can be seen, the above characteristic equations given by Eqs.
�24� and �25� are considerably different from each other. Not only
one term appearing in Eq. �24� is missing in Eq. �25�, but the sign
of the last term in the latter equation is also incorrect. Comparison
of the results of these equations and the relevant discussion are
given in the following section.

4 Results and Discussion
It is worthwhile to mention that what we define as the first

mode in this work is the first elastic mode of the structure, i.e., we
are not referring to the translational and/or rotational rigid body

modes of the structure that correspond to the eigenvalue �0=0 of
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q. �24�. Dimensionless frequency parameters obtained from the
umerical solution of Eq. �24� for the fundamental vibration mode
nd the dimensionless frequency parameter expression �Eq. �7��
xtracted from the relation suggested by Haener �4� are compared
n Fig. 2 for the end mass to beam mass ratio range of 0

M /mb�5.
It can be seen from Fig. 2 that the resulting dimensionless fre-

uency parameters calculated using Eq. �7� and those calculated
sing Eq. �24� can be said to be in agreement only for very high
nd mass to beam mass ratios. As mentioned previously, the rela-
ion suggested by Haener �4� is presented with �M /mb�2�0.08 in
is original paper, which is identical to M /mb�0.2828. Although
his region roughly covers the values3 where Eq. �1� yields real
umbers, the resulting dimensionless frequency parameters, and
herefore the fundamental natural frequencies predicted by his re-
ation in this range, are far from being accurate �Fig. 2�. Note that,
ince the natural frequency is proportional to the square of the
imensionless frequency parameter according to Eq. �6�, the error
n the predicted natural frequency is much higher than that in the
redicted frequency parameter. Figures 3�a� and 3�b� display the
elative percentage errors in dimensionless frequency parameter
nd natural frequency due to using the relation suggested by
aener �4�, respectively.
It should be mentioned that the higher mode frequency relations

uggested by Haener �4� are also incorrect. In the relevant paper
4�, natural frequency expressions for the second and the higher
odes are given by the following equations:

3

ig. 4 Dimensionless frequency parameters of the higher m
uggested by Haener †4‡ versus end mass to beam mass ratio
See the exact ranges given by Eq. �4�.

ournal of Vibration and Acoustics
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�2 = �2��16 −
10.86

77.7�M/mb�2 + 1
� EI

mbL3

�n = �2��n4 −
n4 − �n − 0.5�4

17.5n�M/mb�2 + 1
� EI

mbL3
n � 2 �26�

For a nondimensional comparison, in the same manner �as we did
for the fundamental natural frequency case�, the dimensionless
frequency parameters are extracted from the foregoing natural fre-
quency relations suggested by Haener �4�, as follows:

�2 = ��16 −
10.86

77.7�M/mb�2 + 1
�1/4

�n = ��n4 −
n4 − �n − 0.5�4

17.5n�M/mb�2 + 1
�1/4

n � 2 �27�

These expressions will now be compared with the higher roots of
the characteristic equation �Eq. �24��, which we obtained as a
function of end mass to beam mass ratio. Having shown the dis-
crepancy in the dimensionless frequency parameter of the first
mode extracted from the equation suggested by Haener �4� �Fig.
2�, we now present the differences between the higher roots of Eq.
�24� and the values obtained by Eq. �27� as a function of end mass
to beam mass ratio in Fig. 4. As can be seen from Fig. 4, the
predictions of Eq. �27� can be said to be reasonable only for very
high M /mb values. For relatively low M /mb values, Eq. �27�

es calculated from the eigensolution and from the relations
od
yields totally incorrect results.
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It is obvious from Fig. 4 that, for the extreme case of M /mb
0, the dimensionless frequency parameter predicted by Eq. �27�

or the rth mode actually belongs to the �r−1�th mode. For in-
tance, we previously discussed that, for the particular case of

/mb=0, the free-free beam has no end masses and, therefore,
he first dimensionless frequency parameter should come out to be
1=4.7300 �5�, which is also what we predicted in Fig. 2 by using
q. �24�. However, when M /mb=0 is used in Eq. �27�, one ob-

ig. 5 Dimensionless frequency parameters versus end mass
o beam mass ratio for the first five modes

ig. 6 Relative percentage errors „a… in the dimensionless fre-
uency parameters and „b… in the natural frequencies due to

sing the first order polynomial ratios given by Eq. „30…

60 / Vol. 129, OCTOBER 2007
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tains �2=4.7300, �3=7.8532 �whereas, actually, �2=7.8532�, and
so on, since the asymptotic behavior of Eq. �27� for relatively low
M /mb ratios are totally incorrect. Once again, we underline that
the corresponding natural frequencies are proportional to the
squares of the dimensionless frequency parameters and, therefore,
the deviations in the natural frequencies predicted by the equa-
tions suggested by Haener �4� are much higher than those in the
dimensionless frequency parameters.

5 New Expressions for the First Five Natural Frequen-
cies

Having completed our discussion related to Eq. �1� suggested
by Haener �4� that has been used in different reference texts �5,6�
for decades and also the discussion regarding the higher mode
frequency equations suggested in the same work, we plot the cor-
rect dimensionless frequency parameter versus end mass to beam
mass ratio plots for the first five modes together in Fig. 5. These
dimensionless frequency parameters must be used in Eq. �6� in
obtaining the corresponding natural frequencies. It should be
noted from Eq. �24� and Fig. 5 that the � values obtained for
M /mb=0 are the roots of the transcendental equation

1 − cos � cosh � = 0 �28�
which is the characteristic equation of a free-free Euler–Bernoulli
beam with no end masses �5�. For high M /mb values, Eq. �24�
reduces to

sin � = 0 �29�
since the last term in Eq. �24� becomes the dominant term as

Fig. 7 Relative percentage errors „a… in the dimensionless fre-
quency parameters and „b… in the natural frequencies due to
using the second order polynomial ratios given by Eq. „31…
M /mb→� and sinh ��0 for ��0. Equation �29� is the charac-
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eristic equation of a simply supported uniform Euler–Bernoulli
eam �5� and its roots are the integer multiples of �, which can
lso be seen from Fig. 5. This observation makes sense because in
ase of very large end masses, the transverse motions at the end
oints of the beam are restricted. However, since the rotary iner-
ias of the end masses are neglected in the formulation, the rota-
ional motions at these points are allowed �there is no resisting

oment�: hence, the boundary conditions for high M /mb values
ecome simply supported.

In order to represent the curves given in Fig. 5, the curve fitting
oolbox of MATLAB

® is used. For each mode, both first order and
uadratic polynomial ratios are obtained with confidence bounds
f 99.9%. The following expressions are the first order polynomial
atios for the dimensionless frequency parameters:

�1 =
3.1416� + 0.9056

� + 0.1923
�2 =

6.2832� + 0.7908

� + 0.1007

�3 =
9.4248� + 0.7484

� + 0.06801
�30�

�4 =
12.5664� + 0.7268

� + 0.05136
�5 =

15.7080� + 0.7141

� + 0.04129

here �=M /mb. The errors in the dimensionless frequency pa-
ameters obtained using the above expressions are less than 0.45%
or all values of end mass to beam mass ratio �M /mb� and the
rror decreases as the ratio M /mb increases �Fig. 6�a��. It should
e noted that the error estimates are relative to the roots of the
ranscendental Eq. �24�, which is based on Euler–Bernoulli beam
ssumptions. As can be seen in Fig. 6�b�, the errors reflected to the
atural frequencies due to using Eq. �30� are less than 0.9%.

For higher accuracy, alternatively, we also present the following
uadratic polynomial ratio relations for the dimensionless fre-
uency parameters:

�1 =
3.1416�2 + 1.821� + 0.2211

�2 + 0.4783� + 0.04674

�2 =
6.2832�2 + 2.408� + 0.2003

�2 + 0.3579� + 0.02551

�3 =
9.4248�2 + 1.258� + 0.04291

�2 + 0.1222� + 0.003903
�31�

�4 =
12.5664�2 + 1.304� + 0.03672

�2 + 0.09742� + 0.002598

�5 =
15.7080�2 + 1.303� + 0.03015

�2 + 0.07888� + 0.001745

he relative errors due to using the above expressions instead of
nding the roots of Eq. �24� for the first five modes are less than
.025% for all values of �=M /mb. Once again, the error de-
reases with increasing M /mb �Fig. 7�a��. According to Fig. 7�b�,
he errors in the resulting natural frequencies are less than 0.05%
hen the frequency parameter expressions given by Eqs. �31� are
sed in Eq. �6�.

Figures 8�a� and 8�b�, respectively, display the linear and the
uadratic polynomial ratio curve fits given by Eqs. �30� and �31�
long with the exact solution. There is no notable difference in the
esulting graphs, yet the small difference in the errors of linear
nd quadratic fits can be seen in Figs. 6 and 7.

Either the first order polynomial ratios given by Eq. �30� or the
uadratic polynomial ratios given by Eq. �31� can be used in Eq.
6� to obtain the first five natural frequencies with very good ac-
uracy. Therefore, either of the following expressions can be con-

idered as a candidate to take the place of the incorrect fundamen-
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tal natural frequency equation suggested by Haener �4�, which has
been used in the books of Blevins �5� and Pilkey �6� for decades:

�1 = 	3.1416� + 0.9056

� + 0.1923

2� EI

mbL3 �32�

�1 = 	3.1416�2 + 1.821� + 0.2211

�2 + 0.4783� + 0.04674

2� EI

mbL3 �33�

When consistent units are used in Eqs. �32� and �33�, the resulting
natural frequencies will have units in rad/s, and they can be con-
verted to hertz according to f1=�1 /2�. As can be seen from Figs.
6�b� and 7�b�, the errors due to using Eqs. �32� and �33� instead of
finding the first nonzero root of Eq. �24� are less than 0.9% and
0.05%, respectively, and these errors decrease as �=M /mb in-
creases. An important thing to note is that, to be consistent with
the assumptions of Haener �4�, in this work, the rotary inertias of
the end masses are neglected. Therefore, one should be careful
when using the above expressions for a given beam with end
masses.

6 Conclusions
In this paper, it is shown that the commonly accepted funda-

mental natural frequency equation of a free-free thin beam with
identical end masses is incorrect. Based on Euler–Bernoulli beam

Fig. 8 Dimensionless frequency parameters versus end mass
to beam mass ratio; „a… the first order polynomial ratio fit with
the exact solution and „b… the second order polynomial ratio fit
with the exact solution „solid line, curve fit; circle, � exact…
assumptions, the correct characteristic equation is derived and it is
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hown that this equation is quite different from the existing one
roposed by Haener �4� in his original paper. For convenience, the
esults are compared in a nondimensional basis using the dimen-
ionless frequency parameters and they are plotted against end
ass to beam mass ratio. It is also shown that the expressions

uggested for the higher mode natural frequencies in the men-
ioned work are also incorrect. Finally, the correct dimensionless
requency parameter graphs are presented and linear as well as
uadratic curve fitting polynomial ratio expressions are given for
he dimensionless frequency parameters of the first five modes.
he resulting dimensionless frequency parameter expressions are

hen used to report the correct natural frequency relations for a
ree-free thin beam with identical end masses.
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omenclature
E 	 Young’s modulus
I 	 cross-sectional area moment of inertia
L 	 length

M 	 each of the end masses
M�x , t� 	 bending moment
62 / Vol. 129, OCTOBER 2007
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S�x , t� 	 shear force
fr 	 natural frequency of the rth mode �Hz�

mb 	 total beam mass
w�x , t� 	 transverse displacement

x 	 axial position along the beam
� 	 end mass to beam mass ratio ��=M /mb�
�r 	 dimensionless frequency parameter of the rth

mode
�r 	 natural frequency of the rth mode �rad/s�
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