Modeling of Piezoelectric Energy Harvesting from an
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ABSTRACT: Cantilevered piezoelectric energy harvesters have been extensively investigated
in the literature of energy harvesting. As an alternative to conventional cantilevered
beams, this article presents the L-shaped beam-mass structure as a new piezoelectric energy
harvester configuration. This structure can be tuned to have the first two natural frequencies
relatively close to each other, resulting in the possibility of a broader band energy harvesting
system. This article describes the important features of the L-shaped piezoelectric
energy harvester configuration and develops a linear distributed parameter model for
predicting the electromechanically coupled voltage response and displacement response of the
harvester structure. After deriving the coupled distributed parameter model, a case study is
presented to investigate the electrical power generation performance of the L-shaped energy
harvester. A direct application of the L-shaped piezoelectric energy harvester configuration
is proposed for use as landing gears in unmanned air vehicle applications and a case study
is presented where the results of the L-shaped — energy harvester — landing gear are
favorably compared against the published experimental results of a curved beam configuration

used for the same purpose.
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INTRODUCTION

IBRATION-BASED energy harvesting has been
Vinvestigated by numerous researchers, starting
with the early work of Williams and Yates (1996),
where the possible vibration-to-electric energy conver-
sion mechanisms were described as piezoelectric,
electromagnetic, and  electrostatic  transductions.
These three transduction mechanisms have been
studied by researchers extensively in the last decade
(Beeby et al., 2006). Theoretical and experimental
papers are available on modeling and applications of
piezoelectric (Anton and Sodano, 2007), electromag-
netic (Arnold, 2007), and electrostatic (Mitcheson
et al., 2004) energy harvesters. Among these three
alternatives for vibration-to-electric energy conversion,
piezoelectric transduction has received the most
attention and its literature has already been summar-
ized in three review articles in the last 2 years
(Anton and Sodano, 2007; Priya, 2007; Cook-
Chennault et al., 2008).
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As can be found in the aforementioned review articles,
a commonly used piezoelectric energy harvester config-
uration is a cantilevered beam with one or two piezo-
ceramic layers (a unimorph or a bimorph with the
historical definitions, respectively). Typically, the canti-
levered energy harvester is located on a vibrating host
structure and the dynamic bending strain induced in the
piezoceramic layer(s) results in an alternating electric
potential difference between the electrodes covering the
piezoceramic layer(s). Practical applications (Anton and
Sodano, 2007; Priya, 2007; Cook-Chennault et al., 2008)
and mathematical modeling (Roundy et al., 2003;
Sodano et al., 2004; duToit et al., 2005; Erturk and
Inman, 2008a) of cantilevered piezoelectric energy
harvesters have been investigated by many researchers
in the last 5 years. Practical applications are limited to
low-power systems (such as small sensors) (Anton and
Sodano, 2007; Priya, 2007; Cook-Chennault et al., 2008)
and the respective electromechanical models include
single-degree-of-freedom (Roundy et al., 2003; duToit
et al., 2005), approximate distributed parameter
(Sodano et al., 2004; duToit et al., 2005) and closed-
form distributed parameter (Erturk and Inman, 2008a)
solutions for predicting the coupled system dynamics
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of these piezoelectric energy harvesters. Usually,
cantilevered energy harvesters are designed to have a
proof mass, which can be tuned to have the fundamental
natural frequency of the harvester beam close to a
dominant excitation frequency available in the ambient
vibration energy spectrum. Although a cantilevered
beam is a simple structure that is not very prone
to aggressive improvements, the literature includes
a considerable effort to improve the electrical outputs
of this configuration. Baker et al. (2005) examined the
effect of geometry of cantilevered piezoelectric beams
on power density to find better alternatives to the
rectangular beam shape. Erturk et al. (2008b) discussed
how to arrange the electrodes of cantilevered beams and
of beams with different boundary conditions to avoid
voltage cancellations in energy harvesting. Hu et al.
(2007) introduced an axial preload to the conventional
cantilevered bimorph configuration to adjust its natural
frequency to handle varying-frequency excitations.
Hence, the conventional cantilevered beam configura-
tion as a piezoelectric energy harvester has been studied
extensively in the literature and a considerable effort
has been made to optimize this simple structure for
improved electrical outputs.

The aim of this article is to introduce the L-shaped
beam-mass structure as a new piezoelectric energy
harvester configuration and to analyze its electromecha-
nical behavior. This structure has been investigated in
detail in the literature of nonlinear dynamics in the
past two decades (Haddow et al., 1984; Balachandran
and Nayfeh, 1990) and the relevant nonlinear phenom-
ena observed due to the two-to-one internal
resonance (mainly mode saturation) have found inter-
esting applications (Oueini et al., 1998). Here we
exploit the unique linear dynamics of the L-shaped
structure combined with piezoelectric materials to
produce a broader band energy harvester than is
available with a simple cantilever configuration. This is
followed by a case study presented to analyze the perfo-
rmance of the L-shaped piezoelectric energy harvester.
Performance of the harvester as a UAV landing gear is
also compared with that of a curved energy harvester
beam used for the same purpose in a recent study
(Magoteaux, 2007).

FEATURES OF THE L-SHAPED BEAM-MASS
STRUCTURE

In this section, some unique features of the L-shaped
beam-mass structure are discussed. Although nonlinear
modeling is not addressed in this paper, a possible use of
the two-to-one internal resonance in energy harvesting is
discussed to enhance piezoelectric power generation

from base excitation. Then, an advantage of the
L-shaped beam-mass structure as a broadband energy
harvester is discussed.

Nonlinear Interactions due to Two-to-one Internal
Resonance

The L-shaped beam-mass structure has been investi-
gated in the literature of nonlinear dynamics by Haddow
et al. (1984) and Balachandran and Nayfeh (1990). As
mentioned by Nayfeh and Mook (1979), multi-degree-
of-freedom (MDOF) systems having two or more of
their natural frequencies commensurable or nearly so
(i.e., there exist integers «,...,a, such that
aywy + arwr + - -+ a,w, =20 where w,...,w, are the
natural frequencies) may possess internal resonances.
The simplest possible MDOF system is a 2-DOF system
and the condition of having w, > 2w, is a simple case for
realizing an internal resonance. This particular case is
called the two-to-one internal resonance. Although basic
structures like cantilevered beams cannot be designed
(passively) to obtain w,=22w;, it was shown in the
literature (Haddow et al., 1984) that an L-shaped beam-
mass structure could have this internal resonance
condition (with the third and the higher modes far
removed from the first two modes). A structure that has
a two-to-one internal resonance and quadratic non-
linearities may exhibit energy exchange between the first
two modes, or the so-called saturation phenomenon in
case of sinusoidal excitation near a primary resonance
(Nayfeh and Mook, 1979). Modal energy exchange is
characterized by a continuous back and forth energy
exchange between the first two modes. Mode saturation
occurs when the excitation amplitude exceeds a certain
value, after which the amplitude of the vibration mode
that is directly excited becomes independent of the level
of excitation and the energy is transferred to the other
mode (Nayfeh and Mook, 1979). As a part of our
ongoing research, we are investigating the possible use
of these unique features of the L-shaped beam-mass
structure for piezoelectric energy harvesting. One
practical use of nonlinear interactions for piezoelectric
energy harvesting is the possibility of obtaining a
response at a flexible vibration mode (mode 1) by
exciting the harvester at the frequency of a relatively stiff
vibration mode (mode 2). That is, the second vibration
mode (as the primary resonance) can be directly excited
and a voltage response at the first vibration mode can
possibly be obtained for large base accelerations due to
the saturation phenomenon. This useful scenario is
beyond the discussion provided in this article; however,
it seems to be realizable owing to the aforementioned
previous work on the passive L-shaped beam-mass
structure. A common criticism of the existing linear



L-shaped Piezoelectric Energy Harvester

work concerns whether or not the results will be
destroyed if the harvester is driven into a nonlinear
region at resonance. The saturation phenomenon
associated with the L-shaped beam-mass structure and
other MDOF systems with internal resonances may
provide a very useful solution, through the possibility of
transferring the input mechanical energy to a more
flexible mode and extracting the electrical response at
the flexible mode.

L-shaped Beam-mass Structure as a Broadband Energy
Harvester

Besides the nonlinear interactions between the vibra-
tion modes, the structure is also advantageous as a
broadband energy harvester. In most research on piezo-
electric energy harvesting, the cantilevered harvester
beam has been assumed to be excited at or around its
first (fundamental) natural frequency. In other words, the
first natural frequency of the harvester is tuned to a
frequency that is dominant in the ambient vibration
energy. This tuning process is usually realized by means
of a proof mass. In reality, however, most ambient
vibration sources display random or varying-frequency
behavior in time (see, for instance, the random accelera-
tion history of an automobile compressor measured by
Sodano et al. (2005) or the sample frequency spectra
presented by Roundy et al. (2003)). Hence, in general,
ambient vibrations cannot be represented by a single
harmonic function. As a consequence, vibration energy
available in the ambient excites the higher vibration
modes of the harvester structure as well. The nearest
vibration mode to the fundamental mode is simply the
second mode, and this mode gains importance for
random or varying-frequency excitations. Having a
vibration mode close to the fundamental vibration
mode is preferable for broadband energy harvesting.
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As far as the conventional cantilevered beam configura-
tion with uniform cross-section is concerned, it is
straightforward to show that the second natural fre-
quency is more than 6 times the first natural frequency in
the absence of a proof mass (w, 22 6.27w1). This is simply
obtained by taking the ratio of the squares of the
dimensionless frequency parameters (eigenvalues)
obtained from the respective eigensolution of a
clamped-free uniform beam without a proof mass. The
presence of a proof mass increases the relative spacing of
w; and w, of the harvester on the frequency axis even
more. Figure 1(a) displays the variation of the dimen-
sionless natural frequencies with dimensionless proof
mass-to-beam mass ratio for the first two vibration
modes. Taking the ratio of the curves in Figure 1(a) yields
wy/wy, which is a direct measure of the relative spacing
between the first two vibration modes on the frequency
axis, and the variation of this ratio with proof mass-to-
beam mass ratio is plotted in Figure 1(b). As proof mass-
to-beam mass ratio (Mproof/ Mbeam) changes from 0 to 10,
the ratio between the first two natural frequencies (w»/w1)
increases from 6.27 to 28.7. According to Figure 1(b), the
spacing between the first two vibration modes increases
monotonically with increasing proof mass and the
minimum amount of relative spacing corresponds to the
no proof mass case (with w,226.27w,).

As common practice, the designer tunes the first
natural frequency of the harvester beam to a frequency
(wy) that is dominant in the ambient vibration spectrum.
This practice automatically assigns a certain value (w-)
to the second natural frequency, and we know
from Figure 1 that the second natural frequency will
not be very close to the first one (at least w,=6.27w;).
As a consequence, the response of the harvester to the
harmonics in the ambient vibration lying in a very wide
frequency range between w; and w, will be considerably
weak for random or varying-frequency excitations.
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Figure 1. Variation of the (a) first two dimensionless natural frequencies and (b) their ratio with proof mass-to-beam mass ratio for a conventional

uniform cantilevered beam.
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With this consideration, the L-shaped energy harvester
configuration proposed in this work has an important
advantage over the conventional cantilevered har-
vesters (with or without a proof mass). While selecting
a dominant frequency (w;) in the ambient vibration
spectrum and setting the first natural frequency of
the L-shaped energy harvester to this value, the
geometric parameters of the harvester can be tuned to
have a second natural frequency (w,) that is not
very far away from the first natural frequency.
For instance, as mentioned before and as will be
shown in the case study, w,=2w,; is a realizable case
for the L-shaped configuration whereas this case cannot
be realized for the conventional cantilevered beams.
Thus, it can be concluded that the L-shaped energy
harvester configuration has better broadband energy
harvester characteristics and is less sensitive to varia-
tions in the dominant excitation frequency when
compared to the conventional cantilevered beam
configuration.

ELECTROMECHANICAL MODELING

In this section, we summarize the electromechanical
modeling of the L-shaped unimorph harvester shown in
Figure 2(a). The electromechanically coupled modeling
approach is based on the experimentally validated
(Erturk and Inman, 2008c) coupled distributed param-
eter model proposed by Erturk and Inman (2008a). As
depicted in Figure 2(a), this structure is a combination
of one horizontal and one vertical thin beam with two
lumped masses (M and M>). The structure is excited by
the vertical base acceleration ag(7). The substructure and
piezoceramic layers are geometrically uniform along
their longitudinal directions. The lumped masses and the
location of the second Iumped mass (M>) on the vertical
beam are important tuning parameters for the system
which make it possible to obtain the two-to-one internal
resonance for the nonlinear modal interactions men-
tioned in the previous section.

(a)

I Substructure layer
1 Piezoceramic layer

ag(f ] 7
Vibrating L,
surface '

The vibratory motion of the harvester is examined in
three segments (regions), Ny, equipped with the refer-
ence frames (xy, yx), such that (Figure 2(b)):

Ne = {xx]0 < X < Ly}, (1)

where k=1, 2, 3 in Equation (1) and hereafter. Each
segment is modeled for the general case of different
lengths L;, mass per unit length terms m,, and flexural
stiffness terms YI,. Therefore, the substructure and
piezoceramic layers as well as their geometric properties
can be taken to be different for each segment 9.
The piezoceramic layers are covered with conductive
electrode pairs and they are poled in the thickness
direction (3-direction with the notation of piezoelectri-
city). The direction of mechanical strain in each segment
is the longitudinal direction (1-direction with the nota-
tion of piezoelectricity) due to bending deformations. It is
assumed that the piezoceramic layer and the substructure
layer are perfectly bonded to each other. Segments N,
Ny, and N3 have separate electrode pairs whose leads
are connected to a single resistive load (R)) in series. Note
that considering a resistive load in the electrical circuit is a
common practice in modeling of piezoelectric energy
harvesters for persistent vibration inputs. The aim here is
to model and investigate the basic electromechanical
behavior of the harvester for a resistive electrical load.
Circuitry-based discussions with more sophisticated
energy harvesting circuit topologies can be found in the
literature (e.g., Ottman et al., 2002). Although the
configuration is taken as a unimorph in the following
analysis, one might as well consider the bimorph case
with a similar procedure. The bimorph configuration
allows combining the electrical outputs of different
segments in series or in parallel, depending on the voltage
or current requirements (Erturk and Inman, 2008c).

Modal Analysis for Free Vibrations

Since the aspect ratios of typical energy harvester
configurations allow neglect of the effects of shear

Figure 2. (a) Schematic of the L-shaped piezoelectric energy harvester, (b) the reference frames and the displacement variables.
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deformation and rotary inertia, the following
modeling procedure is based on the Euler-Bernoulli
beam assumptions. Reasonably, we are interested in
bending vibrations of the harvester and, therefore, the
longitudinal vibrations of the beam segments are
ignored by assuming the segments to be axially rigid.
Geometrically small oscillations are considered here
along with the assumption of linearly elastic material
behavior. Equations of motion for undamped free
vibrations of each segment in its lateral direction can
be written as:

P (M), (xp, t P wi(Xp,
( b)kz(l )+m/< l(2k )
oxj; ot
(2)

Pwilx, 1)

+ S Mag >— =0, xx €Ny,
oxj,

where my is the mass per unit length, (My), (wy, 1) is
the bending moment, and wy(xy, ) is the transverse
vibratory displacement of segment Ny, M, is the second
lumped mass (at x, = L,), g is the gravitational accelera-
tion, and §, is Kronecker delta (defined as being equal to
unity for r = s and equal to zero for r #s). It is important
to note that the piezoelectric effect is included in
the bending moment (My), (wg, ), which can be
expanded into a term related to the bending stiffness
Y1, and a term related to the voltage v.(¢) across the
electrodes of segment N (Erturk and Inman, 2008a).
The expressions of my and Y, for the unimorph cross-
section can be found in the Appendix. The dissipative
effects due to internal and external damping mecha-
nisms will be introduced as modal damping later.
Note that the weight Mg of the second lumped mass
acts as an axial load for segment 9,. The boundary
conditions, compatibility, and continuity relations are
stated next.

The geometric boundary conditions at the clamped
end (x; =0) are:

owi(xy, 1)

wi(0,1) =0,
8)(,‘] xX1=0

— 0. (3a)

The linear/angular displacement and force/moment
equilibrium relations at the locations of the lumped
masses are:

awy(xy, 9 t
a0, = 0, Dl Inala. ) (3b)
axl xi1=L, 3x2 2=0

Fw {

Y1, 141(921,)
8x1 x1:L1
Pwi(xy, t
= My My 4ol s Ly g
X1=L1

Pwi(x, ¢ Fwi(xy, ¢
YI, 1(21 ) s 12( 1,1)
8)(,'1 x1=L, =0 x1=L)
2
_ yp 2020 Wz(?’ 2 (3d)
x5 X2=0
owy(xs, t
(Lo, 1) = wy(0, 1), 22020
9x2 X2=L,
_ ws(x3,0) (3e)
BX3 x3:0’
owa(xo, t FPwa(xa, t
Mg 2(x2, 1) YD 2(22 )
9x2 xa=L, aXZ xo=L,
9 t & t
. W;(és, ) M, Wza(t)zcz, ) e,
x3 ,‘63:0 X2=L2
Fwy(xa, Pwy(x,
YL 2(22 ) ) 22( 2, 1)
ox; =L, 0t*0x» =L,
R Jt
AL ()
0x3

x;:O

where J, and J, are the rotary inertias of the lumped
masses M; and M, respectively. Finally, the natural
boundary conditions at the free end of the harvester can
be stated as:

Pwi(x3,7)
Bxg

FPwi(x3, 1)

YI
3 8x§

=0, Y

X3=L3

=0. (3h)

.\'3=L3

Based on the expansion theorem, the vibratory
motion of beam segment N, can be represented by an
absolutely and uniformly convergent series of the
eigenfunctions as:

Wi 1) = ) G Con (1), xx € R, )

r=1

where 7,(f) is the modal response of the r-th vibration
mode and the piecewise-defined eigenfunctions of the
structure are:
¢lr(xl) = Ay, Sin(arxl) + By, COS(O[,X])
+ Cy, sinh(e,x1) + Dy, cosh(e,x1), (52)
$2r(x2) = Ay sin(B.x2) + Ba, cos(B,x2)
+ Cor Sinh(VrXZ) + Do, cosh(yyx2),  (5b)

¢3r(x3) = A3, sin(pe,x3) + B3, cos(pyx3)

+ Cs, sinh(p,x3) + D3, cosh(u,x3).  (5¢)
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The above eigenfunctions are obtained through the
separation of variables solution of the respective partial
differential equations given by Equation (2).

For harmonic oscillations in time domain, the
relations between the frequency parameters of different
segments of the structure, natural frequencies, and the
structural parameters can be obtained as (Rao, 2007):

4 2]7’I] 4 2}’7’13

Y= Oy BT Oy

2 _ Kk K 5T

Fr=at\Va Ty (6)
K K2 m M

yr___+ — 4+ 2_2’ _2g

where o, is the undamped natural frequency of the r-th
vibration mode. Note that the above modal analysis is
given for the short circuit conditions of the system (i.e.,
R; — 0, where R, is the load resistance). The undamped
natural frequencies (w,) are approximately the short
circuit resonance frequencies () of the system for light
mechanical damping (since the voltage feedback in the
beam equation tends to zero for R; — 0). Due to the
piezoelectric coupling in the mechanical equation (which
is embedded in the bending moment term in Equation (2)),
the short circuit resonance frequency ) of the r-th
vibration mode shifts to the open circuit resonance
frequency @’ as R; — oo. For nonzero and finite values
of load resistance, the resonance frequency of the r-th
vibration mode takes a value between the short circuit
and the open circuit resonance frequencies (Erturk and
Inman, 2008a,c).

As a common practice, substituting Equation (4)
in Equations (3a)-(3h) results in an eigenvalue
problem. Using the differential eigensolution procedure,
the resulting 12 x 12 coefficient matrix is forced to be
singular and the natural frequencies of the structure are
obtained from the resulting characteristic equation. The
natural frequencies are then used in Equations (5a)—(5¢)
and Equation (6) to find the -eigenfunctions of
each segment. In Equations (5a)—~(5¢), {Ax. Birs Cir
D,,,} are the modal coefficients of the eigenfunction
defined over segment 9Ny, respectively. Therefore,
the modal contributions of the eigenfunctions in the
series expansions depend on these sets of modal
coefficients. It is then required to normalize the
piecewise-defined (but continuous) eigenfunctions over
the entire domain 9 UNR, UN;. In order to be
consistent with the formulation proposed by Erturk
and Inman (2008a) for a unimorph cantilevered beam,
the piecewise-defined eigenfunctions of the structure

are mass normalized according to the orthogonality
condition given by:

3 Ly

Z/mkqbkr(xk)(bks(xk)dxk

k=1 0

+ (M + My 4+ myLy + msL3)pi,(Ly)

X ¢15(L1) + Moo (L2)prs(Lo) (7
dei(x1) deis(x1)

+ dx; Y=L dx;

+ Jz d¢2r (XZ) d¢2x (XZ)
dx 2 dx 2

X1 =L1

= (er 5

X2 :Lz X2 =L2

and its stiffness counterpart (which is automatically
satisfied when Equation (7) is satisfied).

Electromechanical Equations for General Base Excitation

In order to derive the electromechanical equations
of the harvester, one should first consider the effect of
mechanical forcing in the system. Since the base
excitation is in the vertical direction in the physical
coordinates (which is the y;-direction in Figure 2(b)), the
direct excitation of the structure is due to its own inertia
in the same direction. Therefore, as one is interested in
bending vibrations of the harvester, it is straightforward
to see from Figure 2(b) that the forcing will affect
Equation (2) for k=1 in the physical coordinates.
However, the entire structure will be vibrating due to
the formulation given in the previous section. After
substituting Equation (4) into Equation (2) and applying
the orthogonality conditions, the forced equation of
motion can be written in the modal coordinates as:

d*n, (1)
de2

dn,(1)

2rr
+ 28w T

3
om0+ ) xi() =Ni(1), (8)
k=1

where ¢, is the viscous modal damping ratio of the r-th
vibration mode, v(7) is the voltage across the electrodes
in segment Ny, xx- 1S the modal electromechanical
coupling term and N,(¢) is the modal mechanical forcing
function such that:

d¢/(r(xk)
dxk

Ly
: (9a)
0

Xier = Uk

L
N = ~[m [ o1+
0

(My + Mz +maL + ms L) (L) |as(@). - (9)

"For a detailed discussion on how to relate the modal damping ratio to the internal (strain rate) and external (air) damping terms based on the proportional damping

assumption, the reader is referred to Erturk and Inman (2008a, 2008d).
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Here, ¢, is the coupling term in the physical
coordinates for the piezoceramic layer in 9 and it is
given in the Appendix. The modal forcing function given
by Equation (9b) is due to the lateral inertia of the
distributed mass in M, as well as the lumped mass
at the boundary x; = L;, which includes the masses of
the vertical beam segments, and the lumped masses M|
and M,. Note that in the modal forcing function the
forcing term due to external damping effect is neglected
(Erturk and Inman, 2008d).

Figure 3 displays the electrical circuit of the L-shaped
energy harvester where the electrical outputs of the
piezoceramic layers of segments 9, N, and N3 are
combined series and connected to a resistive load Rj.
Each piezoceramic layer is shown as a current source
along with its internal (or inherent) capacitance con-
nected in parallel. The electric current i (¢) produced in
each segment Ny is given by:

W0 =3 a0 (10)

where:

¢k1 (xk)

T (an

Yir = —(d30) (Y (Bpe)be——7——

0

In Equation (11), (d3;) is the piezoelectric constant,
(Y,)r is Young’s modulus (i.e., elastic stiffness at
constant electric field), by is the width of the piezo-
ceramic layer and (h,.), is the distance between the
center of the piezoceramic layer and the neutral axis of
the unimorph cross-section in N (see the Appendix).
Note that the above form of Equation (10) assumes the
electrodes of Ry, Ry and R to be insulated from each
other, i.e., they are discontinuous at x; = L; and x, = L.
As can be seen from Equations (10) and (11), the
electric current generated in each segment is propor-
tional to the bending slope difference at the electrode
boundaries. This is due to the fact that the electric
current is the time rate of change of the electric
displacement integrated over the electrode area, where

I1 f) 12(1‘) i3(t)

V1(t—‘ r 2“ V;(})

Figure 3. Electrical circuit of the L-shaped piezoelectric energy
harvester (series connection).

the electric displacement is proportional to the
curvature of the beam (Erturk and Inman, 2008a, b).
Therefore, one should be careful about the mode
shapes of the structure when combining the current
outputs. Otherwise, depending on the mode shapes,
cancellations of the current outputs are possible as
demonstrated in the following case study.

The internal capacitance (C,), of the piezoceramic
layer in segment 9 can be obtained from:

(8§3)/cbkLk

(Cﬁ)k = (hp)k ]

(12)

where (£5;); is the permittivity of the piezoceramic
layer at constant strain and (4,), is the thickness of
the piezoceramic layer. Note that the form of
Equation (12) assumes that the entire length of the
piezoceramic layer in segment M, is covered with
continuous electrodes.

Applying the Kirchhoff Laws to the circuit shown in
Figure 3 and employing Equation (10) results in the
following three equations for v(7), v,(7) and v;(7):

dV](f)

iv1<z>+(cp)1 +— (1)

) = > ) (13a)

20+ (0 + (G, T2

1 o dn,(?)
+EV3(Z) = ;1//2]‘ dr (13b)

ivl(z) T ! () + v:(t)

dV3(l)

dn,
+(Cps Zw, WO (13

Equation (8) and Equations (13a)—(13c) constitute
four ordinary differential equations for the four
unknowns v(7), vo(?), v3(f), and n(f). These equations
are the electromechanical equations of the L-shaped
energy harvester. The voltage response across the
resistive load is simply;

v

v(D) =Y vil0). (14)

k=1

and the coupled mechanical response of the harvester in
the desired segment can be obtained by using n,(f) in
Equation (4) along with the eigenfunctions, which are
normalized according to Equation (7).
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Coupled Voltage Response and Vibration Response
for Harmonic Base Excitation

As is common practice in the energy harvesting
literature, we assume the base acceleration to be
harmonic of the form ag(f)= Age’" where Ay is the
amplitude of the base acceleration, w is the excitation
frequency, and j is the unit imaginary number. For
lincar oscillations, the steady state expressions for the
modal mechanical response n.f) and the voltage
response vi(¢) of the harvester can be written as:

77)‘([) = Hr@jwfa vk(t) = Vke/'wt, (15)
respectively, where Hr and V) are the complex valued
amplitudes. Using Equation (8) and Equation (15)
results in the following relationship:

H = )brAB - Z/i=1 Xbkr Vk
T -0+ j2Lwe

(16)

where
L
o= —[m f 1, (x)dx,
0

+(My+ My +myLy + m3L3)¢1r(L1)]- (17)

Eliminating the modal mechanical response term in
Equations (13a)—(13c) results in three equations for V7,
V5>, and V3 which can be written in the contracted
notation as:

3
Z OV = Py, wherem=1,2,3. (18)
k=1

Here,

1 = JOYmr Xier
nk — &4 w(C 1 k . )

(19)

P = i jwwmrj-rAB
" — ol — @ +j 20,0

are complex valued.

The closed-form solution of the complex voltage
amplitude ¥V, can be obtained from Equation (18),
which can be used in Equation (15) to obtain the steady
state voltage response expressions across the electrodes

of the individual piezoceramic layers. Then, the complex
voltage amplitude across the resistive load is:

V= V. (20)

-

The complex amplitude of the electric current passing
through the resistive load is /=V/R; and the peak
electrical power amplitude is P =|V|*/R,. Note that V is
the peak voltage amplitude and the root mean square
value of the voltage is simply V., = V/+/2, which yields
an average power of P,,.= P/2.

In order to obtain the coupled vibration response of
the harvester, one should use V,, V5, and V3 in H,
(Equation (16)), which can then be used in Equation
(15), and eventually in Equation (4) to obtain the
coupled physical response of the harvester.

CASE STUDY

In this section, an L-shaped unimorph energy harvester
under harmonic base excitation is analyzed. Rather
than specifying a certain frequency for the base excita-
tion, the coupled response characteristics of the harvester
structure (mechanical and electrical) are investigated
with frequency response functions (FRFs). The material,
geometric, and electromechanical properties of the
harvester are given in Tables 1 and 2. The substructure
is made of steel and the material of the piezoceramic layer
is PZT-5A. In addition to the numerical data provided
in the tables, the structure has two lumped masses
M] =0.025 kg and Ml =0.015 kg at x; :L1 and Xo = Lz,
respectively, and these masses have the rotary inertias
Ji=15x10"°kg/m? and J,=1 x 10~%kg/m?, respec-
tively. Although the following is a linear analysis based
on the model derived in the previous section, the
unimorph harvester of this case study is designed to
have w, 2w, where w{® = 22.8 Hz and o} =45.7 Hz
under short circuit conditions (i.e., R — 0).> It is
observed that the first two open circuit natural frequen-
cies of the harvester are w{“ = 23.8 and w$‘ = 46.5 Hz,
respectively, for R; — oco. The shift in the natural
frequencies with changing load resistance is an expected
trend, as previously observed for conventional piezo-
electric energy harvesters (Erturk and Inman, 2008a, c).
Thus, for finite (and nonzero) values of load resistance,
the resonance frequencies of the harvester take values
between the short circuit and open circuit resonance
frequencies. It is observed from the literature that the
resonance frequency of a vibration mode has a value
between these two frequencies for more complicated

2In order to design the structure with this internal resonance condition in a simple way, a 6-DOF model of the structure (with three translational and three rotational
DOFs) is obtained (Chopra, 2007), and then it is reduced to a 2-DOF model by using the static condensation technique (Guyan, 1965).
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energy harvesting circuits as well (see, for instance,
Lesieutre et al., 2004). This is reasonable since the
impedance across the electrodes is limited between these
two extreme cases (short circuit and open circuit
conditions).

Before discussing the trends in the resulting FRFs, an
important issue regarding the mode shape dependence of
the electrical outputs must be addressed. It can be
recalled from Figure 3 that the individual piezoceramic
layers are modeled as current sources in parallel to their
internal capacitances. Equation (10) shows that the
current source i,(f) of segment Ny is a function of the
modal velocity response dn.(7)/d¢ and the mode shape
dependent parameter V. In case of excitation around a
vibration mode (w = w,), the summation in Equation (10)
reduces to a single dominating term. Then, from the
expression given for v, the amplitude and phase of the

Table 1. Material and electromechanical properties
of the L-shaped unimorph energy harvester.

Property Substructure Piezoceramic
Young’s modulus (GPa) 200 66
Mass density (kg/m®) 7800 7800
Piezoelectric constant, - —190

dsy (Pm/V)
Permittivity, 3, (nF/m) - 13.27

Table 2. Geometric properties of the L-shaped unimorph
energy harvester.

Segment Dimension Substructure Piezoceramic

N1 Length (mm) 50 50
Width (mm) 10 10
Thickness (mm) 0.5 0.5

Ro Length (mm) 39.6 39.6
Width (mm) 8 8
Thickness (mm) 0.3 0.3

N3 Length (mm) 20.4 20.4
Width (mm) 8 8
Thickness (mm) 0.3 0.3

(a) 12

Transverse deflection

0 0.01 0.02 0.03 0.04 0.05 0.06
X (m)
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current source depend on the bending slope difference at
the electrode boundaries in segment R;. To improve the
charge collected in segment Ny, one should make this
slope difference as large as possible. Strong cancellations
may occur when harvesting energy from a certain
vibration mode if continuous electrodes cover a region
where the curvature (and therefore the bending strain)
changes sign for that vibration mode (Erturk and Inman,
2008a, b).

Figure 4(a) and (b) display the piecewise-defined mode
shapes of the L-shaped energy harvester for modes 1 and
2, respectively. It is clear from Figure 4(a) that the slope
difference in all three segments has the same sign for
mode 1 excitations. Consequently, the current source
terms #1(¢), i»(¢), and i3(¢) of segments N, N,, and N3 in
Figure 3 are in-phase and they do not cancel one another
for direct combination of the electrode leads in mode 1
excitation. However, as can be seen from Figure 4(b), this
is not the case for the second mode shape, since the slope
difference at the electrode boundaries in i and that in
N, U N3 have the opposite sign, which means that i;(¢) is
now 180° out-of-phase when compared to i»(7) and #5(¢).
As a result, the previously mentioned combination of
the electrode leads causes cancellation around mode 2
excitations. In order to avoid cancellation for excitations
around mode 2, one should simply connect the leads
coming from N, in the reverse manner (which corre-
sponds to changing the sign of #;(¢)). As expected, this
modification that we use in order to avoid cancellation
for excitations around mode 2 results in cancellation for
excitations around mode 1. This discussion is demon-
strated in Figure 5(a) and (b), where the voltage and
power FRFs (per base acceleration in g) are plotted
against a frequency band that includes the first two
natural frequencies (and the FRFs are for a fixed resistive
load R;=50k€2). The solid line corresponds to the first
case that is favorable for mode 1 excitation, but results in
cancellation in mode 2 excitations. The dashed line
belongs to the case where the cancellation in mode 2
excitation is avoided, but yields cancellation for mode 1
excitation. In practice, it is possible to avoid cancellation

—
O
-~

Transverse deflection

0.02 0.03 0.04 0.05 0.06

Xi(m)

0 0.01

Figure 4. Mode shapes of the L-shaped piezoelectric energy harvester for the (a) first mode and for (b) the second mode.
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Figure 5. (a) Voltage, (b) power and (c) tip displacement FRFs for 50 k2 load resistance, and (d) variation of the voltage, current and power
amplitudes with load resistance for the short circuit resonance frequency excitation (at 22.8 Hz).

of the electrical outputs of Ny, Ny, and N3 for both
vibration modes by employing full-wave rectifiers
(Erturk et al., 2008b). It is important to note that the
cancellation phenomenon is mainly an electrical issue
that depends on the electrode locations, and the major
trend in the mechanical FRF is not affected that much.
This is depicted in Figure 5(c), which is the FRF
that gives the transverse displacement at the free end
per base acceleration (in g) for the same resistive load
(R;=50k€). The current FRF can also be obtained from
the voltage FRF and it is not shown here. Figure 5(d)
shows the variation of the voltage, current and
power amplitudes (per base acceleration) for excitation
at the short circuit resonance frequency of the first
mode (w}° =222.8 Hz). The voltage output increases
monotonically whereas the current output decreases
monotonically with increasing load resistance. As a
consequence of these expected trends in voltage and
current, power has a peak value for an optimum
resistive load. The largest current output is obtained in
short circuit conditions (R; — 0) as 93 pAmps/g, and the
largest voltage output is obtained in open circuit
conditions (R} — oo) as 203 V/g. An optimum power
output of 10mW/g? is extracted for a resistive load of
2.18 M. Note that, similar graphs can be obtained for
the second mode excitation (at ¥ = 45.7 rad/s) and the
optimum load resistance for the excitation at this

frequency can be identified. Moreover, a similar analysis
can be performed for the open circuit resonance
frequencies of the harvester as well.

AN APPLICATION: L-SHAPED ENERGY
HARVESTER AS A UAV LANDING GEAR

In this section, first the literature on energy harvesting
for UAV applications is reviewed. After discussing a
recent work on piezoelectric energy harvesting from
landing gears of a UAV (that used uniform cantilever and
curved piezoelectric beams), the L-shaped piezoelectric
energy harvester configuration is proposed as an impro-
ved UAV landing gear. Performance of the L-shaped
energy harvester as a UAV landing gear is compared
favorably with that of a curved energy harvester beam
used for the same purpose in a recent study.

Energy Harvesting for UAVs

UAVs have been investigated by several researchers in
the literature (for example Gallington et al., 1996).
Moreover, in the last decade, a new class of UAVs, the so-
called micro air vehicles (MAVs), has emerged and several
research programs were initiated, in particular for use in
military-based missions. The main difference between
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UAVs and MAVs is due to their dimensional definitions.
Although wing spans of typical UAVs can exceed 1 m,
the definition of MAVs limits their maximum length
dimension to 6in. (Pines and Bohorquez, 2006).
From the practical point of view, our brief discussion
in this section applies both for UAVs and MAVs,
although, for convenience, we will stick to the term
UAYV throughout this section. The motivating reasons
for harvesting energy in a UAV application include
increasing the flight time for a prescribed mission and
powering the UAV’s sensors or global positioning
system units.

The literature includes research on powering UAVs
with thermoelectric energy generation (Fleming et al.,
2002) as well as detailed discussions on the implementa-
tion of solar, wind, electromagnetic, and autophagous
(self-consuming) structure-battery applications for
UAVs (Qidawi et al., 2005). Piezoelectric energy harvest-
ing for UAVs was discussed by Erturk et al. (2007) and
Anton et al. (2008) where AFC (active fiber composite)
beams were located inside the fuselage (in the cantilev-
ered configuration) and also attached on the wing spars
(as structural patches) of a UAV with a wing span of
1.8 m for voltage generation during the flight. Recently,
Magoteaux (2007) studied solar and piezoelectric energy
harvesting techniques for implemention in a small UAV.
For integrating piezoelectric beams to a UAYV,
Magoteaux (2007) proposed to replace the landing
gears by cantilevered uniform and curved beams as two
possible configurations. Even though uniform and
curved cantilevered beams are easy to find commercially,
these conventional configurations may not be the most
appropriate ones to use as landing gears.

Having described the L-shaped piezoelectric energy
harvester and its features in this work, we suggest using
it as a landing gear for UAV applications where perching
is an option for recharging the system. In addition
to geometric compatibility of the L-shaped structure as
a landing gear (Figure 6), its parameters can be tuned to
obtain the two-to-one internal resonance to a prescribed
primary resonance, as discussed previously. Reasonably,
one should be careful with the size and weight limitations
of the UAV while designing the L-shaped energy
harvester. The primary resonance of interest is the
dominant excitation frequency and it might be
the operating frequency of a vibrating base on which
the UAYV lands during a mission, as depicted in Figure 6.
As a concrete example, one can consider an MAV, which
lands on a vibrating air conditioner unit during the
mission to charge its batteries. Typical frequency
contents of such devices have been provided in the
literature on energy harvesting (Roundy et al., 2003);
hence, one can select a dominant primary resonance to
obtain the best electrical results in piezoelectric energy
harvesting. Considering Figure 6, it is worthwhile to
add that the L-shaped energy harvester as a landing gear

a—

Vibrating base

—
- L-shaped landing
gear with

(@) piezoceramics (b)

Figure 6. Schematic of a UAV with L-shaped - energy harvester —
landing gears; (a) front view of the UAV and (b) side view of the front
landing gear.

has somewhat different boundary conditions and
mechanical forcing when compared to what has been
investigated in this work based on Figure 2(a). One can
easily modify the boundary conditions given by
Equations (3a)—(3h), as well as the mechanical forcing
term, to represent the excitation coming from the wheels.
Note that the wheel of each landing gear can take the
place of the second lumped mass between segments R,
and N;. Alternatively, the given formulation can be used
directly by equating the length of N3 to zero and the
partial lumped mass of the UAV to M, (Figure 2(a)).
Then, the clamped end is the location of the wheel with
the ground acceleration ag(?). The mass of the UAV can
be split and lumped on each landing gear to analyze the
electrical outputs for a given vibratory motion at each
wheel. This option is also in agreement with the approach
used in the aforementioned work (Magoteaux, 2007).
Therefore, the following analysis considers the split-mass
of the UAV as M, and the base acceleration as the
vertical acceleration at the wheel.

A Comparative Case Study

As mentioned before, Magoteaux (2007) studied two
types of harvesters in his landing gear application for a
small UAV: a curved beam and a uniform cantilevered
beam. The total mass of the UAV (150 g) was split into
two or three lumped masses (for two or three landing
gears, respectively) to estimate the electrical power
outputs of the curved and the uniform harvester beam
alternatives. Hence, one case was for 75 g tip mass per
landing gear whereas the other case was for 50 g tip mass
per landing gear (theoretically, the case of 25 g tip mass
per landing gear was studied as well, which should
correspond to the case of having six beams, and which
may not be as practical). Relying on the mathematical
model (due to its predictions for the case without the
UAYV mass), Magoteaux (2007) examined the uniform
beam case theoretically, whereas he investigated the
curved beam case with the UAV mass experimentally.
After comparing the model predictions for the uniform
beam case with the experimental results of the curved
beam case, Magoteaux (2007) concluded that the
uniform cantilevered beam case yields higher outputs
at relatively low frequencies. This statement could be
misleading, as the displacement response of the
harvester was not checked in the theoretical study.
For the uniform cantilevered beam case, a tip mass of
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50 g (due to 1/3 of the UAV mass) is about 137 times the
mass of each harvester beam (i.e., each landing gear),
whereas a tip mass of 75 g (due to 1/2 of the UAV mass)
is about 206 times the mass of each harvester beam.
It can be shown by using the analytical solution
for a cantilevered beam (Erturk and Inman, 2008a)
that, even for impractically large mechanical damping
ratios, both of these cases result in very large displace-
ment response amplitudes at resonance when
compared to the dimensions of the uniform harvester
beam (Table 4.2 in Magoteaux (2007)) for the given
acceleration input (10m/s®). Therefore, the theoretical
predictions of the uniform harvester model fail for
the aforementioned numerical values (most likely, in
practice, a real harvester described by these numerical
data would also fail under large deflections). Hence, for
an approximate comparison, we consider the experi-
mental results of the curved beam configuration in
Magoteaux (2007) and focus on the case with a 50 g tip
mass due to 1/3 of the UAV mass, which is an estimate
of using 3 landing gears.

The curved harvester beam used by Magoteaux (2007)
was a THUNDER Actuator TH-8R supplied by the
Face® International Corporation. The length, width, and
total thickness of this curved beam are 63.25mm,
13.72mm, and 0.43mm. The substrate of the curved
beam is stainless steel (Face®, 2008). For the case with a
tip mass of 50g and an acceleration input of 10m/s*
(realized through a shaker), Magoteaux (2007) obtained
a maximum power output of about 1.1mW with a
voltage output of about 7v. Hence, one can extract the
optimum resistive load that yields the maximum power
output approximately as 44 k2. Next, an L-shaped —
energy harvester — landing gear is designed as an alter-
native to the curved beam used in the mentioned work.

For accurate modeling of the L-shaped energy
harvester as a landing gear, one can modify the boundary
conditions of the structure (Figure 2(a)) described
previously. However, it is also possible to model the
landing gear structure without changing the formulation
given in this article and this is what we prefer here. If the
length of the harvester segment N3 equals zero (L3 =0) in
Figure 2(a), the harvester structure consists of segments
N and N, only. One can then consider the lumped mass
M, as the split mass of the UAV on each landing gear
(M>=50g). As mentioned in the distributed parameter
formulation, the split weight M> g of the UAV acts as an
axial load for segment N,. Furthermore, a rotary inertia
(J») can be specified for the UAV about the respective
axis at the point of connection between the UAV and
the landing gear. As can be anticipated, the clamped
end in N, is the location of the wheel where the ground
acceleration input is known (4g=10m/s?). Since the
acceleration input at the wheel is known, the mass of the

Table 3. Geometric properties of the L-shaped - energy
harvester - landing gear.

Segment Dimension Substructure Piezoceramic

N1 Length (mm) 30 30
Width (mm) 10 10
Thickness (mm) 0.3 0.3

No Length (mm) 20 20
Width (mm) 10 10
Thickness (mm) 0.2 0.2

wheel is redundant. It is important to note that the given
formulation restricts the slope at the wheel to be zero.* In
addition to the UAV mass described by M,, the
formulation allows another mass at the corner of the
harvester (M with the rotary inertia J;). Here, M| might
be a useful parameter in order to tune the natural
frequencies of the landing gear, or, practically, it might
represent the mass of a stiffener at the corner (for
simplicity, it can be taken as zero).

Here, the attention is given to keeping the total length
of the L-shaped energy harvester, its thickness, and width
similar to those of the curved harvester used by
Magoteaux (2007). The geometric data of the L-shaped
— energy harvester — landing gear is displayed in Table 3
and its material properties are given in Table 1. Hence, the
materials of piezoceramic and substructure are PZT-5A
and stainless steel, respectively. In addition, M,=50g,
M, =J,=J,=0 and the harvester consists of segments
M; and M, only, since L;=0. For a more accurate
analysis, the rotary inertia J, of the UAV can be included
in the calculations. Note that, with these data, the
L-shaped structure has a total mass of 1.95 g (excluding
the wheel and the UAV mass) and it is slightly less than
the mass of the THUNDER Actuator TH-8R used by
Magoteaux (2007), which is 2.1 g (Face®, 2008). Thus, the
comparison basis is fair in terms of the amount of the
mass added to the UAV as a landing gear. Instead of
presenting the electrical outputs at resonance as done by
Magoteaux (2007), we present the results with FRFs as
done in the case study. For a resistive load of Rj=44kQ
(which is approximately the optimum resistive load of the
configuration in Magoteaux (2007)), the voltage FRF
(per g) is shown in Figure 7(a). Note that R =44k,
however, is not the optimum resistive load of the
harvester presented here. The issue regarding the combi-
nation of the electrode leads of segments 9; and N,
generators persists (see the discussion in the case study)
and one can combine these leads to avoid cancellations
for mode 1 or mode 2 excitations, separately. The first two
resonance frequencies of the harvester in short circuit
conditions (R} — 0) are 16.4Hz and 49.3 Hz, respec-
tively. These two frequencies, respectively, shift to the
open circuit resonance frequencies 17.0 Hz and 49.7 Hz,

3Although base rotation is not discussed in this work, one might as well specify a small rotation at the base, as described by Erturk and Inman (2008a) for the unimorph
cantilevered energy harvester case. Inclusion of base rotation results in a modification of the modal forcing function given by Equation (9b).
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Figure 7. (a) Voltage and (b) power FRFs for a 44 k2 load resistance and variation of the voltage, current, and power amplitudes with load
resistance for the short circuit resonance frequency excitation of the (c) first mode (at 16.4 Hz) and the (d) second mode (at 49.3 Hz).

as Ry — oco. It can be seen from the voltage FRF
for R =44k that the maximum voltage amplitude
can be as high as 14.8 V/g, and 11.3 V/g for mode 1 and
mode 2 excitations, respectively. The electrical power
FRF is shown in Figure 7(b) for the same resistive load,
and the maximum power for mode 1 and mode 2
excitations can be read from the graph as 4.90 mW/g?
and 2.92mW/g?, respectively. The transverse deflection
amplitudes at the critical points (x;=1L; and x,=1L,)
are found to be <3 mm/g and 4 mm/g, respectively, for
4% modal mechanical damping. Figure 7(c) and (d)
display the variation of voltage, current and power
amplitudes with load resistance for mode 1 and mode 2
excitations, at ) =164 Hz and at % =49.3 Hz,
respectively. In Figure 7(c), the leads of the electrodes
coming from segments | and N, are combined to avoid
cancellation for mode 1 excitation, whereas, in Figure
7(d), the leads are combined to avoid cancellation for
mode 2 excitation. The maximum voltage and current
amplitudes in Figure 7(c) are 281.8 V/g (for open circuit
conditions, R} — oo) and 316 pAmps/g (for short circuit
conditions, R} — 0), respectively. The maximum power
amplitude in Figure 7(c) is about 31.9mW/g> for an
optimum resistive load of 870kQ2. One can read the
maximum voltage and current amplitudes in Figure 7(d)
as 100 V/g (for open circuit conditions) and 251 pAmps/g
(for short circuit conditions), respectively. The maximum
power amplitude in Figure 7(d) is about 15.5 mW/g> for
an optimum resistive load of 398 k<.

It is clear from Figure 7(c) and (d) that the optimum
load resistance of the L-shaped energy harvester is
relatively large (in the order of hundreds of k€2) and the
maximum power obtained for the optimum resistive
load is also much larger when compared to the curved
harvester beam case. Magoteaux (2007) was able to
extract 1.1 mW from the curved harvester (THUNDER
Actuator TH-8R) for a harmonic ground acceleration
with amplitude of 10m/s> (slightly higher than 1g)
and at a resonance frequency of 145Hz (for the
optimum resistive load of 44k<). Here, for the same
resistive load (44kQ) and 1g acceleration input, the
L-shaped — energy harvester — landing gear gives 4.9 mW
at 16.4Hz and 2.92mW at 49.3Hz (Figure 7(b)).
Although 44k is not the optimum resistive load for
the L-shaped energy harvester used here, the power
outputs obtained at these two resonance frequencies are
still larger than the maximum power (1.1 mW) obtained
from the curved harvester used by Magoteaux (2007).
Since the optimum load resistance of the L-shaped
configuration is relatively large, the electrical power
increases monotonically as one increases the resistive
load from low values to a certain value in the order of
hundreds of k2 (Figure 7(c) and (d) for mode 1 and
mode 2 excitations, respectively). Based on these
promising results of the model proposed, the authors
are currently investigating the experimental performance
of the L-shaped beam-mass structure as a piezoelectric
energy harvester.
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SUMMARY AND CONCLUSIONS

In this work, an L-shaped beam-mass structure is
proposed as a novel piezoelectric energy harvester
configuration with the capability of producing a broader
band harvesting system. A distributed parameter model
is proposed to analyze the coupled electromechanical
behavior of the L-shaped piezoelectric energy harve-
ster and a direct application is proposed for UAVs.
The L-shaped structure can be tuned to have the
first two natural frequencies much closer to each other
(on the frequency axis) when compared to the conven-
tional cantilevered beam case. Reasonably, having the
first two natural frequencies close to each other is a
favorable feature in the sense of broadband energy
harvesting for random or varying-frequency excitations.

An electromechanical model is presented for a
detailed analysis, where the L-shaped piezoelectric
energy harvester is investigated as a generator with
three thin beam segments. The coupled model is
developed based on a recent distributed parameter
piezoelectric energy harvester formulation. The electrical
outputs of the three piezoceramic segments are com-
bined in series and connected to a resistive electrical
load. The frequency response functions of the voltage
across the resistive load, and electrical power as well as
the coupled mechanical response of the harvester are
investigated (per base acceleration). Variations of the
voltage, current, and power amplitudes with load
resistance are also examined and the well-known
qualitative trends are observed (such as the existence
of an optimum resistive load for the maximum electrical
power and the short circuit and open circuit resonance
frequencies). In addition, how to combine the electrodes
of the piezoelectric layers is discussed to avoid the
possible mode shape dependent voltage cancellations.

Finally, a direct application is discussed where the
L-shaped energy harvesters are suggested for use as UAV
landing gears. Improving the flight time of UAVs during
the mission and powering their sensors and global
positioning units is an important research topic. Here,
the L-shaped energy harvester configuration is proposed
as a UAV landing gear for harvesting electrical energy
from perching during the mission. A case study is
presented to compare the L-shaped — energy harvester —
landing gear with a curved energy harvester beam that
was used for the same purpose in a recent work. The
significant advantage of using the L-shaped energy
harvester (having the same mass and resistive load as
that of the curved beam harvester) is demonstrated
theoretically. Based on the promising theoretical results
of this novel piezoelectric energy harvester configuration,
the authors are currently investigating the experimental
performance of the L-shaped beam-mass structure for
piezoelectric energy harvesting.

APPENDIX

Mass per unit length of segment N, can be given by:

mic = bie[(0)i ()i + (0p)c(p)i ] o2y

where (py)r and (p,), are mass densities of the sub-
structure and piezoceramic layers, respectively. The
thicknesses are given by (hy)r and (h,); for the sub-
structure and the piezoceramic layers, respectively, and
both layers are assumed to have the same width b, in
segment Ny (Figure 8).

The bending stiffness of the composite cross-section
can be expressed as:

b k

Yl = = [V () = (ha)i) + (Vo) (he)i = ()p) .

(22)

where (Ys), and (Y,); are the Young’s moduli of the
substructure and the piezoceramic layers, respectively.
Note that (Y,); is indeed the elastic stiffness of
the piezoceramic at constant electric field, i.e.,
(Yp)r = (cf}),- Furthermore, (h,); is the position of the
bottom of the substructure layer from the neutral axis
(always negative), (/) is the position of the top of the
substructure layer from the neutral axis (positive or
negative), and (h.); is the position of the top of the
piezoceramic layer from the neutral axis (always
positive):

)+ 20 )i (h)i + mi(hy)i

(ha)/c = 2[(hp)k + nk(hf)k] ,
nk(hs)i — (hp)]z‘
o ’ 23
() 2[(p) + nicChy)i ] (23)
oy, = )+ 2+
i 2y + nilhy)y ] ,

where 1, = (Y)i/(Y,)r 1s the Young’s moduli ratio.
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Figure 8. Cross-sectional view of the k-th unimorph segment.
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The distance from the center of the piezoceramic layer
to the neutral axis in segment N, can be expressed as:

nk(hs)k [(hp)k + (hs)k]
2[(hp) + m(hy)y ]

(hpe) = 24

Finally, the electromechanical coupling coefficient in
the physical coordinates for segment 9, of the structure
can be given by:

s
g 207\

[(hs); — (ho)E]- (25)

where (dsz;), is the piezoelectric constant of the piezo-
ceramic layer in Ny.
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