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ABSTRACT: Cantilevered beams with piezoceramic (PZT) layers are the most commonly
investigated type of vibration energy harvesters. A frequently used modeling approach is the
single-degree-of-freedom (SDOF) modeling of the harvester beam as it allows simple
expressions for the electrical outputs. In the literature, since the base excitation on the
harvester beam is assumed to be harmonic, the well known SDOF relation is employed for
mathematical modeling. In this study, it is shown that the commonly accepted SDOF
harmonic base excitation relation may yield highly inaccurate results for predicting the motion
of cantilevered beams and bars. First, the response of a cantilevered Euler–Bernoulli beam to
general base excitation given in terms of translation and small rotation is reviewed where more
sophisticated damping models are considered. Then, the error in the SDOF model is shown
and correction factors are derived for improving the SDOF harmonic base excitation model
both for transverse and longitudinal vibrations. The formal way of treating the components of
mechanical damping is also discussed. After deriving simple expressions for the electrical
outputs of the PZT in open-circuit conditions, relevance of the electrical outputs to vibration
mode shapes and the electrode locations is investigated and the issue of strain nodes
is addressed.
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INTRODUCTION

T
HE idea of harvesting ambient vibration energy
to power small electronic components has been

discussed by several authors in the last five years
(Sodano et al., 2004; Beeby et al., 2006). Among the
different approaches for converting the mechanical
vibration energy to electric energy, the most popular
harvester mechanism used is a cantilevered beam with
piezoceramic (PZT) layers. Typically, the cantilevered
beam is attached to a vibrating/moving host structure
and therefore it is subjected to a base excitation. For the
sake of simplicity, most of the authors have considered
the base excitation to be harmonic in time. Furthermore,
in order to obtain closed-form electromechanical expres-
sions for the resulting voltage and power outputs and
also to optimize the system parameters in a simple
manner, several authors have used single-degree-of-
freedom (SDOF) modeling. Since the base excitation is
assumed to be harmonic, the well-known SDOF
harmonic base excitation relation (which is available in

any elementary vibration textbook) has been widely
used for modeling the dynamics of the problem.

The early discussion of Williams and Yates (1996) on
the generated power was based on the SDOF harmonic
base excitation relation. Although they focused on
electromagnetic type of vibration energy harvesters,
El-Hami et al. (2001) also built their formulation on
the same mechanical SDOF relation. A 1-D electro-
mechanically coupled piezoelectric generator model was
presented by duToit et al. (2005) where they introduced
the electrical effects to the SDOF harmonic base excita-
tion relation. Stephen (2006) discussed the maximum
power generation and the effect of mechanical damping
using the same SDOF relation. Quite recently, Ajitsaria
et al. (2007) employed the SDOF relation for predicting
the voltage output analytically. Some authors (Jeon et al.,
2005; Fang et al., 2006) employed the SDOF base
excitation relation just to represent the mathematical
problem although they did not provide detailed formula-
tion. In short, the SDOF modeling and/or representation
of the base excitation relation are widely used in vibration
energy harvesting literature, which provides sufficient
motivation to compare its accuracy against the distrib-
uted parameter solution that uses the Euler–Bernoulli
beam model. Furthermore, reviewing the formal solution
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procedure of the base excitation problem for a
cantilevered Euler–Bernoulli beam might be appropriate
considering the incorrect approaches to the same problem
due to weak mathematical assumptions. For instance,
recently, Ajitsaria et al. (2007) attempted to represent the
base excitation (which is, indeed, a distributed force on
the beam) as a tip force to obtain a SDOF representation.
Other flaws in the same work, such as the fact that
Ajitsaria et al. (2007) combined the static piezoelectric
actuation equations taken from the literature with the
dynamic Euler–Bernoulli beam equation, are beyond the
discussion of this study which intends to examine mainly
the mechanical side of the problem.
In this study, first the general solution of the base

excitation problem for transverse vibrations of a canti-
levered Euler–Bernoulli beam is reviewed and the formal
treatment of mechanical damping is discussed. The aspect
ratios of typical harvester beams used in the literature
allow neglecting the effects of shear deformation and
rotary inertia, and make it reasonable to use the Euler–
Bernoulli beam model. The base motion is described by
translation and small rotation and it is not restricted to be
harmonic in time. Then the general solution is reduced to
the particular case of harmonic base translation and the
results of the Euler–Bernoulli model are compared with
those of the SDOF model in a nondimensional basis. It is
shown that the SDOF model may yield highly inaccurate
results and a correction factor is derived for improving
the SDOF model for transverse vibrations. The variation
of correction factor with tip mass to beam mass ratio is
also given and it is observed that the uncorrected SDOF
model can be accurate only when this ratio is sufficiently
high. The base excitation problem is summarized for the
case of longitudinal vibrations and a correction factor is
introduced also for the SDOF harmonic base excitation
model of longitudinal vibrations. After summarizing the
relevance of the correction factor to the SDOF electro-
mechanical equations, simple expressions are derived for
the electrical outputs of PZT in open-circuit conditions.
These expressions lead to important conclusions regard-
ing the effect of strain nodes of the beam on the electrical
outputs which can be important especially if the harvester
is not excited at its fundamental natural frequency.
The concept of the effects of strain mode shapes on the
harvested energy was eluded to in duToit et al. (2005),
and it is precisely examined and clarified here.

BASE EXCITATION PROBLEM FOR

TRANSVERSE VIBRATIONS OF

A CANTILEVERED BEAM

Response to General Base Excitation

The uniform clamped-free Euler–Bernoulli beam
shown in Figure 1 is subjected to the arbitrary

translation g(t) and small rotation h(t) of its base.
For the purpose of demonstration, this harvester beam
(or the bender) is shown as a unimorph bender having
two layers: the substructure layer (at the bottom) and
the PZT layer (at the top). However, it could as well be a
bimorph configuration with two PZT layers bracketing
the substructure layer. In practice, the PZT layer is
connected to a harvesting circuit through the conductive
electrodes (which can be combined in series or in parallel
depending on the voltage or current requirements if the
configuration is a bimorph). Examination of the electric
circuit models and the various piezoelectric harvester
configurations is not the focus of this study, which aims
to discuss some important mechanical aspects. From
the mechanical point of view, the configuration of the
layers is expected to affect the flexural stiffness and
the mass per unit length of the beam, which can be
handled by using the following approach as long as the
beam is uniform along its longitudinal axis. In order
to discuss the mechanical aspects in a simple manner,
the electromechanical effects in the mechanical domain
due to the piezoelectric effect and a possible electric
circuit are ignored. The coupled electromechanical
behavior of the distributed parameter harvester
beam and a simple electric circuit connected to it has
been investigated by the authors recently (Erturk and
Inman, 2008).

The absolute displacement of the beam at any point x
along the beam axis in the transverse direction (i.e., in
y-direction) is denoted by w(x, t). If the beam is assumed
to be undamped, the equation of motion for free
vibrations in the absolute x–y frame can be written as
(Timoshenko et al., 1974):

EI
@4wðx, tÞ

@x4
þm

@2wðx, tÞ

@t2
¼ 0 ð1Þ

where EI is the flexural stiffness (E is the Young’s
modulus and I is the cross-sectional area moment of
inertia) and m is the mass per unit length of the beam.
Note that the way of obtaining the equivalent flexural
stiffness of a beam with composite cross-section is
described in elementary strength of materials books
(e.g., Beer and Johnston, 1992). For the sake of
completeness, the tip mass (or the so-called proof
mass) is excluded and the effect of a tip mass on
the formulation can be found in a recent study by

x

g(t)

h(t) EI,m,L

x = 0 x = L

y PZT layer

Substructure

Figure 1. Cantilevered bender under translational and small
rotational base motions.
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Erturk and Inman (2007) and its effects on the results
will be summarized later in this study.
Two types of damping mechanisms will be included to

the undamped beam: viscous air (medium) damping and
Kelvin–Voigt (or strain-rate) damping. Hence the
equation of motion of the damped beam becomes

EI
@4wðx, tÞ

@x4
þ csI

@5wðx, tÞ

@x4@t
þ ca

@wðx, tÞ

@t
þm

@2wðx, tÞ

@t2
¼ 0

ð2Þ

where ca is the viscous air damping coefficient and cs is
the strain-rate damping coefficient. Viscous air damping
is a simple way of modeling the force acting on the beam
due to the air particles displaced by the beam during
the vibratory motion and strain-rate damping accounts
for the structural damping due to the friction internal to
the beam (Banks and Inman, 1991). Both of these
damping mechanisms satisfy the proportional damping
criteria and hence they are mathematically convenient
for the modal analysis solution procedure. Other beam
damping mechanisms and the identification procedures
of their respective damping parameters from experi-
mental measurements were discussed by Banks and
Inman (1991).
As suggested by Timoshenko et al. (1974), the

absolute transverse motion of the beam at any point x
and time t can be written as:

wðx, tÞ ¼ wbðx, tÞ þ wrelðx, tÞ ð3Þ

where wrel(x, t) is the transverse displacement relative to
the clamped end of the beam and wb(x, t) is the base
motion given by

wbðx, tÞ ¼ �1ðxÞgðtÞ þ �2ðxÞhðtÞ: ð4Þ

Here, �1(x) and �2(x) are the displacement influence
functions for the transverse base displacement and
small base rotation of the beam, respectively. For
the cantilevered beam case, �1(x)¼ 1 and �2(x)¼ x
(Timoshenko et al., 1974). Using Equation (3) in
Equation (2) yields

EI
@4wrelðx, tÞ

@x4
þ csI

@5wrelðx, tÞ

@x4@t
þ ca

@wrelðx, tÞ

@t
þm

@2wrelðx, tÞ

@t2

¼�m
@2wbðx, tÞ

@t2
� ca

@wbðx, tÞ

@t
: ð5Þ

Note that, after expressing the absolute transverse
motion w(x, t) in terms of the base motion wb(x, t) and
relative transverse motion wrel(x, t), the free vibration
equation for the absolute motion of the beam given by
Equation (2) becomes a forced vibration equation
for the relative vibratory motion of the beam. There
are two important points to mention at this stage.

First, air damping acts on the absolute velocity whereas
the strain-rate damping acts on the relative velocity of
the beam. As a consequence, the attempts (duToit et al.,
2005) for including ‘all sources of mechanical damping’
in a single damping coefficient are oversimplified.
Second, for the same reason, the excitation is not only
due to the rigid body inertia of the beam but also due
to the effect of air damping on the rigid body motion.
The latter may or may not be negligible depending on
the nature of external damping, which will be discussed
later in this study.
The boundary conditions for the relative vibratory
motion of the beam can be written as:

wrelð0, tÞ ¼ 0,
@wrelðx, tÞ

@x

����
x¼0

¼ 0, ð6Þ

EI
@2wrelðx, tÞ

@x2
þ csI

@3wrelðx, tÞ

@x2@t

� �
x¼L

¼ 0,

EI
@3wrelðx, tÞ

@x3
þ csI

@4wrelðx, tÞ

@x4@t

� �
x¼L

¼ 0: ð7Þ

Note that the strain-rate damping results in a moment
as well as a transverse force term that appears in the
natural boundary conditions written for the free end
(Banks and Inman, 1991). Following the standard
modal expansion method, the solution of Equation (5)
can be represented by an absolutely and uniformly
convergent series of the eigenfunctions as:

wrelðx, tÞ ¼
X1
r¼1

�rðxÞ�rðtÞ ð8Þ

where �rðxÞ and �r(t) are the mass normalized eigen-
function and the modal coordinate of the clamped-free
beam for the rth mode, respectively. Since the system is
proportionally damped, the eigenfunctions denoted by
�rðxÞ are indeed the mass normalized eigenfunctions of
the corresponding undamped free vibration problem
(Caughey and O’Kelly, 1965) given by Equation (1)
along with the clamped-free boundary conditions

wrelð0, tÞ ¼ 0,
@wrelðx, tÞ

@x

����
x¼0

¼ 0,

EI
@2wrelðx, tÞ

@x2

����
x¼L

¼ 0, EI
@3wrelðx, tÞ

@x3

����
x¼L

¼ 0: ð9Þ

Therefore, the resulting mass normalized eigen-
function of the rth mode is

�rðxÞ ¼

ffiffiffiffiffiffiffi
1

mL

r
cosh

�r
L
x� cos

�r
L
x

�

��r sinh
�r
L
x� sin

�r
L
x

� ��
ð10Þ
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where the �rs are the dimensionless frequency numbers
obtained from the characteristic equation given by:

1þ cos � cosh � ¼ 0 ð11Þ

and �r is expressed as:

�r ¼
sinh �r � sin �r
cosh �r þ cos �r

: ð12Þ

It should be noted that Equations (10)–(12) are
valid for a clamped-free beam without a tip mass.
The eigenfunction and the characteristic equation
expressions for a clamped-free beam with a tip mass
can be found in a recent work by Erturk and Inman
(2007). The presence of a tip mass also affects the right-
hand side of a Equation (5) since the rigid body inertia
of the tip mass also contributes to the excitation of the
beam in that case.
The mass normalized form of the eigenfunctions given

by Equation (10) satisfies the orthogonality conditions:

Z L

x¼0

m�sðxÞ�rðxÞdx ¼ �rs;

Z L

x¼0

EI�sðxÞ
d4�rðxÞ

dx4
dx ¼ !2

r �rs

ð13Þ

where �rs is the Kronecker delta, defined as being
equal to unity for s¼ r and equal to zero for s 6¼ r, and
!r is the undamped natural frequency of the rth mode
given by:

!r ¼ �
2
r

ffiffiffiffiffiffiffiffiffi
EI

mL4

r
: ð14Þ

The modal response is the solution of the following
ordinary differential equation

d2�rðtÞ

dt2
þ 2�r!r

d�rðtÞ

dt
þ !2

r�rðtÞ ¼ NrðtÞ: ð15Þ

where

2�r!r ¼
cs!

2
r

E
þ
ca
m
: ð16Þ

Therefore, the damping ratio �r includes the effects of
both strain-rate damping and viscous air damping and it
can be expressed as �r ¼ �

s
r þ �

a
r where the strain-rate

and the air damping components of the damping ratio
are �sr ¼ cs!r=2E and �ar ¼ ca=2m!r, respectively. It is
clear from Equation (16) that the strain-rate damping
coefficient is proportional to structural stiffness and the
viscous air damping coefficient is proportional to mass
per unit length. This type of damping is also known
as the Rayleigh damping (Clough and Penzien, 1975).
It is worthwhile to mention that evaluation of

the proportional damping coefficients cs and ca
(from experimental measurements) requires knowing
the natural frequencies and modal damping ratios of
two separate modes (Clough and Penzien, 1975). If one
knows the natural frequencies (!j, !k) and the modal
damping ratios1 (�j, �k) of modes j and k, it is
straightforward from Equation (16) to obtain the cs
and ca values using

2

cs
ca

� 	
¼

2!j!k

!2
j � !

2
k

E
!k

� E
!j

�m!k m!j

� �
�j
�k

� 	
: ð17Þ

In Equation (15), the modal forcing function Nr(t)
can be expressed as:

NrðtÞ ¼ Nm
r ðtÞ þNc

r ðtÞ: ð18Þ

Here, the inertial and the damping excitation terms
are given by the following expressions, respectively:

Nm
r ðtÞ ¼ �m �wr

d2gðtÞ

dt2
þ �	r

d2hðtÞ

dt2

� �

Nc
rðtÞ ¼ �ca �wr

dgðtÞ

dt
þ �	r

dhðtÞ

dt

� �
ð19Þ

where

�wr ¼

Z L

x¼0

�rðxÞdx; �	r ¼

Z L

x¼0

x�rðxÞdx: ð20Þ

Then, the modal response can be obtained by using
the Duhamel integral as:

�rðtÞ ¼
1

!rd

Z t


¼0

Nrð
Þe
��r!rðt�
Þ sin!rdðt� 
Þd
 ð21Þ

where !rd ¼ !r

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2r

p
is the damped natural frequency

of the rth mode. Eventually, the modal response
obtained using Equation (21) can be used in
Equation (8) along with the eigenfunction expression
given by Equation (10) and the relative response
wrel(x, t) at any point along the beam axis can be
obtained as:

wrelðx, tÞ ¼
X1
r¼1

�rðxÞ

!rd

Z t


¼0

Nrð
Þe
��r!rðt�
Þ sin!rdðt� 
Þd
:

ð22Þ

Note that the displacement at the tip of the beam can
be obtained by just setting x¼L in Equation (22). If one
is interested, the absolute response of the beam can be
obtained by just using the relative displacement and the

1One common way of obtaining the modal damping ratios is using the quality
factor (Q) of the mode of interest (Inman, 2006).
2A more realistic approach for identifying these damping coefficients was
described by Banks and Inman (1991).

1314 A. ERTURK AND D. J. INMAN



base motion input in Equation (3). However, the main
concern in vibration energy harvesting is the response of
the beam relative to its base. The expression obtained
for the relative motion of the beam, Equation (22),
is not restricted to harmonic base excitation and it can
handle transient base histories (including small base
rotations).

Steady State Response to Harmonic Base Excitation

In most of the theoretical and experimental studies on
piezoelectric energy harvesters, the base excitation is
assumed to be harmonic translation for simplicity
(although this is not the case for many ambient vibration
sources). If the base translation is in the form of
g(t)¼Y0e

i!t (where Y0 is the excitation amplitude and
! is the excitation frequency) and if there is no
rotational base excitation (i.e., h(t)¼ 0), the steady
state modal response can be obtained as:

�rðtÞ ¼
m!2 � i!ca

!2
r � !

2 þ i2�r!r!
�wr Y0e

i!t ð23Þ

where

�wr ¼

Z L

x¼0

�rðxÞdx ¼
2�r
�r

ffiffiffiffi
L

m

r
ð24Þ

is obtained by integrating Equation (10) over the beam
length. Using Equations (8), (10), and (23), one can
obtain the expression for the relative response at point x
and time t as:

wrelðx, tÞ ¼ 2Y0e
i!t
X1
r¼1

�
cosh

�r
L
x� cos

�r
L
x� �r

� sinh
�r
L
x� sin

�r
L
x

� ��
�r !

2� i2�ar!r!

 �

�r !2
r �!

2þ i2�r!r!

 � :

ð25Þ

Then, by setting x¼L one obtains

wrelðL, tÞ ¼ 2Y0e
i!t
X1
r¼1

�
cosh �r � cos �r

� �rðsinh �r � sin �rÞ

 �rð!

2 � i2�ar!r!
�

�rð!2
r � !

2 þ i2�r!r!
� :
ð26Þ

which is the distributed parameter (Euler–Bernoulli
model) steady state solution for the relative tip
displacement due to harmonic base excitation (when
there is no tip mass).

SDOF Model of the Harmonic Base Excitation Problem

Single-degree-of-freedom modeling approach implies
describing the dynamics of the point of interest (usually

the free end of the beam) in terms of some lumped
parameters which are the equivalent mass, stiffness,
and the damping of the beam denoted by meq, keq,
and ceq, respectively (Figure 2(a)). The equivalent
stiffness is obtained from the static deflection relation
of a cantilevered beam due to a concentrated transverse
load at the tip and the equivalent mass is obtained by
expressing the total kinetic energy of the beam in terms
of the velocity at the tip, for cantilevered end conditions
where the base is not moving. However, it should be
highlighted at this point that in the base excitation
problem (unlike the problem of a beam where the base is
not moving) the beam is excited by its own inertia and
there is a rigid body inertia contribution to the motion
from its distributed mass. In other words, the inertia of
the system is not only due to the vibratory motion of the
beam but also it is due to the rigid body motion of the
beam. This important difference will lead to a correction
factor for the SDOF modeling later in this study.

The commonly used lumped parameter model is
shown in Figure 2(a) and the lumped parameter
model with the correct representation of damping is
given in Figure 2(b). The correction made is due to the
modeling of the external viscous damping (which
is indeed the air damping). It is analogous to the
Euler–Bernoulli model solution that the structural
damping acts on the relative velocity between the mass
and the base; however, the air damping acts on the
absolute velocity of the mass.

In Figure 2, y(t) is the harmonic base excitation
( y(t)¼Y0e

i!t) whereas x(t) is the absolute response of
the mass (i.e., it is the absolute transverse displacement
at the free end of the beam). Let the response of the mass
relative to the base be z(t)¼ x(t)� y(t). For the system
shown in Figure 2(a), one can obtain the relative motion
of the mass as:

zðtÞ ¼
!2meq

keq � !2meq þ i!ceq
Y0e

i!t ð27Þ

which can be found in any elementary vibration text
and which is also frequently referred in order to
describe dynamics of vibration energy harvesters.

y(t)

x(t)

y(t)

x(t)

ceq ceq

ceq

keq keq

meq
meq

s

a

(a) (b)

Figure 2. Lumped parameter models of the base excitation
problem: (a) the commonly used representation and (b) the correct
representation of air damping.
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In Equation (27), keq¼ 3EI/L3, meq¼ 33/140mLþMt

(where Mt is the tip mass, if there is one) and
ceq¼ 2�!nmeq where � is the equivalent damping ratio.
The (fundamental) natural frequency of the system is
simply !n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
keq=meq

p
. Clearly, this model assumes a

single damping coefficient which acts on the relative
velocity of the tip mass.
Now, consider the SDOF model presented in

Figure 2(b) where air damping and structural damping
are treated separately; the former is acting on the
absolute velocity of the mass and the latter is acting
on the velocity of the mass relative to the base. The
air damping coefficient caeq is assumed to be propor-
tional to meq (caeq ¼ a0meq) whereas the structural
damping coefficient cseq is assumed to be proportional
to keq (cseq ¼ a1keq), where a0 and a1 are the constants
of proportionality. Once again, obtaining the propor-
tionality constants a0 and a1 (hence the damping
coefficients caeq and cseq) from experimental measure-
ments requires knowing the damping ratios and natural
frequencies of two separate modes of the real (dis-
tributed parameter) system (Clough and Penzien, 1975)
as in the case of the Euler–Bernoulli model (see
Equation (17)). For the SDOF model shown in
Figure 2(b), the relative response of the tip mass can
be expressed as:

zðtÞ ¼
!2meq � i!caeq

keq � !2meq þ i!ceq
Y0e

i!t: ð28Þ

Here, caeq ¼ 2�a!nmeq and ceq ¼ caeq þ cseq ¼ 2�!nmeq,
where �a is the viscous air damping ratio. Clearly,
in the commonly referred Equation (27), the forcing
term due to air damping is missing. In their SDOF
electromechanically coupled equations, duToit et al.
(2005) suggested representing all sources of mechanical
damping by a single damping ratio acting on the relative
velocity of the tip mass. It is obvious from this
discussion that such an approach without any justifica-
tion is incorrect. However, for the case where the
damping ratio �a due to the medium (which is generally
air) is very low, it is reasonable to expect the forcing
term �i!caeq coming from the air damping to be much
less than the inertial forcing term !2meq and conse-
quently Equation (28) reduces to Equation (27). For a
nondimensional comparison, dividing both of these
forcing terms by meq gives the inertia contribution
as !2 and the air damping contribution as �i2�a!n!.
For the case of excitation at the natural frequency
(!¼!n), how the percentage forcing contribution of air
damping varies with �a is shown in Figure 3 (which is
simply the plot of 2�a=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð2�aÞ2

p
� 100). As can be

seen from the figure, the excitation amplitude coming
from the air damping is 510% of the total excitation
(inertial and damping) if �a50.05. The conclusion of
this short discussion is that the SDOF model of the
harmonic base excitation problem given by Figure 2(a)

and Equation (27) implicitly assumes the damping
excitation of the medium to be sufficiently low when
compared to inertial excitation.

Comparison of the Euler–Bernoulli and the SDOF

Model Predictions

Consider the expressions of the relative tip response
obtained by using the Euler–Bernoulli and the SDOF
models, which are Equations (26) and (28), respectively.
As mentioned previously, for the case of light air
(medium) damping (i.e., for �a, �ar � 1) the excitation
due to the inertia term dominates the numerators of
Equations (26) and (28) and these equations can be
reduced to

wrelðL, tÞ

¼ 2!2Y0e
i!t
X1
r¼1

�r cosh�r � cos�r½ ��r sinh�r � sin�rð Þ�

�r !2
r �!

2þ i2�r!r!

 �

ð29Þ

zðtÞ ¼
!2

!2
n � !

2 þ i2�!n!
Y0e

i!t, ð30Þ

respectively.
The tip motion to base motion ratio gives the relative

motion transmissibility function, which forms an
appropriate nondimensional basis for comparing the
Euler–Bernoulli and the SDOF models. These relative
motion transmissibility functions can be extracted from
Equations (29) and (30) as:

TEB
rel ð!, �rÞ

¼ 2!2
X1
r¼1

�r cosh �r � cos �r½ ��r sinh �r � sin �rð Þ�

�r !2
r � !

2 þ i2�r!r!

 � ð31Þ

TSDOF
rel ð!, �Þ ¼

!2

!2
n � !

2 þ i2�!n!
ð32Þ
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Figure 3. Contribution to the total excitation from air damping as a
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where TEB
rel and TSDOF

rel are for the Euler–Bernoulli and
the SDOF models, respectively. Note that the Euler–
Bernoulli and the SDOF natural frequencies are not
identical since the natural frequency prediction of the
latter model (which is due to !n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
keq=meq

p
) is slightly

different from that of the former model (which is due to
Equation (14)). It should be noted from Equations (31)
and (32) that these are also functions of the damping
ratios. Therefore, it is required to compare the results of
these transmissibility functions for different values of
damping ratio. Here, three different damping ratio
values (�¼ 0.01, 0.025, 0.05) are used for comparison
of the models. The relative motion transmissibility
functions given by Equations (31) and (32) are shown
in Figure 4(a) and (b), respectively. For convenience, the
excitation frequency ! is normalized with respect to the
fundamental natural frequency (of the Euler–Bernoulli
beam model as it is assumed to be the accurate one) and
therefore the frequency axis is denoted by �¼!/!1.
As can be seen from Figure 4, the frequency of
maximum relative motion transmissibility corresponds
to � ffi 1 in both models since the SDOF approach gives
a good estimate of fundamental natural frequency.
However, it is not possible to make the same conclusion
for the amplitude-wise results. It is clear from Figure 4
that the peak values for the same damping ratios are
different for the Euler–Bernoulli model and the SDOF
model predictions.
The relative percentage error in the SDOF solution as a

function of dimensionless frequency ratio is given by
Figure 5. As can be seen from the figure, the error due to
using the SDOF approach for predicting the relative
motion at the tip of the beam is very high. In the vicinity
of the first natural frequency (i.e., at � ffi 1), the error
of the SDOF model can be 435% regardless of the
damping ratio. The interesting behavior in the error
plot at resonance is due to the error in the natural
frequency predicted by the SDOF approach (as
mentioned previously). If the SDOF natural frequency
were taken to be identical to the first natural frequency of

the Euler–Bernoulli model, one would obtain a smooth
behavior in the error. Figure 5 shows that the important
error is in the prediction of the relative motion amplitude
rather than the natural frequency. Of course at higher
excitation frequencies, the error in SDOF model
increases drastically since the higher vibration modes
cannot be captured by the SDOF approach.

CORRECTION OF THE SDOF MODEL FOR

TRANSVERSE VIBRATIONS

Correction Factor for the SDOF Model

Since much of the harvesting literature uses SDOF
modeling for design and optimization, a correction factor
is presented for using the simplified SDOF model.
Consider the relative motion transmissibility function of
the Euler–Bernoulli model given by Equation (31). If the
beam is excited around its first natural frequency, taking
only the first term in the summation sign (neglecting
the terms for r� 2) gives a good approximation for

80(a) (b)

70

60

50

50

40

30

20

10

0

40

30

20

10

0
0

⏐T
re

l⏐
(E

xa
ct

)

⏐T
re

l⏐
(S

D
O

F
)

0.5 1.5

Ω

ζ = 0.01

ζ = 0.025

ζ = 0.05

ζ = 0.01

ζ = 0.025

ζ = 0.05

2 2.5 31 0 0.5 1.5

Ω

2 2.5 31
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the resulting motion transmissibility. This reduced form
of the Euler–Bernoulli model solution is denoted byTEB�

rel :

TEB�
rel ð�, �Þ ¼

�1�
2

1��2 þ i2��
ð33Þ

where �¼!/!1 is used and �1 is defined as the
correction factor for the first transverse vibration
mode of a cantilevered Euler–Bernoulli beam without
a tip mass. Using �1¼ 1.87510407 and �1¼ 0.734095514
obtained from Equations (11) and (12) gives the
correction factor of the first mode as:

�1 ¼
2�1 cosh�1� cos�1ð Þ � �1 sinh�1� sin�1ð Þ½ �

�1
ffi 1:566:

ð34Þ

It should be noted from Equations (32) and (33) that
the reduced form of the Euler–Bernoulli solution for the
first mode is indeed the correction factor �1 multiplied
by the SDOF solution (assuming that the SDOF model
natural frequency is accurate so that �¼!/!1¼!/!n).
Therefore, �1 corrects the amplitude of the relative
motion obtained by the SDOF solution. The compar-
ison of the relative motion transmissibility functions
obtained by using the Euler–Bernoulli model, the SDOF
model, and the corrected SDOF model are given
in Figure 6 for �¼ 0.05. The agreement between the
Euler–Bernoulli Equation (31) and corrected SDOF
Equation (33) is very good in a wide frequency band
around the resonance and the corrected SDOF relative
motion transmissibility function starts deviating in the
region of the second natural frequency. The original
SDOF prediction, Equation (32), underestimates the
relative motion transmissibility amplitude considerably
with an error of about at least 35% (see Figure 5).
If the beam is to be excited not at the first natural

frequency but at one of the higher mode frequencies,
one can obtain the correction factor of the mode
of interest (rth mode) from the following relation

(Erturk and Inman, 2007)

�r ¼
2�r cosh �r � cos �rð Þ � �r sinh �r � sin �rð Þ½ �

�r
ð35Þ

and then use it in the following expression of reduced
relative motion transmissibility

TEB�
rel ð�r, �rÞ ¼

�r�
2
r

1��2
r þ i2�r�r

ð36Þ

where the dimensionless frequency ratio is now �r¼

!/!r and !r is the undamped natural frequency of the
rth mode obtained from Equation (14) and �r is the
modal damping ratio of the rth mode. Note that,
since the modal parameters �r and �r do not depend on
the aspect ratio of the beam, the correction factor �r of
the rth mode is unique in the absence of a tip mass.
For instance, the correction factor for the fundamental
mode is �1 ffi 1:566 for any uniform cantilevered
Euler–Bernoulli beam without a tip mass in transverse
vibrations (so long as the beam aspect ratio justifies
the Euler–Bernoulli beam assumptions). However,
the presence of a tip mass affects the correction factor
which is discussed in the following section.

Effect of a Tip Mass on the Correction Factor

In some cases, it is required to attach a tip (proof )
mass to the bender in order to reduce its natural
frequencies and improve its flexibility. When a tip mass
is attached to the beam shown in Figure 1 rigidly at
x¼L, the formulation of the base excitation problem
requires some modifications (Erturk and Inman, 2007).
After the addition of a tip mass, not only the eigenvalue
problem is changed due to the variation of the natural
boundary conditions at the free end of the beam
(yielding a different characteristic equation, eigenvalues,
and eigenfunctions) but also the excitation of the beam
is changed since the inertia of the tip mass also
contributes to the excitation of the beam itself.
Expectedly, this modification results in variation of
the correction factor defined in the previous section.
The variation of the correction factor �1 of the
fundamental transverse vibration mode with tip mass
(Mt) to beam mass (mL) ratio is shown in Figure 7.
Note that the possible rotary inertia of the tip mass is
neglected for simplicity.

It can be seen from Figure 7 that when there is no tip
mass (Mt/mL¼ 0), �1 ffi 1:566 as previously obtained,
and as Mt/mL becomes larger, �1 approaches to unity.
The important conclusion drawn from Figure 7 is that
the uncorrected SDOF model can be used safely only
when the tip mass is much larger than the beam mass.
The following quadratic polynomial ratio obtained
by using the Curve Fitting Toolbox of MATLAB�
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Figure 6. Relative motion transmissibility functions obtained by the
Euler–Bernoulli, corrected SDOF and the original SDOF models
for �¼ 0.05.
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allows calculating �1 with an error 59� 10�3 for all
values of Mt/mL:

�1 ¼
Mt=mLð Þ

2
þ0:603 Mt=mLð Þ þ 0:08955

Mt=mLð Þ
2
þ0:4637 Mt=mLð Þ þ 0:05718

: ð37Þ

BASE EXCITATION PROBLEM FOR

LONGITUDINAL VIBRATIONS

The base excitation problem for a bender in trans-
verse vibrations has been discussed in detail and this
section summarizes the same problem for longitudinal
vibrations. The bar shown in Figure 8 is subjected to the
arbitrary translation of its base which is denoted
by ub(t). For the case of an energy harvester, the main
bar is a PZT stack and longitudinal strains associated
with the vibratory motion results in electric charge
and the electrodes that capture the charge developed
are located at the boundaries of the stack being
perpendicular to the x-axis.
The equation of motion for the longitudinal free

vibrations of a bar can be written as:

EA
@2uðx, tÞ

@x2
þ csA

@3uðx, tÞ

@x2@t
� ca

@uðx, tÞ

@t
�m

@2uðx, tÞ

@t2
¼ 0

ð38Þ

where EA is the axial stiffness (E is the Young’s modulus
and A is the cross-sectional area) and m is the mass per
unit length of the bar and the absolute motion at any
point x can be represented by u(x, t)¼ ub(t)þ urel(x, t).
The damping mechanism is again represented by
two terms3: cs is due to internal (structural) friction

and ca accounts for external viscous (air) damping. Both
of these damping mechanisms are proportional which
allows using the corresponding undamped eigenfunc-
tions in the modal analysis.

After following the same steps given for transverse
vibrations, the relative response at the free end of the bar
can be obtained as:

urelðx, tÞ ¼
X1
r¼1

’rðxÞ

!rd

Z t


¼0

Nrð
Þe
��r!rðt�
Þ sin!rdðt� 
Þd


ð39Þ

where the modal forcing function is4

NrðtÞ ¼
d2ubðtÞ

dt2
m

Z L

x¼0

’rðxÞdxþMt’rðLÞ

� �
: ð40Þ

It should be noted from Equation (40) that the
excitation coming from the tip mass is directly
considered in the modal forcing term.

The undamped natural frequency !r of the rth mode
is simply

!r ¼ �r

ffiffiffiffiffiffiffiffiffi
EA

mL2

r
ð41Þ

and !rd in Equation (39) is the damped natural
frequency obtained from !rd ¼ !r

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2r

p
where �r is

the modal damping ratio of the rth mode. The mass
normalized eigenfunction ’r(x) of the rth mode can be
expressed as:

’rðxÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mL=2 1� sin 2�r=2�rð Þ þMt sin
2 �r

q sin
�r
L
x:

ð42Þ

Here, the eigenvalues (ar s) are the roots of the
characteristic equation

Mt

mL
� sin�� cos� ¼ 0: ð43Þ

3Although the same notation for the damping coefficients is used in the
transverse vibration case, they are not necessarily identical.

y  

x

ub(t)

EA,m,L

 x = 0 x = L

Mt

PZT stack

Figure 8. Cantilevered bar (PZT stack) with a tip mass under
arbitrary translational base motion.
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Figure 7. Variation of the correction factor for the fundamental
transverse vibration mode with tip mass to beam mass ratio.

4Forcing due to air damping is neglected for convenience.
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For harmonic base input, ubðtÞ ¼ X0e
i!t, the steady

state relative response at the tip of the bar becomes

urelðL,tÞ ¼
X1
r¼1

�
sin�r½ 1� cos�rÞ=�rþMt=mLsin�rð �!2X0e

i!t

ð2�r� sin2�rÞ=4�rþMt=mLsin2�r
� 


!2
r �!

2þ i2�r!r!

 �:

ð44Þ

Therefore, the relative motion transmissibility
between the tip of the bar and the base can be
extracted as:

Trelð!, �rÞ ¼
urelðL, tÞ

X0ei!t
¼
X1
r¼1


r!
2

!2
r � !

2 þ i2�r!r!
ð45Þ

where


r ¼
sin �r 1� cos�rÞ=�r þMt=mL sin �rð Þ

ð2�r � sin 2�rÞ=4�r þMt=mL sin2 �r
ð46Þ

is the correction factor for the SDOF model of the rth
mode for longitudinal vibrations. Note that, kr is a
function of Mt/mL and ar due to Equation (46), and ar
is a function of Mt/mL from Equation (43). Therefore,
the correction factor kr is a function of Mt/mL. In the
absence of a tip mass (Mt/mL¼ 0), the correction factor
for the fundamental mode can explicitly be obtained
from Equations (43) and (46) as 
1 ¼ 4=� ffi 1:273.
However, in the presence of a tip mass, the transcen-
dental equation given by Equation (43) must be solved
numerically to obtain the correction factor. The
variation of the correction factor of the fundamental
mode (k1) with Mt/mL is given in Figure 9.
As in the case of transverse vibrations, the correction

factor tends to unity as tip mass to bar mass ratio
increases, meaning that the uncorrected SDOF model

can be used only for the bars whose tip mass is much
larger than the bar mass. The following quadratic
polynomial ratio obtained by using the Curve Fitting
Toolbox of MATLAB� represents the behavior of the
correction factor shown in Figure 9 successfully with
a maximum error54.5� 10�2% for all values ofMt/mL:


1 ¼
Mt=mLð Þ

2
þ0:7664 Mt=mLð Þ þ 0:2049

Mt=mLð Þ
2
þ0:6005 Mt=mLð Þ þ 0:161

: ð47Þ

CORRECTION FACTOR IN THE

ELECTROMECHANICALLY COUPLED

SDOF EQUATIONS

So far, the base excitation problem has been discussed
both for transverse and longitudinal vibrations. This
section briefly discusses the relevance of the correction
factor to the electromechanically coupled equations.
The procedure of obtaining the electromechanically
coupled equations of a piezoelectric vibration energy
harvester involves applying d’Alambert’s principle
(or Newton’s second law) for the beam/bar in mechan-
ical domain, Kirchhoff’s loop law for the circuit in
electrical domain as well as including the electro-
mechanical coupling effects coming from the well-
known constitutive relations

S ¼ sETþ dE D ¼ dTþ "TE ð48Þ

where S is the strain, T is the stress, D is the electric
displacement, E is the electric field, d is the piezoelectric
constant, SE is the mechanical compliance at
constant electric field, and "T is the permittivity
at constant stress.

The ‘general 1-D model of piezoelectric vibration
energy harvester’ shown in Figure 10 as well as the
sample numerical values shown in the same figure are
from a recent work by duToit et al. (2005) and these
data are used for the purpose of demonstration here.
The electromechanically coupled equations of their
model are given as5

d2urel
dt2
þ 2�m!n

durel
dt
þ !2

nurel � !
2
nd33v ¼ �

d2ub
dt2

ð49Þ

ReqCp
dv

dt
þ vþmeqReqd33!

2
n

durel
dt
¼ 0 ð50Þ

where meq is the equivalent mass of the bar, �m is the
mechanical damping ratio, !n is the natural frequency,
d33 is the piezoelectric constant, Req is the equivalent
resistance, Cp is the capacitance, ub is the harmonic base
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Figure 9. Variation of the correction factor for the fundamental
longitudinal vibration mode with tip mass to bar mass ratio.

5The variables have been adapted to the notation in our text.
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displacement, urel is the relative displacement of the
proof mass, and v is the voltage output. Discussing the
completeness of the electrical loop equation given by
Equation (50) is not the aim of this section. However,
based on the previous discussion, it is known that the
mechanical equilibrium equation given by Equation (49)
may need a correction factor. From the numerical values
given in Figure 10, the tip mass to bar mass ratio of
this sample device is Mt=mL ffi 1:33. From Figure 9 or
Equation (47), the correction factor for the fundamental
mode becomes 
1 ffi 1:0968. Therefore, the corrected
form of Equation (49) is

d2urel
dt2
þ 2�m!n

durel
dt
þ !2

nurel � !
2
nd33v ¼ �
1

d2ub
dt2

: ð51Þ

It should be mentioned that the resulting relative
motion and the voltage amplitudes are proportional to
the amplitude of the right-hand side of Equation (51)
whereas the power output is proportional to the square
of this term6. If the correction factor is not used, all of
these variables are underestimated. In such a case, the
error in the relative tip motion and the voltage
amplitudes is about 8.83% whereas the error in the
estimated power amplitude is about 16.9%.

VOLTAGE ACROSS THE PZT AND STRAIN

NODES OF A CANTILEVERED BENDER

Reconsider the bender shown in Figure 1 which is
excited due to the arbitrary translation (in the transverse
direction) and small rotation of its base. The aim of this
section is to estimate the open-circuit voltage across the
PZT at a certain instant of the vibratory motion and to
investigate the effects of vibration mode shapes on
the electrical outputs of the bender. The approach used
by Dosch et al. (1992) for modeling a self-sensing
PZT actuator will be followed for obtaining the
expression of the voltage output. Note that, the

following simple analysis ignores the backward coupling
in the mechanical domain. A particular effect of
backward coupling is variations in the natural frequen-
cies (short-circuit and open-circuit resonance frequen-
cies) as described by Erturk and Inman (2008).
Backward coupling does not alter the results of
the below practice since the form of the forcing term
in the electrical equation is the same in both cases
(with and without backward coupling).

Since no external electric field is applied on the
PZT (E¼ 0), the second constitutive relation given by
Equations (48) reduces to

D3 ¼ d31T1 ð52Þ

where 1 and 3 directions are coincident with x- and
y-axes, respectively. It is clear from Equation (52) that in
order to obtain the electric displacement, it is required
to find the axial stress which is related to strain from
Hooke’s law. Note that the axial bending strain S1(x, t)
at a point of interest is a function of the radius of
curvature �(x, t) of the neutral axis and the distance hc
of that point form the neutral axis (Beer and
Johnston, 1992):

S1ðx, tÞ ¼ �
hc

�ðx, tÞ
ð53Þ

where the radius of curvature is related to the transverse
deflection by

1

�ðx, tÞ
¼
@2wrelðx, tÞ

@x2
: ð54Þ

Here, the general form of transverse deflection
wrel(x, t) is as given by Equation (22). Then, using
Hooke’s law along with Equations (52)–(54) gives the
electric displacement as

D3ðx, tÞ ¼ �d31Yphc
@2wrelðx, tÞ

@x2
ð55Þ

where Yp is the Young’s modulus of the PZT layer.
Note that hc is the distance between the center of the
PZT layer (in thickness direction) and the neutral axis
of the beam.

Proof mass
M = 0.01 kg (proof mass)

mp = 0.0075 kg (mass of piezo)

wn = 196,570 rad/s

zm = 0.05

d33 = 593⋅10−12 m/V

es
33 = 1.137⋅10−8 F/m

Rp = 5⋅109 Ohm

Ap = 0.0001 m2

h = 0.01 m

Piezo

Base

urel (t)

ub (t)

Rp Rl

Figure 10. General 1-D model of piezoelectric vibration energy harvester with sample numerical values used by duToit et al. (2005).

6The respective expressions of relative tip displacement, voltage and power
output for harmonic base input can be found in the work of duToit et al. (2005).

Cantilevered Piezoelectric Vibration Energy Harvesters 1321



The electric charge q(t) collected by the electrodes can
be obtained by integrating the electric displacement over
the electrode area as

qðtÞ ¼

Z
A

D
	

 n
	
dA ¼ �

Z L

x¼0

d31Yphcb
@2wrelðx, tÞ

@x2
dx ð56Þ

where n
	
is the unit outward normal and b is the width of

the PZT layer. Using the general form of the relative
displacement given by Equation (22) in Equation (56),
one can obtain

qðtÞ ¼ �d31Yphcb
X1
r¼1

Z L

x¼0

d2�rðxÞ

dx2
dx

1

!rd

�

Z t


¼0

Nrð
Þe
��r!rðt�
Þ sin!rdðt� 
Þd
: ð57Þ

After evaluating the spatial integral (and noting that
the relative slope at the root of the bender is zero), the
charge on the electrodes can be expressed as:

qðtÞ ¼ �d31Yphcb
X1
r¼1

d�rðxÞ

dx

����
x¼L

�
1

!rd

Z t


¼0

Nrð
Þe
��r!rðt�
Þ sin!rdðt� 
Þd
: ð58Þ

The voltage v(t) across the electrodes can be obtained
by dividing the charge on the electrodes to the
capacitance Cp of the PZT layer covered by the
electrodes:

vðtÞ ¼ �
d31Yphcb

Cp

X1
r¼1

d�rðxÞ

dx

����
x¼L

�
1

!rd

Z t


¼0

Nrð
Þe
��r!rðt�
Þ sin!rdðt� 
Þd
: ð59Þ

Note that, while integrating the electric displacement
over the electrode area in Equation (56), the electrode
area is assumed to be covering the entire beam surface.
If the PZT layer and/or the electrodes do not cover the
entire bender7, a more general form of the voltage can be
written as:

vðtÞ ¼ �
d31Yphcb

Cp

X1
r¼1

d�rðxÞ

dx

����
x¼x2

x¼x1

�
1

!rd

Z t


¼0

Nrð
Þe
��r!rðt�
Þ sin!rdðt� 
Þd
 ð60Þ

where x1� x� x2 is the range covered by the PZT layer
and/or the electrodes. If the base of the bender is

excited harmonically in the transverse direction (with
gðtÞ ¼ Y0e

i!t and h(t)¼ 0), the steady state voltage can
be obtained from

vðtÞ ¼ �
d31YphcbY0e

i!t

Cp

X1
r¼1

d�rðxÞ

dx

����
x¼x2

x¼x1

m!2 � i!ca

 �

�wr
!2
r � !

2 þ i2�r!r!
:

ð61Þ

Moreover, if the excitation frequency is the natural
frequency of the rth mode (!¼!r), all the terms in the
summation sign other than the mode of interest can be
ignored, and v(t) becomes

vðtÞ ¼ �
�wr d31YphcbmY0e

i !rt��=2ð Þ

2�rCp

d�rðxÞ

dx

����
x¼x2

x¼x1

ð62Þ

where the forcing due to air damping is neglected. In this
type of modal excitation, generally, the mode of interest
is the first mode, for which r¼ 1.

The foregoing simple derivation of the voltage output
(which ignores the electromechanical coupling effects
in mechanical domain) leads to important physical
interpretations. The final form of the voltage output
that is reduced for the case of excitation at a particular
natural frequency, Equation (62), shows that in order
to obtain the maximum voltage output one should
locate the electrodes such that the difference in the
slopes at the electrode boundaries is maximized for
that particular mode shape. Moreover, Equation (62)
suggests that if the slopes at the boundaries of the
electrodes are identical, there is no voltage output.

A more useful discussion is due to Equation (57),
where the spatial integration is not performed and the
charge developed is proportional to the integral of the
curvature of the bender along the portion covered by
the electrodes. It should be noted from Equation (57)
that the integrand in the charge expression is the
curvature of the rth eigenfunction, which is nothing
but the measure of axial strain due to bending of
the beam (see Equations (53) and (54)). Therefore, the
voltage output clearly depends on the area under the
strain curve. As a consequence, for the case of excitation
at a particular natural frequency (and therefore mode
shape), the charge collected by the electrodes and the
voltage output depend on the sign alternation in
the strain along the electrode length, and reasonably,
sign alternation along a single continuous electrode must
be avoided. For instance, for the first mode shape
(Figure 11(a)), since there is no sign change in the strain
(Figure 11(b)), the maximum voltage output can be
obtained by covering the entire length of the bender by
PZT with continuous electrodes. However, in all higher
modes, there exist certain strain nodes where the strain
changes sign. Indeed, the number of strain nodes of
mode n is simply n� 1. The normalized mode shapes of
the first three modes can be seen in Figure 11(a) and

7In such a case, the beam is no longer geometrically uniform, which affects the
main formulation (the eigenfunctions, etc.) given in this study. However, if
the electrodes are segmented but the PZT layer is continuous, one can still use
this formulation to approximate the system dynamics since, in general, the
electrodes are very thin when compared to the substructure and the PZT layers.
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their respective normalized strain distributions are
shown by Figure 11(b) (note that the beam has no tip
mass). The second mode has one strain node at
x*¼ 0.2165 (node A) whereas the third mode has two
strain nodes at x*¼ 0.1323 (node B), and x*¼ 0.4965
(node C) where x*¼ x/L is the dimensionless position
along the x-axis. If the bender shown in Figure 1
vibrates with the second mode shape (see Figure 11(a))
it can be seen from Figure 11(b) that the left side of node
A is in compression when its right side is in tension and
vice versa. This is valid for the n� 1 strain nodes existing
in the nth mode shape.
Crawley and de Luis (1987) discussed the importance

of strain nodes in their work (which focuses on the
converse piezoelectric effect in actuation) with the
following words: ‘‘. . . the first mode has no strain
nodes. Therefore, if this were the only mode to be
excited, the actuators could be placed anywhere along
the beam. For maximum effectiveness, they would be
placed as near to the root as possible. The second mode
has a strain node at x¼ 0.216L. The piezoelectric
actuators (PZAs) must be placed away from this point,
so that the strain applied over the entire length of the
actuator has a constant phase with respect to the
homogeneous strain in the beam in this mode. If not,
the modal force produced by the actuator will be
decreased, since one section of the actuator will
be opposing the other . . . This reasoning also indicates
why it is necessary to use segmented actuators for
the control of flexible structures. For the second mode
of a cantilevered beam, a PZA located at x50.216 must
be driven 180 deg out of phase with a PZA located at
x40.2l6L’’. It should be noted that the results of the
above formulation in the ‘direct sense’ are in agreement
with the observation of Crawley and de Luis (1987) in
the ‘converse sense’ of using PZT in actuation for
structural excitation and control.
Indeed, Cady (1946) discussed this phenomenon

about sixty years ago for (longitudinal) vibrations of
crystals: ‘‘There is no external piezoelectric reaction due

to longitudinal deformations when rods with full-length
electrodes are excited at an even multiple of the
fundamental frequency, since the effects of compressions
and extensions in the various segments cancel exactly’’.
He adds in another article of the same book on
piezoelectric resonators that ‘‘by the use of short
(segmented) electrodes, however, intense vibrations,
with correspondingly strong electric reactions, can be
secured at any value of h (mode number), even or
odd . . . Resonators with any number of pairs of
electrodes can be prepared by silvering or evaporating
a uniform metallic deposit on the opposite sides of the
bar and then dissolving away metal in the proper regions
to produce the desired number of pairs of separate
electrodes’’. Note that his reasoning on even and odd
modes is for longitudinal vibrations and the boundary
conditions he uses. However, the idea is the same
and the ‘proper regions’ he mentions are just the
strain nodes.

In harvesting energy from the vibrations of a bender
like the one shown in Figure 1, the location of the
electrodes and/or the PZT layer can be very important.
For instance, if the PZT layer and the continuous
electrodes cover the region between the root of the
bender and somewhere around the center of the bender
and if the bender vibrates with the second mode shape,
one should expect almost no voltage output due to the
phase difference between the strains (hence between the
electric displacements) at the opposite sides of node A
(see Figure 11(b)). In such a case, the charge developed
at the opposite sides of the strain node should be
collected by separate electrodes so that charge
cancellation due to the phase difference in the electric
displacements is prevented. Note that the resulting
voltages in the electrodes will be 1808 out of phase and
the circuit that combines these electrodes should be
designed accordingly.

If the bender vibrates with a particular mode
shape, determining the positions of the strain nodes
in order to locate the electrodes accordingly is a
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Figure 11. (a) Normalized mode shapes and (b) strain distributions for the first three modes of a cantilevered beam without a tip mass.
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straightforward task. The dimensionless positions of the
strain nodes for the first five modes are given by Table 1
for the case where the beam has no tip mass.
The presence of a tip mass results in a variation of

strain node positions along the length of the bender.
The variations in the positions of the strain nodes
(A, B, and C shown in Figure 11(b)) for the second and
the third modes are displayed in Figure 12 (rotary inertia
of the tip mass is neglected). It should be noted that,
in case of transient base excitation or even for the case of
harmonic base excitation at non-resonant frequencies,
deciding on the location of the electrodes to obtain the
maximum voltage output becomes a more involved
problem since more than one mode shape with different
modal amplitudes contribute to the vibratory motion
simultaneously. Yet, in general, only a few modes
dominate the vibratory motion which allows ignoring
the rest to simplify the problem.

CONCLUSIONS

A cantilevered piezoelectric energy harvester is a
typical vibration energy harvester which has been
subject to many articles in recent years. In practice,
the excitation of these harvesters is generally due to the
base motions. In this work, first the general solution of

the base excitation problem is reviewed for transverse
vibrations of a cantilevered Euler–Bernoulli beam. The
base motion is described by arbitrary translation and
small rotation and it is not restricted to be harmonic in
time. In modeling, damping due to internal friction
(strain-rate or the so-called Kelvin–Voigt damping) and
the damping due to air (or any other medium) are
treated separately. This yields a damping term in
addition to the inertial term in the resulting forcing
function of the base excitation expression. The former
term, however, can be negligible depending on the
medium and scale (micro/macro) of the harvester.

The general solution is then reduced for the particular
case of harmonic translational base excitation in order
to compare the results of the Euler–Bernoulli model
with those of the commonly referred SDOF harmonic
base excitation model. It is shown that the SDOF
model predictions may yield highly inaccurate results.
For improving the accuracy of the existing SDOF
harmonic base excitation model, a correction factor is
introduced. The variation of correction factor with tip
(proof ) mass to beam mass ratio is given and it is
observed that the uncorrected SDOF model can be used
only for high tip mass to beam mass ratios. In the
absence of tip mass or for the benders with low a tip
mass to beam mass ratios, it becomes necessary to use
the corrected model.

The discussion made for transverse vibrations is
also summarized for the base excitation problem of
longitudinal vibrations and some useful equations are
presented. Longitudinal vibrations are of interest
particularly for harvesters which use PZT stacks.
It is shown that the respective SDOF model of the
base excitation problem for longitudinal vibrations
also requires a correction factor and again the
importance of correction factor increases as tip mass
to bar mass ratio decreases. The relevance of
correction factor to the SDOF electromechanical
equations is demonstrated by using an example from
the literature.

Finally, simple expressions are derived for the
electrical outputs of the PZT in open-circuit conditions
and conclusions are drawn regarding the effects of strain
nodes of a cantilevered bender based on these equations.
Strain nodes (the positions on the bender where
strain changes sign) exist for all modes other than
the fundamental vibration mode of a cantilevered
bender. If the vibration mode of the bender is not
the fundamental mode, one should use segmented
electrodes for obtaining the maximum voltage output.
Otherwise, in case of continuous electrodes, the
phase difference in the strains at different sides of
a strain node results in charge cancellation in that
region, which reduces the charge collected by the
continuous electrodes and therefore the voltage output
drastically.

Table 1. Positions of the modal strain nodes
for a cantilevered beam without a tip mass in
transverse vibrations.

Dimensionless position on x-axis (x*¼ x/L)

Mode 1 – – – – –
Mode 2 0.2165 – – – –
Mode 3 0.1323 0.4965 – – –
Mode 4 0.0944 0.3559 0.6417 – –
Mode 5 0.0735 0.2768 0.5001 0.7212 –

Mode 3 (strain node C)

x*
 =

 x
/L

Mode 3 (strain node B)
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Mode 2 (strain node A)
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Figure 12. Variation of the strain node positions for transverse
vibrations with tip mass to beam mass ratio (for modes 2 and 3).
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