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Abstract 
The most important information required for chatter stability analysis is the dynamics of the involved 
structures, i.e. the frequency response functions (FRFs) which are usually determined experimentally. In this 
study, the tool point FRF of a spindle-holder-tool assembly is analytically determined by using the receptance 
coupling and structural modification techniques. Timoshenko’s beam model is used for increased accuracy. 
The spindle is also modeled analytically with elastic supports representing the bearings. The mathematical 
model is used to determine the effects of different parameters on the tool point FRF and to identify contact 
dynamics from experimental measurements. The applications of the model are demonstrated and the 
predictions are verified experimentally. 
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1 INTRODUCTION 
Chatter vibrations result in poor surface quality and 
reduced productivity. Stability lobe diagrams can be used 
to determine the stable and more productive spindle speed 
– axial depth of cut combinations. The basics of chatter 
theory and stability lobe diagrams were introduced by 
Tobias [1] and Tlusty [2] for orthogonal cutting conditions 
and time invariant process dynamics. Minis and 
Yanushevsky [3] employed Floquet’s theorem and Fourier 
series for the formulation of milling stability and used the 
Nyquist criterion for the numerical solution. Altintas and 
Budak [4] presented the analytical model for the stability 
limits in milling which was shown to be very fast for the 
generation of stability lobe diagrams [5].  
These models require the tool point FRF, which is 
generally determined through experimental modal analysis. 
However, any change in the spindle-holder-tool assembly, 
such as tool and/or holder changes, will affect the system 
dynamics and measurements will have to be repeated. 
This can be very time consuming, and thus costly on 
production machines considering the number of different 
tool-holder combinations. In order to reduce 
experimentation, the receptance coupling theory of 
structural dynamics has been implemented for modeling 
the spindle-holder-tool dynamics semi-analytically [6-9]. It 
is suggested that the dynamics of the spindle-holder 
subassembly can be obtained experimentally at the holder 
tip for once, then, it can be coupled with the dynamics of 
the tool, which is obtained analytically by considering the 
tool as a beam with free end conditions. Duncan and 
Schmitz [10, 11] improved the use of the receptance 
coupling approach to handle different holder types using a 
single experimental measurement. In a recent study, Ertürk 
et al. [12] presented an analytical model to predict the tool 
point FRF by modeling the spindle-holder-tool dynamics. 
They used Timoshenko beam theory [15], receptance 
coupling and structural modification techniques [12]. Due 
to the low length to diameter ratios of system components, 
the Euler-Bernoulli beam model may result in considerable 
errors in prediction of modal frequencies which is 
significantly improved by using the Timoshenko beam 
formulation.  
One of the important requirements for accurate modeling 
of the machine tool dynamics is the knowledge of the 

connection dynamics, i.e. stiffness and damping at the 
interfaces. In previous studies that use a receptance 
coupling, the interface parameters are experimentally 
obtained by employing least square error minimization. 
This type of solution is time consuming, prone to numerical 
errors, and may not yield a unique solution due to high 
number of simultaneous and nonlinear sets of equations 
corresponding to a large frequency range covered in the 
FRF, and a  high number of unknowns due to multiple 
number of interfaces. Furthermore, any modeling and 
measurement error would be compensated by the 
extracted inaccurate or incorrect interface dynamic 
parameters. Ertürk et al. [13] analyzed the effects of 
bearing supports and spindle-holder and tool-holder 
interfaces on the FRF, and suggested a fast and accurate 
approach for the identification of connection parameters.  
In this paper, the analytical model developed for dynamic 
analysis of machine tools is summarized and the effects of 
bearing and interface dynamics on the tool point FRF are 
briefly discussed. The complete analytical modeling allows 
the model to be used in the spindle design phase as well 
as in the fast identification of the interface parameters, in 
addition to the prediction of the tool point FRF for a given 
assembly. The systematic approach suggested for the 
identification of bearing and interface dynamics is 
employed for a spindle-holder-tool assembly, and contact 
parameters are identified from experimental 
measurements. The model developed for spindle-holder-
tool assembly is compared with a finite element model and 
is also experimentally verified.  
 
2 MATHEMATICAL MODELING 

2.1 Component and Assembly FRFs  
Spindle, holder and tool are modeled as multi-segment 
beams by using Timoshenko beam theory. The individual 
multi-segment components are formed by coupling the end 
point receptances of uniform beams rigidly. Determination 
of the end point receptances of a uniform Timoshenko 
beam with free end conditions is given in [12] in detail. The 
end point receptance matrix of a beam A can be 
represented as  
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where submatrices of the above matrix include the point 
and transfer receptance functions of the segment end 
points (1) and (2). For example, the point receptance 
matrix of node A1 in beam A is given as 
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The receptance functions, which are denoted by letters H, 
N, L and P, are defined as follows: 
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where y and θ represent the linear and angular 
displacements, respectively, and f and m are the forces 
and the moments, respectively, at the points i and j. Two 
beams, A and B, can be coupled dynamically using rigid 
receptance coupling and the receptance matrix of resulting 
two-segment beam C can be obtained as follows: 
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By following the same formulation, one might continue 
coupling more segments like a chain to form an n-segment 
beam. In order to include the dynamics of bearings, the 
structural modification technique presented by Özgüven 
[14] can be used as shown in detail in [12]. In this case, the 
dynamic structural modification matrix represents the 
translational and rotational, stiffness and damping 
information of the bearings. The final step is to couple the 
main system components to obtain the tool point FRF. 
However, these components should be coupled elastically 
due to the flexibility and damping at the contacts. When the 
end point receptances of the spindle on bearings (S) are 
coupled with those of the holder (H), the end point 
receptance matrices of the spindle-holder assembly (SH) 
can be obtained from: 
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[Ksh] is the complex stiffness matrix representing spindle-
holder interface dynamics. Note that the receptance matrix 
[SH11] is very similar to [C11] given in equation (5) with the 
addition of [Ksh]

-1 only.  Finally, the tool (T) can be added to 
the spindle-holder (SH) system to obtain the end point 
FRFs of spindle-holder-tool (SHT) assembly. The FRF 
required for the stability lobe diagram of a given spindle-
holder-tool assembly is the one that gives the relation 
between the transverse displacement and force at the tool 
tip, which is the first element of the following matrix: 
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2.2 Application of the Model  
The spindle-holder-tool combination, geometry of which is 
shown in Figure 1, is used for demonstrating the 
application of the model. Each of the system components, 
i.e. spindle, holder and tool are composed of several 
sections with different diameter and lengths which are 
modeled as multi-segment beams. The dimensions of the 
components, bearing and interface dynamical properties 
are given in [12]. In order to verify the results of the model, 
the vibration modes of this assembly were calculated using 
the finite element method using ANSYS® 9.0. The beam 
element BEAM188, which is based on Timoshenko beam 
theory, is used by restricting the degrees of freedom other 
than motion in one transverse direction and flexural 
rotation so that the finite element model is consistent with 
the model proposed. In order to represent the dynamics of 
bearings and spindle-holder and holder-tool interfaces, 
combination element COMBIN14 (Spring-Damper) of 
ANSYS® 9.0 is used. The natural frequencies obtained by 
the analytical model and the finite element solution are 
tabulated in Table 1. As can be seen from the table, the 
natural frequencies of the assembly obtained by the model 
presented in this paper and those obtained by using the 
finite element software are in good agreement and the 
maximum difference observed for the first seven modes is 
about 5 %. 

 
Figure 1: Components of the assembly used in the 

example.  

Mode Model [Hz] FEA [Hz] Diff. [%] 
1 71.7 71.6 0.14 
2 195 193.8 0.62 

3 877.8 867.5 1.19 

4 1438.3 1424.3 0.98 

5 1819.5 1752.6 3.82 

6 3639.3 3442.5 5.72 
7 3812.5 3634.8 4.89 

Table 1: Natural frequencies of the assembly used in the 
case study. 

At this point, it is worthwhile to mention the importance of 
using Timoshenko beam theory rather than the Euler-
Bernoulli beam model. It is well known that rotary inertia 
and especially shear deformation [15] are very important 
for non-slender components and at high frequencies. In the 
previous studies that use the Euler-Bernoulli model with 
receptance coupling, good agreements between 
experimental and predicted FRFs were obtained. There 
are two main reasons for this. First of all, in these studies, 
the connection parameters at the holder-tool interface were 
obtained by fitting the model to the experiment tool point 
FRFs. In such an approach, depending on the component 
geometries, using Euler-Bernoulli beam theory may result 
in modeling errors which can be compensated by the 



incorrect connection parameters. Secondly, at lower 
frequencies, the FRFs are primarily controlled by the 
elasticity of the interfaces between spindle-holder and tool-
holder, rather than the flexural rigidities of the holder and 
tool themselves [12]. In the frequency range of interest, the 
part of the holder outside the spindle behaves almost as a 
mass with no elastic contribution, and the elastic 
contribution of the tool is at most from its first mode. In the 
case of stiffer connection dynamics (so that component 
structural behaviors become more important) and/or when 
the frequency range of interest is wider, it becomes a must 
to use the Timoshenko model for accurate results. 
Deficiency of the Euler-Bernoulli model in such a case is 
illustrated in Figure 2 which shows the tool point FRF of 
the same assembly when a much stiffer connection is 
assumed between the components and the frequency 
range is extended to 10 000 Hz. Based on these results, it 
can be concluded that the Euler-Bernoulli model may yield 
inaccurate results, especially at high frequencies and/or for 
stiffer connection dynamics. In addition, if the individual 
component FRFs are of interest, such as spindle tip or free 
tool FRFs, it is necessary to use the Timoshenko model 
since the structural dynamics will be the main source of the 
vibrations for the case when there is no interface.    

 
Figure 2: The tool point FRF for highly stiff connection at 

spindle-holder and holder-tool interfaces. 
 

2.3 Effect Analysis for Tool Point FRF 
In order to study the effects of bearing and interface 
parameters, their values are varied in a wide range [13] 
about their nominal values which are obtained from the 
recent literature.  For example Figure 3 shows that the 
bearing stiffness values have a considerable effect on the 
first two modes of the system which are the rigid body 
modes, whereas, they have almost no effect on the 
remaining (elastic) modes. It was observed [13] that the 
dynamics of the softer bearing pair (front bearings in this 
case) primarily controls the first rigid body mode whereas 
the stiffer rear bearings mainly affect the second rigid body 
mode. Therefore, for the system used, the spindle 
geometry and bearing properties have the most important 
effect on the first two modes. This also implies that if 
chatter develops in one of the first two modes, changing 
the holder or the tool may not help.  

 
Figure 3: The combined effect of bearing stiffness values 

on the tool point FRF. 

In a very similar way, sensitivity of tool point FRF to the 
spindle-holder interface dynamics is studied. It is observed 
that the translational stiffness at the spindle-holder 
interface dominantly affects the first elastic mode of the 
FRF. It is also observed that the variations in the rotational 
stiffness at the same interface have almost negligible effect 
on the FRF [13]. A similar analysis is performed in order to 
study the sensitivity of FRF to the tool-holder interface 
dynamics [13]. It is observed that the translational stiffness 
strongly controls the second elastic mode. Similar to the 
spindle-holder interface, the variations in the rotational 
stiffness at this connection have negligible effect on FRF. 
Therefore, the observations made so far indicate that, for 
the first elastic mode, spindle-holder interface is the most 
important link in the chain, whereas the same is true for 
holder-tool interface for the second elastic mode in this 
case study. The connection damping values have similar 
effects, but on the FRFs peak amplitudes instead of the 
frequencies. For example, it is observed that the front 
bearing damping affects the FRF values at the first rigid 
body mode, whereas translational contact damping at the 
spindle-holder interface mainly alters the peak value of the 
first elastic mode [13]. The above conclusions can be used 
in parametric identification of connection dynamics of a 
given spindle-holder-tool assembly from experimental 
measurement of tool point receptance much more easily 
and accurately compared to previous approaches used. 
Having the information of which connection parameters 
affect which mode, identification should be performed by 
extracting the parameters of interest from their relevant 
modes. 
 
3 EXPERIMENTAL RESULTS    
The measured tip point FRF of the suspended spindle 
shown in Figure 4 and the model predictions of the same 
FRF using both beam theories are given in Figure 5. Note 
that the inaccuracy associated with using Euler-Bernoulli 
theory increases at higher frequencies. 

 

Figure 4: Spindle suspended for free-free measurements. 

 

Figure 5: Measured and predicted FRF for the spindle. 

A BT40 type holder, in which a carbide tool of 12.7 mm 
diameter and 175 mm length is inserted with an overhang 
length of 74 mm, is assembled to the free spindle shown in 
Figure 4. Then, the tool point FRF of the free assembly is 
measured by the impact test. The measured FRF and the 
model simulation of the tool point FRF are given in Figure 
6. Note that the interface parameters are obtained by 
making use of the effect analysis. Performing the effect 



analysis, it is observed that the spindle-holder interface 
controls the first mode and holder-tool interface controls 
the second mode. The interface parameters identified by 
using the FRFs at the relevant modes only are given in 
Table 2. Note that, in the parametric identification process, 
mainly the translational parameters are tuned and average 
values are used for the rotational interface dynamics. 

 
Figure 6: Measured and predicted tool point FRF of the 

assembly. 

 
 

Spindle-Holder 
Interface 

Holder-Tool 
Interface 

Translational stiffness 
[N/m] 

73.05 10×  71.14 10×  

Translational damping 
[N.s/m] 365  34  

Rotational stiffness 
[N.m/rad] 

61.5 10×  61.5 10×  

Rotational damping 
[N.m.s/rad] 40  40  

Table 2: Connection parameters identified from the tool tip 
measurement.  

 
4 CONCLUSIONS 
In this study, an analytical method that uses Timoshenko 
beam theory, receptance coupling and structural 
modification techniques is presented for modeling spindle-
holder-tool assemblies in machining centers in order to 
obtain the tool point FRF which is required for prediction of 
chatter stability. Effects of bearing and interface 
parameters on the tool point FRFs are analyzed and 
important conclusions regarding the mode-interface 
relations are derived. These results are used for 
developing a fast and accurate parameter identification 
approach. The applications of the model are presented and 
the model predictions are verified experimentally. 
The model in its presented form can be used by the 
spindle or machine tool builders in the design of spindles to 
optimize the spindle geometry and/or bearing locations for 
maximum dynamic stiffness at a desired frequency or 
frequency range. The method can also be used for 
improving the chatter stability by selecting better tooling 
and clamping conditions. By using the model proposed, the 
changes in the system dynamics due to possible variations 
in the tool/holder types can be followed easily in practical 
applications. In case where the spindle data (geometry and 
bearings) is not available, the method can be modified to 
combine the analytically predicted tool-holder dynamics 
with the measured spindle FRF.  
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