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Abstract

In this paper, using the analytical model developed by the authors, the effects of certain system design and operational parameters on

the tool point FRF, thus on the chatter stability are studied. Important conclusions are derived regarding the selection of the system

parameters at the stage of machine tool design and during a practical application in order to increase chatter stability. It is demonstrated

that the stability diagram for an application can be modified in a predictable manner in order to maximize the chatter-free material

removal rate by selecting favorable system parameters using the analytical model developed. The predictions of the model, which are

based on the methodology proposed in this study, are also experimentally verified.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Self-excited vibrations of the tool result in unstable
cutting process, poor surface finish, reduced productivity
and damage on the machine tool itself. For the last 50
years, several important studies have been conducted for
predicting regenerative chatter and preventing unstable
cutting [1–5]. Today, it is possible to obtain stable (chatter-
free) spindle speed and depth of cut combinations by using
the stability lobe diagrams for milling process. The
literature includes not only numerical [3] but also analytical
[4,5] approaches for building stability lobe diagrams in
milling. The common point of these studies is that all
require the system dynamics information at the tool tip,
which is expressed as the tool point FRF. The most
common way of obtaining the tool point FRF is
experimental modal analysis by impact testing at the tool
tip, which is costly and time consuming since it should be
repeated for every holder/tool changes during the applica-
e front matter r 2006 Elsevier Ltd. All rights reserved.
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tion. In order to minimize experimentation, Schmitz and
Donaldson [6] implemented the receptance coupling theory
of structural dynamics by using experimentally obtained
spindle–holder dynamics and analytically obtained tool
dynamics for the prediction of the FRF. The application of
tool receptance coupling was improved in [7,8] and quite
recently it was extended to the coupling of holder segments
as well [9]. Ertürk et al. [10] developed an analytical model
for the prediction of tool point FRF by using receptance
coupling and structural modification techniques. Each
segment of an individual component is modeled as a
uniform (single-segment) free–free structurally damped
beam, which are then coupled rigidly using their end point
receptances for constructing a multi-segment beam repre-
senting the component. Instead of Euler–Bernoulli beam
theory used in previous works, they used Timoshenko
beam theory for increased accuracy. Due to the contact
dynamics at the spindle–holder and holder–tool interfaces,
these components are coupled elastically by using transla-
tional and rotational, springs and viscous dampers.
Similarly, the bearing dynamics for the spindles are
represented by viscously damped elastic members, which
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Fig. 1. (a) Spindle on bearings and its tip point FRF and (b)

spindle–holder–tool assembly and its point FRF at the tool tip.
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are included into the system using the structural modifica-
tion technique suggested by Özgüven [11]. The components
are coupled in order to obtain the end point receptance
matrices of the assembly, and thus the tool point FRF
which is required for the stability lobe diagrams. The
gyroscopic effects, housing/machine dynamics and the
work piece flexibility are neglected in the mathematical
model used. Although simple spindle model is used, it is
possible to include the mass of a motor or a pulley wheel
integrated to spindle into the mathematical model.

Since it is the dynamic stiffness at the tool tip that shapes
the stability lobe diagram of the assembly, it is important
to understand the nature of tool dynamics and its
sensitivity to system parameters for controlling the result-
ing stability lobe diagram in a favorable manner. Using the
analytical model they developed, Ertürk et al. [12] studied
the effects of bearing and interface parameters on the tool
point FRF, from the results of which they suggested a new
approach for the parametric identification of bearing,
spindle–holder and holder–tool interface dynamics from
experimental measurements [13]. They showed that the
variations in connection flexibility strongly affect the
modes appearing in the frequency range of interest.

In this paper, the effects of certain design and opera-
tional parameters on the tool point FRF, thus on the
stability lobe diagram, are studied for typical spindle–
holder–tool assemblies. The parameters of interest are
divided into two groups as design and operational
parameters. The first group includes parameters like
spindle geometry, bearing stiffness values and bearing
locations, which should be determined at the stage of
spindle design. The second group consists of parameters
which can be changed during the operation, such as holder/
tool type and tool length or clamping torque.

2. Effects of design parameters on the FRF

In this section, the effects of typical spindle design
parameters on the tool point FRF are studied. These
parameters are determined by the machine tool builder at
the design stage and they cannot be changed by the user.

2.1. Spindle geometry

Spindle geometry has a dominant effect on the frequency
behavior of the whole assembly. Segment diameters and
lengths are the parameters to be decided for optimizing the
spindle dynamics. Consider the spindle (on bearings)
shown in Fig. 1a and its tip point FRF. When a certain
holder and a tool are connected to this spindle, the tool
point FRF is obtained as shown in Fig. 1b. The assembly
has typical dimensions, and average values obtained from
the literature are used for interface and bearing parameters.
The details of the model and the typical parameters are
given in a recent paper [10]. Among the three modes
captured in Fig. 1a, the first two modes are the rigid body
modes and the third mode (at 1108Hz) is the first elastic
mode [12]. In the tool point FRF shown in Fig. 1b, three
elastic modes are observed after the rigid body modes.
Note that the addition of holder and tool slightly reduces
the rigid body mode frequencies and increases their
amplitudes considerably due to the increase in the total
mass of the assembly.
Suppose that it is aimed to increase the first elastic mode

of the individual spindle by changing the geometry of one
of the segments (say, the one right at the center of the front
and rear bearings) and observe the resulting variations in
the tool point FRF. One can change either the diameter or
the length of the segment for this purpose. If we aim to
increase the frequency of the first elastic mode of the
spindle, say to 1250Hz, then it can be found from the
model that the diameter should be increased from 61 to
81mm. Fig. 2a shows the tip point FRF of the modified
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Fig. 2. Variations in the FRFs due to the change in segment diameter; (a)

spindle tip point FRF (holder and tool are not inserted) and (b) tool point

FRF of the assembly.

Fig. 3. Variations in the FRFs due to the change in segment length; (a)

spindle tip point FRF (holder and tool are not inserted) and (b) tool point

FRF of the assembly.
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spindle (without holder and tool), together with that of the
original one. The reflection of this variation on the tool
point FRF is given in Fig. 2b.

The increase in the segment diameter increases the elastic
mode frequencies of the spindle tip point FRF and also the
elastic mode frequencies of the tool point FRF. The same
effect can be realized by reducing the length of the segment
of interest while its diameter is kept constant at 61mm. The
same frequency for the first elastic mode can be obtained if
the segment length is decreased to 77mm from its original
length of 110mm. The resulting FRFs are given in Fig. 3a
and b for the spindle tip and at the tool tip, respectively.

Although similar variations in the elastic mode frequen-
cies are obtained in Fig. 3 by changing the segment length
instead of its diameter, the rigid body mode frequencies are
not decreased but they are very slightly increased as oppose
to the previous case, since the mass of the assembly is
reduced. Segment inner diameters are also important
parameters to be tuned for changing the dynamic stiffness
of the spindle. It is important to note that, there is more
than one way of obtaining the same effect as shown in the
above example. Depending on the design problem (parti-
cularly on the size limitations) one should decide on
changing the segment lengths or the diameters.

An interesting geometric design parameter for the
spindle is its tail length, which is the free length behind
the rear bearings. Consider Fig. 1b in which the tool point
FRF of the assembly is given. As will be discussed in
Section 3.1, the dominant elastic mode seen at 1274Hz is
the tool mode and it is more sensitive to the variations in
the tool length. When the spindle tail length is increased, it
is expected that the elastic mode frequencies decrease. At
this point, it is important to note that the first and the third
elastic modes become more flexible with this variation, and
for a certain tail length, the third elastic mode may catch
the second elastic mode (the tool mode) and suppress its
vibration amplitude. For the assembly given in Fig. 1b, if
the tail length of the spindle is increased by 45mm, the
third elastic mode moves towards the tool mode and splits
it into two separate modes with lower amplitudes at 1185
and 1374Hz (Fig. 4). After this modification in the spindle
geometry, the receptance magnitude at the original
resonant frequency 1274Hz is reduced to 3� 10�7 from
7.3� 10�6m/N. This dynamic vibration absorber effect of
the spindle tail can be utilized in the applications (where
spindle is designed for specific holder–tool configurations)
for suppressing the vibration amplitude of the tool mode.

2.2. Spindle bearings

It has recently been observed by Ertürk et al. [12] that
the rigid body modes and the elastic modes of spindle–-
holder–tool assembly exhibit uncoupled behavior for the
orders of magnitude of bearing and interface dynamic
parameters identified in the literature [14]. The orders of
magnitude identified in the referred work were in
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Fig. 4. (a) Modification in the tail length of the spindle and (b) the effect

of the modification in the spindle tail length on the tool point FRF. Fig. 5. (a) Effects of bearing stiffness (in the orders of 105–106N/m) on

the tool point FRF and (b) tool point FRFs of the bearing supported and

free assembly.

Fig. 6. (a) Effects of bearing stiffness (in the order of 107N/m) on the tool

point FRF and (b) effects of bearing stiffness (in the order of 108N/m) on

the tool point FRF.
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105–106N/m. However, Cao and Altintas [15] obtained
bearing stiffness values in the orders of magnitude of
107–108N/m by using the bearing model they developed.
As the literature includes a wide order of magnitude range
for the bearing stiffness values, it is required to study the
effects of bearing dynamics for each magnitude order to see
the validity of the uncoupled behavior of rigid and elastic
modes. In this section, it is shown that this uncoupled
behavior depends highly on the orders of magnitude of
bearing stiffness values. As it will be discussed below, the
bearing locations can be important if their stiffness
variations affect the elastic modes of the assembly.

Fig. 5a shows the effects of the bearing stiffness variation
around the values used by Arakere et al. [14], which are in
the orders of 105–106N/m. As can be seen, the variations in
the bearing stiffness values affect only the rigid body
modes. These bearing stiffness values are so soft that even
if the bearings are totally removed and the free–free
assembly is considered, the elastic mode frequencies remain
almost the same (Fig. 5b). It can be concluded that if the
bearing preloads are so low that the bearing stiffness values
are in the orders of 105–106N/m, bearing locations are not
important design parameters for controlling the elastic
behavior of the assembly.

Bearing stiffness values start affecting the elastic modes
of the FRF for the order of magnitude of 107N/m
(Fig. 6a). As can be seen from Fig. 6a, variations in the
bearing stiffnesses alter the first elastic mode of the
assembly, which is the spindle bending mode. The second
elastic mode (the tool mode) is not affected from these
variations. Fig. 6b shows the effects of the bearing stiffness
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on the FRF for the order of magnitude of 108N/m. The
second elastic mode is still unaffected from the variations
in the bearing dynamics. It can be concluded that, in these
orders of magnitude (107–108N/m), bearing locations and
the number of the bearings used affect the elastic modes
(particularly the spindle bending modes) and they can be
tuned for shaping the frequency response of the assembly.

3. Effects of operational parameters on the FRF

In machining operations, it may be required to change
the tool and/or the holder for practical reasons. In
addition, sometimes one may want to change the opera-
tional parameters such as the tool and the holder properties
in order to modify the dynamic stiffness at the tip of the
cutting tool. In this section, the effects of variations in these
operational parameters on the tool point FRF are studied.

3.1. Tool geometry and holder–tool interface dynamics

In order to observe the effects of the tool overhang
length on the FRF, the original tool overhang length
(80mm) of the assembly given in Fig. 1b is first increased to
90mm and then to 100mm by assuming that the
connection dynamics is constant. As can be seen from
Fig. 7a, the frequency of the second elastic mode is reduced
by about 230Hz for an increase of 20mm in the tool
overhang length. This mode is the tool controlled mode (or
the tool mode) and as verified experimentally in Section 4.
Fig. 7. (a) Effects of tool overhang length on the tool point FRF and (b)

effects of holder–tool interface stiffness on the tool point FRF.
By changing the tool overhang length, its frequency can
easily be altered in practical applications for modifying the
tool point FRF and the stability lobe diagram of the
assembly.
Investigation of the effects of tool diameter on the FRF

results in the variations of the same mode. Therefore, when
the tool is changed by another tool of a different diameter,
one should expect important variations in the second
elastic mode.
Ertürk et al. [12] have recently shown that the

holder–tool contact dynamics, particularly the transla-
tional stiffness at this interface, controls the frequency of
the second elastic mode in a typical assembly. With this
information, in order to reduce the frequency of the tool
mode, holder–tool interface translational stiffness is
reduced and the variation given by Fig. 7b is obtained. It
can be concluded that, if the translational stiffness of this
connection can be modeled as a function of clamping
torque and varied in a controllable manner, it is also
possible to alter the frequency of the tool mode by just
changing the clamping torque, without changing the tool
overhang length. It should also be noted that the damping
of holder–tool interface controls the peak of the tool mode
[12] which can also be utilized in the same manner.

3.2. Holder geometry

Generally the parts of the holders inside the spindle are
identical for different holder types but their segments
outside the spindle differ from each other. For the
assembly of interest (Fig. 1b), the diameters of each holder
segment outside the spindle is increased by 10mm in order
to observe the variation in the FRF. The part of the holder
outside the spindle is a very non-slender structure, which
indeed acts as a mass. Thus, an increase in its segment
diameters shifts the spindle modes to lower values due to
the mass addition effect (Fig. 8a). Note that the tool mode
is affected amplitude-wise without any variation in its
frequency. However, when the length of the mid-segment
of the holder is increased by 40mm, in addition to the
frequency shift of the spindle modes to lower values due to
the mass addition effect, the frequency of the tool mode is
also decreased due to an increase in the slenderness
(therefore the flexibility) of the holder as can be seen in
Fig. 8b.

4. Experimental verification

An SK40 type holder, in which a 4-teeth HSS tool of
110.7mm length and 12mm diameter is inserted, is
assembled to the 5-axis machining center shown in
Fig. 9a. Tool point FRF of the assembly is measured by
impact test at the tool tip using a low mass accelerometer
and an instrumented hammer. It is aimed in this section to
predict the variations in the resulting FRF for different
overhang lengths in order to improve chatter stability by
tool tuning [16,17]. The predictions are compared with
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Fig. 8. (a) Effects of increase in the holder segment diameters on the tool

point FRF and (b) effects of increase in the holder mid-segment length on

the tool point FRF.

Fig. 9. (a) 5-axis machining center with the experimental modal analysis

setup and (b) measured and predicted tool point FRF for the overhang

length L ¼ 60mm.
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experimental results for the verification of the approach
employed. The translational interface dynamic parameters
are identified by following the approach suggested in a
recent work of the authors [12], using the experimental
results for L ¼ 60mm. The average values given in the
literature are used for the rotational dynamic parameters at
spindle–holder and holder–tool connections, since the
required FRF values are insensitive to these values as
concluded in the above referred paper. The experimentally
obtained tool point FRF and the model prediction for L ¼

60mm for are shown in Fig. 9b. The identified translational
parameters at the spindle–holder and holder–tool inter-
faces are given in Table 1 along with the average rotational
parameters used.
The dominant mode appearing at 1594Hz is the tool

mode as discussed previously. Therefore, its frequency can
simply be altered by changing the overhang length of the
tool. Overhang length of the tool is changed from 60 to
80mm with an increment of 10mm while keeping the
clamping torque constant at 40N.m. It is assumed that
holder–tool interface dynamic parameters do not change
with changing overhang length. Fig. 10a and b show the
predicted and measured tool point FRFs for 70 and 80mm
tool overhang lengths, respectively. Note that, accurate
knowledge of the variation in contact dynamics (especially
damping) with tool overhang length would certainly
improve the accuracy of the FRF predictions. That is, a
mathematical model for contact stiffness and damping, or
a methodology which provides this information for
different clamping lengths, torques and tool types by using
a limited set of experiments would yield more accurate
theoretical results for FRF predictions.
As the overhang length of the tool is increased to 70mm,

the tool mode approaches to the small amplitude spindle
mode seen around 1220Hz, which slightly increases
amplitude of the latter. Further increase in the tool
overhang length (to 80mm) brings the tool mode closer
to the spindle mode and reduces the amplitude of the tool
vibrations in a favorable manner as can be seen in Fig. 10b.
The interaction between two modes reduces not only the
frequency, but also the amplitude of vibrations. As a
consequence, if this mode interaction can be realized in
practical applications, higher depths of cut can be obtained
at lower cutting speeds. In order to make use of this effect
in practice, one should first identify the tool mode from the
FRF and then alter its frequency towards a close and
relatively stationary spindle mode by changing the tool
overhang length until the mode is split and vibration
amplitude is reduced.
The application of the presented method in the predic-

tion of chatter stability has also been investigated. A series
of tests have been conducted on an aluminum test piece.
First, the cutting force coefficients were identified using
milling tests and linear-edge force model [18]. The 4-teeth
HSS end mill with 12mm diameter and 301 helix angle
mentioned above was used in down milling mode where the
radial depth of cut was 3mm. Different feed rates were
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Table 1

The translational and the rotational dynamic parameters at the spindle–holder and holder–tool interfaces

Interface Trans. stiffness (N/m) Trans. damping (N s/m) Rot. stiffness (Nm/rad) Rot. damping (Nm s/rad)

Spindle–holder 8.0� 107 250 1.5� 106 40

Holder–tool 7.5� 106 32 1.5� 106 40

Fig. 10. Experimental and predicted tool point FRF; (a) 70mm overhang

length and (b) 80mm overhang length.

Fig. 11. Experimental and predicted stability limits for down milling of

aluminum test piece using 60mm tool overhang length and 3mm radial

depth.
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used to identify the edge force coefficients: 0.05, 0.1, 0.15
and 0.2mm/tooth. In order to observe the variation of the
force coefficients with the cutting speed, the tests were
repeated at 5000 and 10,000 rpm. Since usually constant
force coefficients are used for the generation of stability
diagrams, the average values of the coefficients were
calculated after the edge forces were extracted. As a result,
the tangential and the radial cutting force coefficients were
obtained as K t ¼ 550MPa and K r ¼ 110MPa.

First of all, the stability diagram was generated for the
case of 60mm tool overhang length (Fig. 11) using the
analytical milling stability model of Budak and Altintas
[4,5]. The analytical model of Ertürk et al. [10] was
employed for the prediction of tool point FRF where
experimentally identified dynamic linear interface para-
meters and average rotational values from the literature
were used at the tool-holder and holder–spindle interfaces.
Predicted tool point FRF for 60mm tool overhang length
is given in Fig. 9b, where it was compared with the
measured one. The experimentally obtained chatter stabi-
lity limits at certain spindle speeds are also shown in Fig.
11. All cutting tests were performed on a high speed
machining center (DMU 50evo). The instability condition
was identified using the spectrum analysis of the sound
measurements during cutting. Considering a wide speed
range which results in variation in the force coefficients (the
average values were used) and narrow stability pockets due
to low damping, the agreement between the experimental
and the analytical results can be considered as satisfactory.
As a second stability prediction application, the effect of

the tool overhang length change on the stability diagram is
considered. The tool overhang length may be changed due
to operational requirements, or to modify the stability
diagram to increase the stable depths at certain speeds. The
model presented can be used for both cases. Fig. 12 shows
stability diagram for 3 different tool overhang lengths: 60,
70 and 80mm for the same cutting conditions used in the
previous application. Again, the analytical method was
used for the prediction of tool point FRF which was
utilized in the analytical milling stability model together
with the experimentally identified force coefficients for the
generation of the diagrams. Note that due to the analytical
FRF model, the prediction of the new FRFs for the new
tool lengths is very fast and does not require additional
testing. Fig. 12 shows that 60mm tool overhang length
results in very large stability lobe around 12,000 rpm.
However, if the maximum spindle speed available on the
spindle is less than this, say 10,000 rpm, then this lobe
cannot be utilized. Moreover, this tool length results in a
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Fig. 12. Experimental and predicted stability limits for down milling of

aluminum test piece using 60, 70 and 80mm tool overhang lengths

resulting in high stability lobes at different speed zones.
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very low stability limit at around 10,000 rpm as shown in
the diagram. Contrary to what one might expect intui-
tively, increasing the tool overhang length 10 to 70mm
produces a much higher stability pocket at this speed, and
the depth of cut can be increased from 0.2 to 0.8mm
resulting in a substantial productivity gain. A similar
problem arises if the process is to be carried out at a much
higher spindle speed, say at 17000 rpm, if it is available on
the machine. As it can be seen from the diagram, 60mm
tool overhang length again results in a very low stable
depths at those speeds. However, unlike the previous case
of 10,000 rpm, 70mm tool overhang length does not
produce much higher stability limits in this speed zone.
In this case, increasing the tool overhang length another
10mm to total of 80mm produces much larger stability
limits for those high speeds, resulting in about 3 folds
amplification in the stable material removal rate. These
predicted results are verified by chatter tests, and as shown
in Fig. 12 the agreement between the experiments and the
predictions is quite acceptable. Thus, it can be concluded
that the integration of the analytical FRF and stability
predictions can be a strong tool for a virtual machining
environment where the stable and optimal conditions can
be identified with minimal amount of testing.
5. Conclusions

In this paper, using the analytical model developed by
the authors, the effects of certain design and operational
parameters on the dynamics of spindle–holder–tool assem-
bly are studied, and experimental demonstrations are
given. The design parameters considered are the spindle
geometry and bearing properties, whereas the operational
parameters are the properties of the holder and the tool. In
addition, the application of the model in chatter stability
predictions is demonstrated with experimental verification.
Several important applications of the method have been
demonstrated in the paper. It is shown that a desired
variation in the resulting FRF can be obtained by proper
selection of the diameter and/or the length of a spindle
segment. For spindles, in addition to the segment
geometries, the bearing locations can also be used for
modifying the FRF. However, if the bearing preloads are
low, the bearing locations may not have a significant effect
on the dynamic stiffness of the assembly. On the other
hand, if the stiffness values of the bearings are in the orders
of 107–108N/m, their locations can be altered for shaping
the resulting FRF behavior. An interesting observation is
that the tool mode of the assembly (the second elastic mode
in this case) is not affected considerably from the variations
in bearing dynamics. Although spindle configuration can
only be changed by the machine manufacturer at the design
stage, holder and tool properties are the most practical
parameters which can be controlled by the user to alter the
dynamics at the tool tip. It is observed that the geometry of
the cutting tool controls the second elastic mode (the tool
mode) of the typical assembly used in this study. Therefore,
the frequency and the amplitude of this tool mode can be
modified by changing the overhang length of the tool or the
tool diameter. It is also observed that an increase in the
diameters or the lengths of the holder segments reduces
the frequencies of especially the spindle modes due to the
mass addition effect since the parts of the holders outside
the spindle are non-slender structures which act almost as
pure mass in the system.
It is experimentally verified in this paper that the model

developed by the authors can successfully be used for
predicting stability lobe diagrams. It is also demonstrated
in a 5-axis machining center that the model can be used to
improve the chatter stability by changing operational
parameters, such as the tool overhang length. As an
example application, it is shown that while a 60mm long
tool overhang length provides a very large stability lobe at
a certain cutting speed, at a lower speed where the same
overhang length provides very low stability limits, a 10mm
longer length produces a high stability pocket, increasing
the depth of cut 4 times. Interestingly, at a speed higher
than the original speed, a further 10mm increase in the tool
overhang length results in 3 folds amplification in the stable
material removal rate. These experimental observations are
successfully predicted by the model developed. Therefore,
it is concluded that the methodology presented in this
paper can successfully be used in industrial processes for
optimization of operational parameters in addition to its
obvious application in virtual machining systems for
chatter stability predictions with minimum amount of
testing.
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