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Piezoelectric and electromagnetic transduction techniques have peculiar advantages to leverage in

the growing field of flow energy harvesting from aeroelastic vibrations. This letter presents the

concept of hybrid piezoelectric-inductive power generation with electroaeroelastic modeling and

simulations. Dimensionless analysis of the coupled system dynamics is indispensable to proper

geometric scaling and optimization of aeroelastic energy harvesters. The governing

electroaeroelastic equations are given in dimensionless form, and the effects of aeroelastic and

electrical properties are investigated in detail toward understanding the dependence of the cut-in

speed (flutter speed) and the maximum power output of the harvester on the system parameters.
VC 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4789433]

The research goal in aeroelastic energy harvesting is to

enable geometrically scalable and low-profile flow energy

harvesters to power small electronic components for applica-

tions ranging from health monitoring in aircraft structures to

wireless sensors located in high wind areas. The combination

of aeroelastic vibrations with an appropriate transduction

mechanism for transforming wind energy into low-power

electricity has received growing attention in the energy har-

vesting literature. The use of bluff-body based and airfoil-

based configurations are two convenient ways to create

persistent oscillations for flow energy harvesting.

The first use of a piezoelectric interface in flow energy

harvesting appears to be the bluff body–polyvinylidene fluo-

ride (PVDF) membrane configuration tested under water by

Allen and Smits.1 The von K�arm�an vortex street formed

behind the bluff body excites the piezoelectric PVDF to

extract electricity from flow-induced vibrations through the

direct piezoelectric effect. For the piezoaeroelastic problem of

energy harvesting from airflow excitation of a cantilevered

plate with embedded piezoceramics, De Marqui et al.2,3 pre-

sented finite-element models based on the vortex-lattice

method2 and the doublet-lattice method3 of aeroelasticity.4

Time-domain simulations2 were given for a cantilevered plate

with embedded piezoceramics for various airflow speeds

below the linear flutter speed and at the flutter boundary.

Frequency-domain simulations3 considering resistive and

resistive-inductive circuits were also presented focusing on

the linear response at the flutter boundary. Bryant and Garcia5

studied the aeroelastic energy harvesting problem for a typical

section by using the finite state theory of Peters et al.6 while

Erturk et al.7 presented an experimentally validated lumped-

parameter model for a wing-section (airfoil) with piezoceram-

ics attached onto plunge stiffness members using Theodors-

en’s unsteady aerodynamic model.8 Piezoelectric power

generation at the flutter boundary, including the minor shift in

the linear flutter speed, has also been discussed.7 More

recently the nonlinear version of the same setup (with a free

play in the pitch degree-of-freedom) has been investigated to

increase the operating envelope of the aeroelastic energy har-

vester.9 In particular, hardening cubic nonlinearity and free

play are combined to keep the oscillation amplitudes at an ac-

ceptable level while reducing the cut-in speed.

As an alternative to airfoil-based and cantilevered wing-

based configurations, St. Clair et al.10 presented a design that

uses a piezoelectric beam embedded within a cavity under

airflow. Vortex-induced oscillations of piezoelectric cantile-

vers located behind bluff bodies were investigated by Pober-

ing et al.11 and Akaydin et al.12 through experiments and

numerical simulations. Giacomello and Porfiri13 investigated

underwater flapping of an ionic polymer-metal composite

(IPMC) flag. More recently Peterson and Porfiri14 studied

the energy extraction mechanism from a vortex ring using an

IPMC cantilever. Underwater base excitation of piezoelec-

tric15 and IPMC16 cantilevers has also been investigated for

low-power electricity generation.

An extensive analysis of the energy harvesting potential

for a foil-damper system was presented by Peng and Zhu17

using a Navier-Stokes model without focusing on a specific

transduction mechanism. Akcabay and Young18 investigated

the energy harvesting potential of flexible beams in viscous

flow along with the effects of system parameters. Tang et al.19

presented a rigorous analysis of the energy transfer from the

fluid to the structure for self-excited vibrations due to axial

flow over a cantilever. Piezoelectric energy harvesting from

limit-cycle oscillations under axial flow over a cantilever

beam has also been discussed by Dunnmon et al.20 recently.

Kwon21 considered a T-shaped cantilever beam that causes

vortex street formation over the cantilever in response to axial

flow. Kwuimy et al.22 employed a bistable energy harvester23

for turbulent wind energy harvesting. Recent efforts have also

employed electromagnetic induction for converting aeroelas-

tic vibrations into electricity through flutter wake galloping24

and bluff body-based oscillations.25
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Piezoelectric transduction is very convenient to employ

for extracting energy from structural vibrations (e.g., from the

strain fluctuations of a heaving plunge cantilever) by means of

attaching piezoceramic patches while electromagnetic induc-

tion is useful for exploiting relative motions (e.g., at the tip of

the plunge cantilever relative to the ground). Combination

of these transduction mechanisms within a single hybrid

flow energy harvester can improve the power density while

employing the same simple platform (Fig. 1). Moreover,

dimensionless analysis of the electroaeroelastic behavior with

changing electrical and aeroelastic parameters is indispensable

to scaling and optimization of electroaeroelastic energy har-

vesters toward reducing the cut-in speed and maximizing the

power output. To this end, in the present work, an airfoil-

based aeroelastic energy harvester that simultaneously

exploits piezoelectric transduction and electromagnetic induc-

tion is analyzed based on fully coupled electroaeroelastic

modeling. As shown in Fig. 1, both forms of electromechani-

cal coupling are introduced to the plunge degree of freedom

(DOF). The interaction between total simultaneous power

generation (from piezoelectric transduction and electromag-

netic induction) and the electroaeroelastic behavior of the typ-

ical section is investigated in the presence of two separate

electrical loads. Dimensionless electroaeroelastic equations

are obtained to study the effects of certain parameters and

geometric scaling of the hybrid piezoelectric-inductive energy

harvester concept introduced herein.

Figure 2 shows the system parameters and variables in a

hybrid piezoelectric-inductive aeroelastic energy harvester.

The plunge and pitch displacement variables are denoted by

h and a, respectively. The plunge displacement is measured

at the elastic axis (positive downward), and the pitch angle is

measured about the elastic axis (positive clockwise). In addi-

tion, b is the semichord of the airfoil section, xa is the dimen-

sionless chord-wise offset of the elastic axis from the

centroid (C), kh is the stiffness per length (in the span direc-

tion) in the plunge DOF, ka is the stiffness per length in the

pitch DOF, dh is the damping coefficient per length in the

plunge DOF, da is the damping coefficient per length in

the pitch DOF, and U is the airflow speed.

The electroaeroelastically coupled equations governing

the dynamics of the hybrid piezoelectric-inductive flow

energy harvester shown in Fig. 2 are

ðmþ meÞ€h þ mbxa€a þ dh
_h þ khh� h

l
v� Bl

l
I ¼ �L; (1)

mbxa
€h þ Ia€a þ da _a þ kaa ¼ M; (2)

Ceq
p _v þ v=Rp

l þ h _h ¼ 0; (3)

Lc
_I þ ðRc þ Ri

lÞI þ Bl
_h ¼ 0; (4)

where m is the airfoil mass per length, me is the effective fix-

ture mass (connecting the airfoil to the plunge springs) per

length, Ia is the airfoil moment of inertia, L is the aerody-

namic lift and M is the aerodynamic moment per length, h is

the piezoelectric coupling, Bl is the electromagnetic cou-

pling, l is span length, Ceq
p is the equivalent capacitance of

the piezoceramic layers, Rp
l is the load resistance in the pie-

zoelectric energy harvesting circuit, v is the voltage across

Rp
l , Lc is the internal (or inherent) coil inductance, Rc is the

internal resistance of the inductor coil, Ri
l is the load resist-

ance in the inductive energy harvesting circuit, I is the

induced electric current flowing to Ri
l, and the over-dot repre-

sents differentiation with respect to time (t). The internal re-

sistance of the piezoelectric component is neglected since it

is typically much larger than the load resistance. In the

aeroelastic domain, the flow is assumed to be inviscid and

incompressible, and the unsteady aerodynamic loads (lift and

moment terms) due to arbitrary motions are obtained from

Jones’ approximation26 of Wagner’s indicial function,27

which is an approximation to the generalized Theodorsen

function.8

Equations (1)–(4) can be written in the dimensionless

form as

bh
00 þ xaa

00 þ fhh0 þ h � jv � vI ¼ �L; (5)

xah
00 þ raa

00 þ faa
0 þ c2raa ¼ M; (6)

gv0 þ v=kp
l þ jh0 ¼ 0; (7)

uI 0 þ kcI þ klI þ vh0 ¼ 0; (8)

where b ¼ ðmþ meÞ=m, h ¼ h=b is the dimensionless plunge

displacement, fh ¼ dh=mxh is the plunge damping factor,

fa ¼ da=mb2xh is the dimensionless pitch damping factor,

ra ¼ ra=b is the dimensionless radius of gyration, v ¼ v=v�

(where v� ¼ 1 V is the reference voltage), j ¼ hv�=lmbx2
h is

FIG. 1. Physical schematic of a hybrid piezoelectric-inductive aeroelastic

energy harvester based on a 2-DOF aeroelastic section.

FIG. 2. Electroaeroelastic system parameters and variables in a hybrid

piezoelectric-inductive aeroelastic energy harvester based on a 2-DOF

aeroelastic section depicting four components of the response: plunge dis-

placement (h), angular pitch displacement (a), piezoelectric voltage (v)

across the load Rp
l , and induced current (I) flowing to the load Ri

l.
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the dimensionless piezoelectric coupling, g ¼ Ceq
p ðv�Þ

2

=mb2lx2
h is the dimensionless equivalent capacitance,

kp
l ¼ Rp

l mb2lx3
h=ðv�Þ

2
is the dimensionless load resistance for

the piezoelectric energy harvesting circuit, I ¼ I=I� (where

I� ¼ 1 A is the reference current), v ¼ BlI
�=lmbx2

h is the

dimensionless electromagnetic coupling, u ¼ LcðI�Þ2=lmb2x2
h

is the dimensionless inductance, ki
l ¼ Ri

lðI�Þ
2=lmb2x3

h is the

dimensionless load resistance for the inductive energy harvest-

ing circuit, kc ¼ RcðI�Þ2=lmb2x3
h is the dimensionless internal

resistance, c ¼ xa=xh is the frequency ratio, x2
h ¼ kh=m is the

square of the plunge natural frequency, and x2
a ¼ ka=Ia is the

square of the pitch natural frequency. The dimensionless aero-

dynamic loads are L ¼ L=mbx2
h and M ¼ M=mb2x2

h. In the

governing equations, the prime (0) denotes that the differentia-

tion with respect to the dimensionless time s ¼ xht.
The coupled piezoaeroelastic equations can be written in

the state-space form by introducing the electromechanical

coupling terms to the aeroelastic model by Edwards et al.28

Since the dimensionless electroaeroelastic system consists of

several parameters, it is necessary to investigate the effects of

aeroelastic and electrical parameters on the flutter speed and

power output in several cases. Since the focus is placed on the

flutter boundary (to maximize the power output and reduce

the linear flutter speed), the foregoing linear electroaeroelastic

formulation is well-justified from the practical point of view.

The authors formerly demonstrated the possibility of reducing

the cut-in speed by exploiting nonlinear dynamic phenomena9

theoretically and experimentally whereas the present work

focuses on the linear system parameters.

First the effects of dimensionless radius of gyration ra,

frequency ratio c, and chord-wise offset of the elastic axis

from the centroid xa on the dimensionless total electrical power

as well as the dimensionless flutter speed of the hybrid

piezoelectric-inductive flow energy harvester are investigated

for the optimal electrical loads. Then the focus is placed on the

effects of the dimensionless electrical loads and their effects

on the power output and the flutter boundary. The nominal

aeroelastic parameters belong to the piezoaeroelastic experi-

mental setup used by Sousa et al.9 (ra ¼ 0:5467, c ¼ 0:509,

xa ¼ 0:25, b ¼ 2:594, fh ¼ 0:0535, and fa ¼ 0:1102). The

piezoelectric coupling, electromagnetic coupling, and piezo-

electric capacitance have the fixed values of j ¼ 5:9� 10�6,

v ¼ 0:0457, and g ¼ 3:66� 10�9. The simulations in the

present work are performed for the dimensionless frequency

ratio ranging from 0.02 to 3 times of the original value

ðc ¼ 0:509Þ, radius of gyration ranging from 0.35 to 1.45

times the original value ðra ¼ 0:5467Þ, and chord-wise offset

of the elastic axis from the centroid ranging from 0.2 to 2 times

the original value ðxa ¼ 0:25Þ.
The variation of dimensionless flutter speed (U ¼ U=xhb)

with dimensionless radius of gyration (ra) and frequency ratio

(c) is displayed in Fig. 3(a) for the optimal electrical load resist-

ance values of each set of aeroelastic parameters in both circuits

(to maximize the power output) and fixed chord-wise offset of

the elastic axis from the centroid (xa ¼ 0:25). The flutter speed

increases with increasing ra for all values of c. Figure 3(b)

shows the variation of total dimensionless electrical power out-

put (P ¼ v2=kp
l þ I

2
ki

l) with ra and c for the dimensionless

flutter speed values of Fig. 3(a) (note that the ra-axis is reversed

for clarity). The electrical power output is minimal when the

frequency ratio is around c ¼ 0:7 (which should therefore be

avoided in design). Although the power output increases at

higher frequency ratios above this value in the high radius of

gyration regime, the flutter speed also increases. Increased flut-

ter speed is against the practicality of the aeroelastic energy

harvesting concept and should be avoided. The maximum total

power output is obtained for the lowest values of radius of gyra-

tion and frequency ratio. This preferred area also corresponds

to the configurations with the lowest flutter speed. In Figs. 3(a)

and 3(b), the dimensionless load resistance for the inductive

energy harvesting circuit that generates maximum power out-

put remains close to the value of dimensionless internal coil re-

sistance, ðki
lÞoptimal ffi kc ¼ 0:1022 (in agreement with the

maximum power transfer theorem26) while the optimal electri-

cal load of the piezoelectric energy harvesting circuit is shown

in Fig. 3(c) for the ra and c combinations shown in Figs. 3(a)

and 3(b).

The dependence of dimensionless flutter speed on

dimensionless chord-wise offset of the elastic axis from the

centroid (xa) and frequency ratio (c) is displayed in Fig. 4(a)

for the optimal electrical load resistance values (for each

combination of aeroelastic parameters) in both circuits and

fixed dimensionless radius of gyration ðra ¼ 0:5467Þ. The

flutter speed increases with decreasing xa (reducing the iner-

tial coupling of the DOFs) for all values of c. Figure 4(b)

shows the variation of total dimensionless electrical power

FIG. 3. Dimensionless (a) flutter speed, (b) power output, and (c) load resist-

ance (of the piezoelectric circuit) versus dimensionless radius of gyration

and frequency ratio at the flutter boundary (for a fixed chord-wise offset of

the elastic axis from the centroid: xa ¼ 0:25).
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output with xa and c obtained at each dimensionless flutter

speed of Fig. 4(a) (note that the xa-axis is reversed for

clarity). The electrical power output is minimal for the fre-

quency ratios near c ¼ 0:7 and for low values of xa (where

the flutter speed is high). The maximum total power output

is obtained for the lowest c and highest xa, and this favorable

area also corresponds to low values of flutter speed

(Fig. 4(a)). Once again, the optimal load resistance for the in-

ductive energy harvesting circuit remains close to the value

of dimensionless internal coil resistance (ðki
lÞoptimal ffi kc

¼ 0:1022) while the optimal electrical load of the piezoelec-

tric energy harvesting circuit is shown in Fig. 4(c) for chang-

ing xa and c.

Next the effects of dimensionless resistive loads in the

inductive and piezoelectric energy harvesting circuits on

dimensionless electrical power as well as dimensionless flut-

ter speed of the hybrid piezoelectric-inductive flow energy

harvester are investigated. The ranges of resistive loads in

the piezoelectric and inductive circuits cover the interval of

short-circuit to open-circuit conditions for each circuit. A

coil with an inductance of 428 mH (yielding u ¼ 0:0130)

and internal resistance of 175 X (yielding the aforementioned

kc ¼ 0:1022) is assumed for the inductive circuit. The

remaining system parameters are assumed to take their nomi-

nal values mentioned previously.

The interaction between electrical power generation

(from piezoelectric transduction and electromagnetic induc-

tion) and electroaeroelastic behavior at the flutter boundary is

shown in Fig. 5 for broad ranges of separate resistive loads

connected to the respective transduction interfaces (see Figs. 1

and 2). The variation of the total dimensionless power output

(P) with dimensionless load resistance values is given in

Fig. 5(a). The maximum power output is observed for the

combination of the optimal resistive load values of each exter-

nal circuit. The optimal load of the inductive circuit is again

around the coil resistance (kc ¼ 0:1022) in agreement with

the maximum power transfer theorem.29 The variation of

dimensionless flutter speed (U) with dimensionless resistive

loads of the piezoelectric and inductive energy harvesting cir-

cuits is presented in Fig. 5(b). The presence of an optimal load

resistance for the piezoelectric circuit that gives the maximum

flutter speed is observed for all values of load resistance of the

inductive circuit. The flutter speed decreases with increasing

load resistance of the inductive circuit for any value of load

resistance of the piezoelectric circuit. The fact that the optimal

load resistance of the maximum power output in the inductive

circuit does not correspond to that of the maximum flutter

speed might seem to be counterintuitive. However, it is simply

a consequence of the realistic non-zero internal coil resistance

assumption in the presence of non-zero coil inductance. It can

easily be shown even for vibration-based electromagnetic

energy harvesters (Amirtharajah and Chandrakasan30 and

Elvin and Elvin31) that the short-circuit stiffness is larger than

the open-circuit stiffness due to electromagnetic coupling in

the presence of non-zero coil inductance. The variations of the

flutter speed and power output dramatically depend on the

presence of internal coil resistance in the inductive energy

harvesting circuit. The zero coil resistance case is addressed

next for demonstration.

The variations of the total dimensionless power output and

flutter speed with dimensionless resistive loads are presented in

FIG. 4. Dimensionless (a) flutter speed, (b) power output, and (c) load resist-

ance (of the piezoelectric circuit) versus dimensionless chord-wise offset of

the elastic axis from the centroid and frequency ratio at the flutter boundary

(for a fixed dimensionless radius of gyration: ra ¼ 0:5467).

FIG. 5. Dimensionless (a) power output and (b) flutter speed versus dimen-

sionless electrical loads of both circuits (for non-zero coil resistance in the

inductive circuit: kc ¼ 0:1022).
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Figs. 6(a) and 6(b), respectively, for zero coil resistance

ðkc ¼ 0Þ. Similar to the previous case (non-zero coil resist-

ance), an optimal load resistance for the piezoelectric energy

harvesting circuit that gives the maximum flutter speed is

observed for all values of load resistance of the inductive

energy harvesting circuit. However, in the present case of

kc ¼ 0, the presence of an optimal load resistance for the in-

ductive circuit that gives the maximum flutter speed is also

observed for all values of load resistance of the piezoelectric

circuit. Furthermore the amount of dimensionless power output

from electromagnetic induction is dramatically boosted in the

absence of internal coil resistance.

An airfoil-based hybrid flow energy harvester that simul-

taneously exploits piezoelectric transduction and electromag-

netic induction has been introduced and analyzed based on

fully coupled electroaeroelastic modeling. Dimensionless

analysis of the electroaeroelastic behavior has been presented

for proper scaling and optimization of hybrid piezoelectric-

inductive energy harvesters toward reducing the cut-in speed

and maximizing the power output. The effects of several

dimensionless system parameters (radius of gyration, chord-

wise offset of the elastic axis from the centroid, frequency ra-

tio, load resistances, and internal coil resistance) on the

dimensionless electrical power as well as the dimensionless

cut-in speed have been investigated. It is concluded that

reducing the dimensionless radius of gyration (ra) and fre-

quency ratio (c, specifically well below c ¼ 0:7), while

increasing the dimensionless chord-wise offset of the elastic

axis from the centroid (xa) favorably increases the power out-

put and reduces the cut-in speed. These results and favorable

parameter regions can be used for design and fabrication of

optimal airfoil-based5,7 piezoelectric-inductive flow energy

harvesters for the maximum electrical power output at reason-

able airflow speeds.
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